314. USAMTS 2009 Round 2 #5.

by Virgil Nicula, Aug 31, 2011, 1:15 AM

USAMTS 2009 Round 2 # 5. Let $ABC$ be a triangle with $AB = 3$ , $AC = 4$ and $BC = 5$ . Let $P\in [BC]$ be a point

and let $Q$ be the point (other than $A$) where the line through $A$ and $P$ intersects the circumcircle of $ABC$ . Prove that $PQ\le \frac{25}{4\sqrt{6}}$ .


Proof. I"ll prove for any $A$-right triangle $ABC$ . Denote $m\left(\widehat{PAB}\right)=x$ . Prove easily that $\boxed{\ PQ=\frac {a^2\sin x\cos x}{b\cos x+c\sin x}\ }$ , where $x\in\left[0,\frac {\pi}{2}\right]$ . Thus, $PQ$ is max. $\iff$

$\frac {\sin x\cos x}{b\cos x+c\sin x}$ is max. $\iff$ $\frac {b}{\sin x}+\frac {c}{\cos x}$ is min. Denote $\left\{\begin{array}{c}
\sin x=u\\\
\cos x=v\end{array}\right|$ , where $\{u,v\}\subset (0,1)$ and $u^2+v^2=1$ . Our extremum problem becomes :


Lemma. Are given positive numbers $\{a,b\}$ . Ascertain $\min\left\{\frac bu\ +\frac cv\right\}$ , where $u>0\ ,\ v>0$ and $u^2\ +\ v^2=1$ .

Proof. For $b=c$ is easily ! Indeed, can suppose w.l.o.g. that $b=c=1$ . Denote $u+v=t$ . Prove easily that $t\in \left[1,\sqrt 2\right]$ . Indeed, $1\le 1+2uv=$ $\left(u^2+v^2\right)+2uv=$

$(u+v)^2\le$ $2\left(u^2+v^2\right)=$ $2\implies$ $ 1\le u+v\le\sqrt 2$ . Therefore, $\frac 1u+\frac 1v$ is min. $\iff$ $\frac {uv}{u+v}$ is max. $\iff$ $\frac {t^2-1}{2t}$ is max. $\iff$ $f(t)=t-\frac 1t$ is max. Since the

function $f$ is $\nearrow$ (strict increasing) on $\left[0,\sqrt 2\right]$ obtain that this function is max. $\iff$ $t=\sqrt 2$ , i.e. $u=v=\frac {\sqrt 2}{2}$ . What happen if $a\ne b$ ? This is the actual problem. I"ll use

the Holder's inequality : $\left(\frac{b}{u}+\frac{c}{v}\right)\left(\frac{b}{u}+\frac{c}{v}\right)(u^2+v^2) \ge (\sqrt[3]{b^2}+\sqrt[3]{c^2})^3$ Have equality iff $\frac {b}{u^3}=\frac {c}{v^3}$ , i.e. $\tan x=\sqrt[3]{\frac bc}\iff$ $\boxed{\frac {PB}{PC}=\frac cb\cdot\tan x=\sqrt[3]{\frac {c^2}{b^2}}}$ .

Otherwise. $PQ$ is max. $\iff$ $g(x)=\frac {\sin 2x}{\sin (B+x)}$ is max. Prove easily that $g'(x)\ \boxed{.s.s.}\ 2\cos 2x\sin (B+x)-$ $\sin 2x\cos (B+x)\ \boxed{.s.s.}$

$2\sin (B-x)+2\sin (B+3x)-\sin (B+3x)+$ $\sin (B-x)\ \boxed{.s.s.}\ 3\sin (B-x)+$ $\sin (B+3x)\ \boxed{.s.s.}\ \sin (B-x)+$

$\sin (B+x)\cos 2x\ \boxed{.s.s.}$ $\sin B\cos x(1+\cos 2x)-$ $\cos B\sin x(1-\cos 2x)\ \boxed{.s.s.}\ b\cos^3x-c\sin^3x\ \boxed{.s.s.}$

$\sqrt[3]{\frac bc}-\tan x$ a.s.o. I used the notation $A\ \boxed{.s.s.}\ B\ \iff AB>0 \ \ \vee\ \ A=B=0$ , i.e. $A$ and $B$ have same sign.


USAMTS 1998 Round 3 # 4 - Trigonometry. Prove that if $0<x<\pi/2$, then $\sec^6 x+\csc^6 x+\sec^6 x\csc^6 x\geq 80$.

Proof. $\sec^6 x+\csc^6 x+\sec^6 x\csc^6 x\geq 80\iff$ $1+\sin^6x+\cos^6x\ge 80\sin^6x\cos^6x\iff$

$1+\sin^4x-\sin^2x\cos^2x+\cos^4x\ge 80\sin^6x\cos^6x\iff$ $2-3\sin^2x\cos^2x\ge$ $80\sin^6x\cos^6x\iff$

$80\sin^6x\cos^6x+3\sin^2x\cos^2x-2\le 0$ . Denote $\sin^2x\cos^2x=t$ , where $0\le t\le \frac 14$ because $4t=\sin^22x$ .

In conclusion, $(\forall )\ t\in\left[0,\frac 14\right]$ we have $ \left\{\begin{array}{c}
80t^3\le \frac 54\\\\
3t-2\le -\frac 54\end{array}\right|\ \bigoplus\implies 80t^3+3t-2\le 0$ .
This post has been edited 46 times. Last edited by Virgil Nicula, Nov 20, 2015, 8:25 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404400
  • Total comments: 37
Search Blog
a