430. Trigonometrical identities.

by Virgil Nicula, Nov 12, 2015, 1:47 PM

PP8. Prove that $\frac {\sin x+\sin y+\sin z}{\sin (x+y+z)}=\frac {\cos x+\cos y+\cos z}{\cos (x+y+z)}=2\ \implies \left\{\begin{array}{c}
\sum\sin y\sin z=-\frac 34\\\\
\sum\cos y\cos z=\frac 54\end{array}\right\|$ .

Proof 1. Let $\boxed{uvw=p}\ (*)$ , where $\left\{\begin{array}{ccccc}
u=\cos x+i\sin x & \implies & \sin x=\frac {u^2-1}{2iu} & ; & \cos x=\frac {u^2+1}{2u}\\\\
v=\cos y+i\sin y & \implies & \sin y=\frac {v^2-1}{2iv} & ; & \cos y=\frac {v^2+1}{2v}\\\\
w=\cos z+i\sin z & \implies & \sin z=\frac {w^2-1}{2iw} & ; & \cos z=\frac {w^2+1}{2w}\end{array}\right\|$ . So $\left\{\begin{array}{c}
\cos x+\cos y+\cos z=2\cos (x+y+z)\\\\
\sin x+\sin y+\sin z=2\sin (x+y+z)\end{array}\right|\left|\begin{array}{cc}
\odot & 1\\\\
\odot & i\end{array}\right\|$ $\oplus\implies$

$\boxed{u+v+w=2p}\ (1)$ . Observe that $uv+vw+wu=p\left(\frac 1u+\frac 1v+\frac 1w\right)=$ $p\left(\overline u+\overline v+\overline w\right)=$ $p\cdot\overline {u+v+w}\ \stackrel{(1)}{=}\ 2\cdot p\cdot\overline{p}=2|p|=2$ $\implies$ $\boxed{uv+vw+wu=2}\ (2)$ .

Thus $:\ \sum\sin y\sin z=$ $\sum\left(\frac {v^2-1}{2iv}\cdot \frac {w^2-1}{2iw}\right)=$ $\frac {-1}{4uvw}\cdot\sum u(v^2-1)(w^2-1)=$ $\frac {-1}{4p}\cdot\left[uvw\cdot\sum vw-\sum u\left(v^2+w^2\right)+\sum u\right]=$ $-\frac {2p-\sum uv(u+v)+2p}{4p}=$

$-\frac {4p-\sum uv\sum u+3uvw}{4p}=$ $-\frac {4p-4p+3p}{4p}=-\frac 34\implies$ $\boxed{\sum\sin y\sin z=-\frac 34}\ ;\ \sum\cos y\cos z=$ $\sum\left(\frac {v^2+1}{2v}\cdot \frac {w^2+1}{2w}\right)=$ $\frac 1{4uvw}\cdot\sum u(v^2+1)(w^2+1)=$

$\frac 1{4p}\cdot\left[uvw\cdot\sum vw+\sum u\left(v^2+w^2\right)+\sum u\right]=$ $\frac {2p+\sum uv(u+v)+2p}{4p}=$ $\frac {4p+\sum uv\sum u-3uvw}{4p}=$ $-\frac {4p+4p-3p}{4p}=\frac 54\implies$ $\boxed{\sum\cos y\cos z=\frac 54}$ .

Otherwise, $\sum\cos y\cos z-\sum\sin y\sin z=\sum\cos(y+z)=\mathrm{Re}(uv+vw+wu)=2\implies$ $\sum\cos y\cos z=2+\sum\sin y\sin z=2-\frac 34\implies$ $\sum\cos y\cos z=\frac 54$ .

Proof 2. $ \frac{\sin x+\sin y+\sin z}{\sin(x+y+z)}=\frac{\cos x+\cos y+\cos z}{\cos(x+y+z)}= 2\implies$ $\left\{\begin{array}{ccc}
\sin x+\sin y+\sin z & = & 2\sin(x+y+z)\\\\
\cos x+\cos y+\cos z & = & 2 \cos(x+y+z)\end{array}\right\|\implies$

$\left\{\begin{array}{ccc}
(\sin x+\sin y+\sin z)^{2} & = & 4\sin^{2}(x+y+z)\\\\
(\cos x+\cos y+\cos z)^{2} & = & 4 \cos^{2}(x+y+z)\end{array}\right\|$ $\bigoplus\implies$ $(\sin x+\sin y+\sin z)^{2}+(\cos x+\cos y+\cos z)^{2}=4\implies$

$ 3 + 2\sin x \sin y + 2 \sin y \sin z +2 \sin z \sin x+ $ $2 \cos x \cos y +2 \cos y \cos z +2 \cos z \cos x = 4\implies $ $ \sin x \sin y + \sin y \sin z + \sin z \sin x +  \cos x \cos y + $

$\cos y \cos z + \cos z \cos x = \frac{1}{2} $ . Let $\left\{\begin{array}{ccc}
P & = & \sin x \sin y + \sin y \sin z + \sin z \sin x\\\\
Q & = & \cos x \cos y + \cos y \cos z + \cos z \cos x\end{array}\right\|$ . Thus, $\boxed{P+Q =\frac{1}{2}}\ (1)$ . I'll use the relations from
PP9 $\ :$

$\left\{\begin{array}{ccc}
\sin(x+y)\sin(y+z) & = & \sin z \sin x+ \sin y \sin(x+y+z)\\\\
\sin(x+y)\sin(y+z) & = & \cos z \cos x- \cos y \cos(x+y+z)\end{array}\right\|$ . Thus, $\sin z \sin x+ \sin y \sin(x+y+z) =$ $ \cos z \cos x- \cos y \cos(x+y+z)$ $\implies$

$\sin z \sin x+ \sin y  \cdot \frac{\sin x+\sin y+\sin z }{2} = $ $\cos z \cos x- \cos y \cdot \frac{\cos x+\cos y+\cos z}2$ $\implies$ $2\sin z \sin x+ \sin y \sin x+\sin^{2}y+\sin y\sin z=$

$2 \cos z \cos x- \cos y \cos x-\cos^{2}y-\cos y\cos z$ $\implies$ $\sin z \sin x+ P +\sin^{2}y  =$ $3 \cos z \cos x- Q-\cos^{2}y$ $\implies$ $\sin z \sin x+ P+Q +1\ \stackrel{(1)}{=}\ 3 \cos z \cos x$ $\implies$

$\sin z \sin x+ \frac 32=3 \cos z \cos x$ . Analogously $\left\{\begin{array}{ccc}
\sin y \sin x+ \frac{3}{2} & = & 3 \cos y \cos x\\\\
\sin z \sin y+ \frac{3}{2} & + & 3 \cos z \cos y\\\\
\sin z \sin x+ \frac 32 & = & 3 \cos z \cos x\end{array}\right\|$ $\bigoplus\implies$ $\boxed{P + \frac{9}{2}=3Q}\ (2)$ . Finally, from $(1)$ and $(2)$ get $\boxed{P = -\frac{3}{4}\ \ \wedge\ \ Q = \frac{5}{4}}$ .



PP9. Prove that $\sin (x+y)\sin(y+z) = $ $\sin x \sin z+ \sin y \sin(x+y+z) = $ $\cos x \cos z- \cos y \cos(x+y+z)$.

Proof. $\cos x \cos z- \cos y \cos(x+y+z)=\sin x \sin z+ \sin y \sin(x+y+z) \iff$ $\cos x \cos z-\sin x \sin z=\cos y \cos(x+y+z)+\sin y \sin(x+y+z)\iff$

$\cos (x+z)=\cos [(x+y+z)-y]$ , what is truly. Let $ABCD$ what is inscribed in $w=C\left(O,\frac 12\right)$ and for which $\left\{\begin{array}{ccc}
m\left(\widehat{ACB}\right) & = & x\\\
m\left(\widehat{BAC}\right) & = & y\\\
m\left(\widehat{CBD}\right) & = & z\end{array}\right\|$ . So $AB=\sin x$ , $BC=\sin y$ and

$\left\{\begin{array}{ccc}
CD=\sin z & ; & DA=\sin (x+y+z)\\\\
AC=\sin (x+y) & ; & BD=\sin (y+z)\end{array}\right\|$ . Apply the Ptolemy's theorem $:$ $\left\{ \begin{array}{ccccc}
AB\cdot CD & + & AD\cdot BC & = & AC\cdot BD\\\\
\sin x\sin z & + & \sin y\sin(x+y+z) & = & \sin (x+y)\sin(y+z)\end{array}\right\|$ .



PP10. Prove that $\tan x\tan y= \sqrt {\frac{a-b}{a+b}}\implies$ $(a-b\cos 2x)(a-b\cos 2y)=a^2-b^2$ .

Proof 1. Denote $\left\{\begin{array}{c}
\tan x=u\\\
\tan y=v\end{array}\right|$ . The assumption becomes $uv=\sqrt {\frac{a-b}{a+b}}$ , i.e. $u^2v^2=\frac{a-b}{a+b}$ and the conclusion becomes $\left(a-b\cdot\frac {1-u^2}{1+u^2}\right)\left(a-b\cdot\frac {1-v^2}{1+v^2}\right)=$

$a^2-b^2\iff$ $\left[(a+b)u^2+(a-b)\right]\cdot\left[(a+b)v^2+(a-b)\right]=$ $\left(a^2-b^2\right)\left(1+u^2\right)\left(1+v^2\right)\iff$ $(a+b)^2\cdot\frac {a-b}{a+b}+\left(a^2-b^2\right)\left(u^2+v^2\right)+(a-b)^2=$

$\left(a^2-b^2\right)\left[1+\left(u^2+v^2\right)+u^2v^2\right]$ , what is truly because $(a+b)^2\cdot\frac {a-b}{a+b}=a^2-b^2$ and $(a-b)^2=\left(a^2-b^2\right)u^2v^2$ .

Proof 2. $\tan x\tan y= \sqrt {\frac{a-b}{a+b}}\implies$ $\frac {a-b}{\sin^2x\sin^2y}=\frac {a+b}{\cos^2x\cos^2y}\iff$ $\frac {a-b}{(1-\cos 2x)(1-\cos 2y)}=\frac {a+b}{(1+\cos 2x)(1+\cos 2y)}\iff$

$\frac {a}{1+\cos 2x\cos 2y}= \frac {b}{\cos 2x+\cos 2y}\iff$ $ab(\cos 2x+\cos 2y)=b^2(1+\cos 2x\cos 2y)\iff$ $(a-b\cos 2x)(a-b\cos 2y)=a^2-b^2$ .



$\boxed{\boxed{\begin{array}{ccc}
\mathrm{PP11}\ :\ x=39,375^{\circ}\implies 8x=315^{\circ} & \implies & \cos 8x=\cos 45^{\circ}=\frac {\sqrt 2}2\implies\boxed{\cos 8x=\frac {\sqrt2}2}\\\\
2\cos^24x=1+\cos 8x=\frac {2+\sqrt 2}2 & \implies & \cos 4x=\frac {\sqrt{2+\sqrt 2}}2\\\\
2\cos^22x=1+\cos 4x=\frac {2+\sqrt{2+\sqrt 2}}2 & \implies & \cos 2x=\frac {\sqrt{ 2+\sqrt{2+\sqrt 2}}}2\\\\ 2\cos^2x=1+\cos 2x=\frac {2+\sqrt{ 2+\sqrt{2+\sqrt 2}}}2 & \implies & \boxed{\cos x=\frac {\sqrt{2+\sqrt{ 2+\sqrt{2+\sqrt 2}}}}2}\end{array}\implies\ \boxed{\cos \frac {7\pi}{32}= \frac {\sqrt{2+\sqrt{ 2+\sqrt{2+\sqrt 2}}}}2}}}$

PP12. Sa se studieze natura sirului recurent definit astfel: $\boxed{a_1=\sqrt 2\ \mathrm{and}\ (\forall )\ n\in\mathbb N^{*}\ ,\  a_{n+1}=\sqrt{2+a_n}\ .\ }$

Proof. Define the following equivalence over $\mathbb R\ :\ x\ s.s\ y\ \iff\ \mathrm{sign}\ x=\mathrm{sign}\ y\ \iff\ x=y=0\ \vee\ xy>0\ \iff\ x\ \mathrm{and}\ y\ \mathrm{have\ same\  signature}\ .$ Thus $(\forall )\ n\in\mathbb N^{*}\ ,\ a_{n+2}-a_{n+1}=$

$\sqrt {2+a_{n+1}}-\sqrt{2+a_n}\ s.s\ \left(2+a_{n+1}\right)-\left(2+a_n\right)=a_{n+1}-a_n\implies$ $\boxed{(\forall )\ n\in\mathbb N^{*}\ ,\ \left(a_{n+2}-a_{n+1}\right)\ s.s\ \left(a_{n+1}-a_n\right)}\ .$ Observe that $a_2-a_1=\sqrt{2+a_1}-a_1\ s.s.\ \left(2+a_1\right)-a_1^2=$

$\left(a_1+1\right)\left(2-a_1\right)>0\implies $ $\boxed{\ a_2\ >\ a_1\ }\ .$ From the inductive process obtain easily that for any $n\in\mathbb N^*\ ,\ a_n<2$ (bounded) and our sequence is increasing $(\nearrow)\implies$ there is $\lim_{n\rightarrow \infty}a_n=l\in (0,\infty )$

(finite limit). Our sequence $\left(a_n\right)_n$ is convergent and $l=\lim_{n\rightarrow \infty}a_{n+1}=\sqrt{2+\lim_{n\rightarrow \infty}a_n}=\sqrt{2+l}\implies$ $l=\sqrt {2+l}\implies l^2-l-2=(l-2)(l+1)=0\ \stackrel{l>0}{\implies}\ l=2\implies\boxed{\ \lim_{n\rightarrow \infty}a_n=2\ }\ .$

This post has been edited 64 times. Last edited by Virgil Nicula, Jul 27, 2017, 9:50 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404397
  • Total comments: 37
Search Blog
a