364. Some interesting inequalities I

by Virgil Nicula, Jan 16, 2013, 9:21 PM

PP1. Let $a$ , $b$ and $c$ be the sidelengths of $\triangle ABC$ with the inradius $r$ and $2s=a+b+c$ . Prove that $\boxed{\cos\frac A2\le \frac{\sqrt{bc}}{4r}}$ and $\boxed{\cos\frac {B-C}{2}\ge \sqrt {\frac {2r}{R}}}$ .

Proof 1. $\left\{\begin{array}{c}
b^2\ge b^2-(a-c)^2=4(s-a)(s-c)\\\\
c^2\ge c^2-(a-b)^2=4(s-a)(s-b)\end{array}\right|\bigodot\implies$ $b^2c^2\ge 16(s-a)^2(s-b)(s-c)=16(s-a)sr^2\implies$ $bc\ge 4r\sqrt {s(s-a)}\implies$ $\sqrt {bc}\ge 4r\sqrt{\frac {s(s-a)}{bc}}\implies$

$\sqrt {bc}\ge 4r\cos\frac A2\implies$ $\boxed{\cos\frac A2\le \frac{\sqrt{bc}}{4r}}$ . Observe that $\cos\frac {B-C}{2}\ge \sqrt {\frac {2r}R}$ and $\sin\frac {B+C}{2}=\cos\frac A2\implies$ $2\sin\frac {B+C}{2}\cos\frac {B-C}{2}\ge 2\cos\frac A2\sqrt{\frac {2r}R}\iff$

$\sin B+\sin C\ge 2\sqrt{\frac {2rs(s-a)}{Rbc}}\iff$ $b+c\ge\sqrt{\frac {32Rrs(s-a)}{bc}}\iff$ $(b+c)^2\ge 8a(s-a)\iff$ $[a+(b+c-a)]^2\ge 4a(b+c-a)\iff$ $[a-(b+c-a)]^2\ge 0$ ,

what is truly. Have equality iff $\boxed{b+c=2a\iff IO\perp IA}$ .

Proof 2.. Let $P\in (AC)$ so that $IP\perp AC$ , the midpoint $M$ of $[BC]$ , the incircle $w=C(I,r)$ , the circumcircle $C(O,R)$ and the diameter $[NS]$ , where $M\in NS$ and $BC$ separates

$A\ ,\ S$ . So $SC=IS$ and $\triangle AIP\sim\triangle NSC\implies$ $\frac {IA}{SN}=\frac {IP}{SC}\implies$ $\frac {IA}{2R}=\frac r{SC}\implies$ $\boxed{-p_w(I)\equiv IA\cdot IS=2Rr}$ . Thus, $2R\cos\frac {B-C}{2}=AS=AI+IS\ge$

$2\sqrt {IA\cdot IS}=2\sqrt {2Rr}\implies$ $\cos\frac {B-C}{2}\ge\sqrt{\frac{2r}{R}}$ .

Proof 3.. Let $D\in AI\cap BC$ . Thus, $\triangle ABS\sim\triangle ADC\iff$ $\frac {AS}{AB}=\frac {AC}{AD}\iff$ $\boxed{AD\cdot AS=bc}\ (*)$ . Therefore, $\frac {IA}{b+c}=\frac {ID}{a}=\frac {AD}{2s}$ and

from the Ptolemy theorem obtain that $a\cdot AS=(b+c)\cdot IS\implies$ $IA\cdot IS=IA\cdot\frac {a\cdot AS}{b+c}=$ $AS\cdot \frac {a}{2s}$ $\cdot AD\ \stackrel{(*)}{=}\ \frac {abc}{2s}$ $\implies$ $IA\cdot IS=2Rr$ .

Proof 4, Observe that $SI=SB=SC=2R\sin\frac A2$ and $AI^2=\frac {bc(s-a)}{s}$ . Thus, $IA\cdot IS=$ $\sqrt{\frac {bc(s-a)}{s}}\cdot 2R\sqrt {\frac {(s-b)(s-c)}{bc}}=$

$2R\cdot\sqrt{\frac {(s-a)(s-b)(s-c)}{s}}=2Rr\implies$ $IA\cdot IS=2Rr$ .



PP2. Let $a$ , $b$ and $c$ be the sidelengths of an acute $\triangle ABC$ . Prove that $\boxed{4a\cos A\le\sqrt{\frac{bc}{\cos B\cos C}}}\ (1)$ , i.e. $\boxed{2\sin 2A\le\sqrt {\tan B\tan C}}$ .

Proof 1. Let $XX$ be the tangent to the circumcircle $w$ of $\triangle ABC$ in $X\in w$ . Let $\triangle MNP$ , where $\left\{\begin{array}{c}
M\in BB\cap CC\ ;\ M=\pi -2A\ ;\ NP=m\\\\
N\in CC\cap AA\ ;\ N=\pi-2B\ :\ PM=n\\\\
P\in AA\cap BB\ ;\ P=\pi -2C\ ;\ MN=p\end{array}\right|$ and $\frac {m}{a\cos A}=\frac {n}{b\cos B}=$

$\frac {x+y+z}{2}\ge \frac 32\sqrt[3]{xyz}=\frac 32$ . $\frac {p}{c\cos C}=\frac {1}{2\cos A\cos B\cos C}$ . Thus, $(*)$ becomes $\cos\frac M2\le\frac {\sqrt {np}}{4R}\iff$ $4R\sin A\le\frac 1{2\cos A}\sqrt {\frac {bc}{\cos B\cos C}}\iff$ $4a\cos A\le\sqrt{\frac{bc}{\cos B\cos C}}$ .

Proof 2. Observe that $b^2+c^2-a^2>0$ , $a^2+c^2-b^2>0$ , $a^2+b^2-c^2>0$ and $\left\{\begin{array}{c}
(b^2+c^2-a^2)\cdot (a^2+c^2-b^2)\le \left[\frac {(b^2+c^2-a^2)+(a^2+c^2-b^2)}{2}\right]^2=c^4\\\\ 
(b^2+c^2-a^2)\cdot (a^2+b^2-c^2)\le \left[\frac {(b^2+c^2-a^2)+(a^2+b^2-c^2)}{2}\right]^2=b^4\end{array}\right|\ \bigodot$ $\implies$

$\left(b^2+c^2-a^2\right)^2\left(a^2+c^2-b^2\right)\left(a^2+b^2-c^2\right)\le b^4c^4\iff$ $(2bc\cos A)^2\cdot 2ac\cos B\cdot 2ab\cos C\le b^4c^4\iff$ $16a^2\cos^2A\cos B\cos C\le bc\iff$

$16\sin^2A\cos^2A\cos B\cos C\le \sin B\sin C\iff$ $4\sin^22A\le\tan B\tan C\iff$ $2\sin 2A\le \sqrt {\tan B\tan C}$ .

Remark. $(1)\iff$ $2\sin 2A\le\sqrt {\tan B\tan C}$ . If denote $\left\{\begin{array}{c}
\tan A=x\\\\
\tan B=y\\\\
\tan C=z\end{array}\right|$ , then $\boxed{\left|\begin{array}{c}
\{x,y,z\}\subset\mathbb R^*_+\\\\
x+y+z=xyz\end{array}\right\|\implies \frac {4x}{x^2+1}\le\sqrt {yz}}$ .

Proof. By AM-GM $xyz=x+y+z\ge 3\sqrt[3]{xyz} \implies xyz \ge 3\sqrt3$ . Hence $\frac{4x}{1+x^2}=$ $\frac{4x}{1+\frac{x^2}3+\frac{x^2}3+\frac{x^2}3}\le$ $\frac{4x}{4\sqrt[4]{\frac{x^6}{27}}}=$ $\frac{\sqrt[4]{27}}{\sqrt{x}} =$ $ \frac{\sqrt[4]{27}\cdot\sqrt{yz}}{\sqrt{xyz}}\le $ $\frac{\sqrt[4]{27}\cdot\sqrt{yz}}{\sqrt[4]{27}} =$ $\sqrt{yz}$ .



PP3. Prove that in any triangle $ABC$ there is the inequality $\boxed{\frac {bc}{a}+\frac {ca}{b}+\frac {ab}{c}\ge a+b+c\ge \frac {4S}{R}}$ .

Proof 1. $\frac {bc}{a}+\frac {ca}{b}+\frac {ab}{c}\ge \frac {4S}{R}\iff$ $R\cdot\sum b^2c^2\ge 4abcS\iff$ $\sum b^2c^2\ge 16S^2\iff$ $\sum b^2c^2\ge 2\sum b^2c^2-\sum a^4\iff$ $\sum a^4\ge \sum b^2c^2$ , what is truly.

Proof 2. $\left\{\begin{array}{c}
4(s-a)(s-b)\le c^2\\\\
4(s-a)(s-c)\le b^2\end{array}\right|\bigodot\implies$ $16(s-a)sr^2\le b^2c^2\iff$ $4(s-a)rabc\le b^2c^2R\iff$ $\frac {bc}{a}\ge \frac {4r(s-a)}{R}\implies$ $\sum \frac {bc}{a}\ge \frac {4rs}{R}=\frac {4S}{R}$ .

Proof 3. $\frac bc+\frac cb\ge 2\implies$ $\sum \frac {bc}{a}=\frac 12\cdot\sum \left(\frac {ac}{b}+\frac {ab}{c}\right)\ge a+b+c=2s=\frac {2sR}{R}\ge \frac {4sr}{R}=\frac {4S}{R}$ . I used the well-known inequality $R\ge 2r$ .

Remark. $\frac {bc}{a}+\frac {ca}{b}+\frac {ab}{c}\ge \frac {4S}{R}\iff$ $R\cdot\sum b^2c^2\ge 4abcS\iff$ $\sum b^2c^2\ge 16S^2\iff$ $\sum\frac {1}{a^2}\ge \frac {16S^2}{a^2b^2c^2}\iff$ $\boxed{\frac {1}{a^2}+\frac {1}{b^2}+\frac {1}{c^2}\ge \frac {1}{R^2}}$ .



PP4. Let an acute $\triangle ABC$ with circumcircle $w=C(O,R)$ . $AO$ , $BO$ , $CO$ cut again circumcircle

of $\triangle OBC$ , $\triangle AOC$ , $\triangle ABO$ at $P$ , $Q$ , $R$ respectively. Prove that $OP \cdot OQ \cdot OR\ge 8R^3 $ .


Proof. Denote the midpoint $D$ of the side $[BC]$ and the diameter $[OA_1]$ of the circumcircle $w_a=C(O_1, R_1)$ of $\triangle OBC$ . Observe that $OBA_1C$ is a right deltoid and

$BC=2R_1\sin \widehat {BOC}\implies$ $2R\sin A=2R_1\sin 2A\implies$ $R_1=\frac {R}{2\cos A}$ . Otherwise, $OA_1\cdot OD=DB^2\implies$ $2R_1\cdot R\cos A=R^2\implies$ $\boxed{R_1=\frac {R}{2\cos A}}$ a.s.o.

Also, $OP=OA_1\cos\widehat{A_1OP}\implies$ $OP=2R_1\cos (B-C)\implies$ $\boxed{OP=R\cdot \frac {\cos (B-C)}{\cos A}}$ a.s.o. In conclusion, $OP\cdot OQ\cdot OR=$ $R^3\cdot\prod\frac {\cos (B-C)}{\cos A}=$

$R^3\prod\frac {\sin 2B+\sin 2C}{\sin 2A}\ge 8$ because $\{x,y,z\}\subset \mathrm R^*_+$ $\implies $ $\frac {(x+y)(y+z)(z+x)}{xyz}\ge 8$ , where $\left\{\begin{array}{c}
\sin 2A=x>0\\\\
\sin 2B=y>0\\\\
\sin 2C=z>0\end{array}\right|$ .



PP5. Prove that $\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}} \geq 2$ for any positive numbers $\{a,b,c\}$ .

Proof. Prove easily that $\left[a+(b+c)\right]^2\ge 4a(b+c)$ . Thus, $\frac {a}{b+c}\ge \frac {4a^2}{(a+b+c)^2}\implies$ $\sqrt {\frac {a}{b+c}}\ge\frac {2a}{a+b+c}$ a.s.o.


PP6. Let $a>2$ and $b>0$ . Prove that $\frac ab+\frac {2b}{a-2}-\frac 8a\ge 2$ .

Proof. I"ll show that $\boxed{\sqrt {\frac {2a}{a-2}}\ge 1+\frac 4a}\ (*)$ . Indeed, it is equivalently with $2a^3\ge (a-2)(a+4)^2\iff$ $a^3+32\ge 6a^2$ , what is truly because

$a^3+32=\frac {a^3}{2}+\frac {a^3}{2}+32\stackrel{\mathrm{AM\ge GM}}{\ \ge}$ $3\sqrt [3]{\frac {a^3}{2}\cdot\frac {a^3}{2}\cdot 32}=6a^2$ . Hence $\frac ab+\frac {2b}{a-2}\stackrel{\mathrm{AM}\ge \mathrm{GM}}{\ge}2\sqrt {\frac {2a}{a-2}}\stackrel{(*)}{\ge}$ $2\left(1+\frac 4a\right)$ . In conclusion,

$\frac ab+\frac {2b}{a-2}-\frac 8a\ge 2$ . Have the equality if and only if $a=4\ \wedge\ b=2$ . I applied the inequality AM (arithmetical mean) $\ge$ GM (geometrical mean) for $n\in \{2,3\}$ .

Otherwise. $\sqrt{\frac {2a}{a-2}}\ge 1+\frac 4a\iff$ $2a^3\ge (a-2)(a+4)^2\iff$ $a^3-6a^2+32\ge 0\iff$ $(a+2)(a-4)^2\ge 0$ , what is truly.

Otherwise. Can use directly the identity $2a^3=(a-2)(a+4)^2+(a+2)(a-4)^2\implies$ $2a^3\ge (a-2)(a+4)^2$ .


An easy extension. Let $a>c>0$ and $b>0$ . Prove that $\frac ab+\frac {2b}{a-c}-\frac {4c}a\ge 2$ . For $c=2$ obtain the proposed problem PP6.

Proof 1. $2a^3=(a-c)(a+2c)^2+(a+c)(a-2c)^2\implies$ $2a^3\ge (a-c)(a+2c)^2\implies$ $\frac {2a}{a-c}\ge \left(\frac {a+2c}{a}\right)^2\iff$ $\boxed{\sqrt {\frac {2a}{a-c}}\ge\frac {a+2c}{a}}\ (*)$ .

Therefore, $\frac ab+\frac {2b}{a-c}\stackrel{\mathrm{AM\ge GM}}{\ \ge\ }2\sqrt {\frac {2a}{a-c}}\stackrel{(*)}{\ge}$ $2\left(1+\frac {2c}a\right)$ . In conclusion, $\frac ab+\frac {2b}{a-c}-\frac {4c}a\ge 2$ . Have the equality if and only if $a=2c\ \wedge\ b=c$ .

I applied the inequality AM (arithmetical mean) $\ge$ GM (geometrical mean) for $n\in \{2,3\}$ . For $c:=2$ obtain the proposed problem.

Proof 2. $\frac ab+\frac {2b}{a-c}-\frac {4c}a\ge 2\iff$ $\frac a{2b}+\frac {b}{a-c}\ge 1+\frac {2c}a\iff$ $\frac a{2b}+\frac {b}{a-c}\ge 3-2+\frac {2c}a\iff$ $\frac a{2b}+\frac {b}{a-c}\ge 3-\frac {2(a-c)}a\iff$ $\frac a{2b}+\frac {b}{a-c}+\frac {2(a-c)}a\ge 3$ ,

what is truly because $\frac a{2b}+\frac {b}{a-c}+\frac {2(a-c)}a\ge 3\sqrt{\frac a{2b}}\cdot\frac {b}{a-c}\cdot\frac {2(a-c)}a=3$ is an application of the inequality AM (arithmetical mean) $\ge$ GM (geometrical mean) for $n=3$ .


Equivalent enunciation. $\{a,b,c\}\subset \mathbb R^*_+\implies \frac {a+c}{b}+\frac {2b}{a}\ge 2\left(1+\frac {2c}{a+c}\right)$ .

Proof 1. Using the substitutions $\frac ax=\frac by=c$ our inequality becomes $\frac {x+1}{y}+\frac {2y}{x}\ge 2\left(1+\frac 2{x+1}\right)\iff$ $(x+1)\left(x^2+x+2y^2\right)\ge 2xy(x+3)\iff$

$2(x+1)\cdot y^2-2x(x+3)\cdot y+x(x+1)^2\ge 0$ , what is truly because its discriminant is $\Delta '=x^2(x+3)^2-2x(x+1)^3=-x\left(x^3-3x+2\right)=-x(x+2)(x-1)^2\le 0$ .


Proof 2. $\frac {a+c}{b}+\frac {2b}{a}\ge 2\left(1+\frac {2c}{a+c}\right)\iff$ $\frac {a+c}{2b}+\frac {b}{a}\ge 1+\frac {2c}{a+c}\iff$ $\frac {a+c}{2b}+\frac {b}{a}\ge 1+2-\frac {2a}{a+c}\iff$ $\frac {a+c}{2b}+\frac {b}{a}+\frac {2a}{a+c}\ge 3$ ,

what is truly because $\frac {a+c}{2b}+\frac {b}{a}+\frac {2a}{a+c}\ge 3\sqrt[3]{\frac {a+c}{2b}\cdot\frac {b}{a}\cdot\frac {2a}{a+c}}=3$ is an application of the inequality AM (arithmetical mean) $\ge$ GM (geometrical mean) for $n=3$ .



PP7 (Abdullaev). Prove that in any $\triangle ABC$ there is the inequality $ a^2+b^2+c^2\ge 4S\sqrt 3+ \frac{1}{2}\left(\sum |b-c|\right)^2$ .

Proof. Suppose w.l.o.g. $a\ge b\ge c$ . Thus, $\sum a^2\ge 4S\sqrt 3+ \frac{1}{2}\left(\sum |b-c|\right)^2\iff$ $a^2+b^2+c^2\ge 4S\sqrt 3+2(a-c)^2\iff$ $b^2+4ac\ge a^2+c^2+4S\sqrt 3\iff$

$2ac(2-\cos B)\ge 4S\sqrt 3$ $\iff$ $2ac(2-\cos B)\ge 2\sqrt 3ac\cdot\sin B$ $\iff$ $2-\cos B\ge \sqrt 3\cdot\sin B\iff$ $1\ge \frac 12\cdot\cos B+\frac {\sqrt 3}{2}\cdot\sin B\iff$ $\cos\left(B-60^{\circ}\right)\le 1$ , what

is truly. The Abdullaev's inequality is stronger than the Finsler-Hadwiger's inequality $a^2+b^2+c^2\ge 4S\sqrt 3$ .The shortest proof of the Finsler-Hadwiger's inequality is following.

Denote $S=a^2+b^2+c^2$ and apply the Chebyshev's inequality: $\left\{\begin{array}{cc}
a^2\ <\ b^2\ <\ c^2 & \nearrow\\\\
S-2a^2\ <\ S-2b^2\ <\ S-3c^2 & \searrow\end{array}\right\|\implies$ $\left(\sum a^2\right)^2=$ $\sum a^2\cdot\sum\left(b^2+c^2-a^2\right)\ge $

$3\sum a^2\left(b^2+c^2-a^2\right)=$ $3\cdot\left(2\sum a^2b^2-\sum a^4\right)=48S^2\implies$ $\boxed{a^2+b^2+c^2\ge4S\sqrt3}$ .



PP8 (O.I.M. 1995). Prove that $\{a,b,c\}\subset\mathbb R^*_+\ ,\ abc=1\ \implies\ \frac {1}{a^3(b+c)}+\frac 1{b^3(c+a)}+\frac 1{c^3(a+b)}\ge \frac 32$ .

Proof. With $a=\frac 1x\ ,\ b=\frac 1y\ ,\ c=\frac 1z\implies$ our inequality becomes $\{x,y,z\}\subset\mathbb R^*_+\ ,\ xyz=1\ \implies$

$\sum\frac {x^2}{y+z}\ge \frac 32$ . I"ll use $\mathrm{C.B.S.}\ :\ \sum\frac {x^2}{y+z}\ge$ $\frac {\left(\sum x\right)^2}{\sum (y+z)}=$ $\frac {x+y+z}{2}\ge$ $\frac 32\cdot\sqrt[3]{xyz}=\frac 32$ .



Lemma. Prove that $\boxed{\sum_{k=1}^n\frac {k+1}{2^k}\ =\ 3-\frac{n+3}{2^n}\ <\ 3}\ ,\ (\forall )\  n\in\mathbb N^*$ .

Proof 1. Denote $S_n(x)=\sum _{k=1}^n(k+1)x^k$ . Observe that $(x-1)S_n(x)=(n+1)x^{n+1}-x-\sum_{k=1}^nx^k=$ $(n+1)x^{n+1}-x\left(1+\sum_{k=1}^nx^{k-1}\right)=$

$(n+1)x^{n+1}-x\left(1+\frac {x^n-1}{x-1}\right)\implies$ $S_n(x)=\frac {(n+1)x^{n+1}(x-1)-x(x-1)-x\left(x^n-1\right)}{(x-1)^2}\implies$ $S_n(x)=\frac {(n+1)x^{n+2}-(n+2)x^{n+1}-x^2+2x}{(x-1)^2}$ .

Hence $\sum_{k=1}^n\frac {k+1}{2^k}=$ $S_n\left(\frac 12\right)=$ $\frac {(n+1)-2(n+2)+3\cdot 2^n}{2^n}=$ $\frac {3\cdot 2^n-(n+3)}{2^n}$ $\implies$ $\sum_{k=1}^n\frac {k+1}{2^k}=$ $3-\frac{n+3}{2^n}$ . Otherwise. $S_n(x)=\left(\sum_{k=1}^nx^{k+1}\right)^{\prime}=\left(\frac {x^{n+2}-x^2}{x-1}\right)^{\prime}=$

$\frac {\left[(n+2)x^{n+1}-2x\right](x-1)-\left(x^{n+2}-x^2\right)}{(x-1)^2}{}\implies$ $\boxed{S_n(x)=\frac {(n+1)x^{n+2}-(n+2)x^{n+1}-x^2+2x}{(x-1)^2}}$ .



PP9. Prove that for any positive integer $n\ ,\ a_n=\sqrt { 1 + \sqrt { 2 + \sqrt {3+\sqrt { \cdots \sqrt { n }}}}} < 3$ .

Proof. Denote $b_k=\sqrt{k + \sqrt { (k+1)+ \sqrt {(k+2) +\sqrt{\cdots \sqrt { n }}}}}\ ,\ k\in\overline{1,n}$ .

Observe that $a_n=b_1\ ,\ b_k^2=k+b_{k+1}\ ,\ k\in\overline{1,n-1}$ and $b_n^2=n$ . Therefore, $a_n=b_1\le \frac {1+b_1^2}{2}=$ $\frac {2+b_2}{2}=$ $\frac 22+\frac {b_2}{2}\le $ $\frac 22+\frac 12\cdot\frac {1+b_2^2}{2}=$ $\frac 22+\frac 12\cdot\frac {3+b_3}{2}=$ $\frac 22+\frac 34+\frac {b_3}{4}\le$

$\frac 22+\frac 34+\frac 14\cdot\frac {1+b_3^2}{2}=$ $\frac 22+\frac 34+\frac 14\cdot\frac {4+b_4}{2}=$ $\frac 22+\frac 34+\frac 48+\frac {b_4}{8}\le$ $\cdots\ \le\frac 22+\frac 34+\frac 48+\ \cdots\ \frac {n}{2^{n-1}}+\frac {b_n}{2^{n-1}}\le$ $\frac 22+\frac 34+\frac 48+\ \cdots\ +\frac {n}{2^{n-1}}+\frac 1{2^{n-1}}\cdot \frac {1+b_n^2}{2}=$

$\frac 22+\frac 34+\frac 48+\ \cdots\ +\frac {n}{2^{n-1}}+\frac {n+1}{2^n}=$ $\sum_{k=1}^n\frac {k+1}{2^k}\stackrel{(\mathrm{lemma})}{=}3-\frac{(n+3)}{2^n}<3$ .


An easy extension. Prove that for any $m>0$ and positive integer $n\ ,\ a_n(m)=\sqrt { m + \sqrt { m+1 + \sqrt {m+2+\sqrt { \cdots \sqrt { m+n-1 }}}}} < m+2$ .


PP10. $ \{\ a\ ,\ b\ \}\ \subset\ [\ 0\ ,\ 1\ ]\ \implies\ 1 - \ \frac {a + b}{2}\ + \ \frac {ab}{3}\ \ge\ \frac {1}{1 + a + b}$

Proof. Denote $ \left\|\begin{array}{c} a + b = S \\
\\ ab = P\end{array}\right\|$ . The proposed inequality becomes : $ \frac {1}{S + 1} + \frac S2\le\frac P3 + 1$ $ \Longleftrightarrow$

$ 3(S^2 + S + 2)\le 2(P + 3)(S + 1)$ $ \Longleftrightarrow$ $ \boxed {\ 3S^2\le (2P + 3)\cdot S + 2P\ }$ . Therefore,

$\blacktriangleright\ \left\|\begin{array}{c} a^2\le a \\\
\ b^2\le b\end{array}\right\|$ $ \implies$ $ a^2 + b^2\le a + b$ $ \implies$ $ S^2 - S\le 2P$ , with equality iff $ \{a,b\} = \{0,1\}$ .

$\blacktriangleright\ (1 - a)(1 - b)\ge 0$ $ \implies$ $ S\le P + 1$ $ \implies$ $ 2S + 1\le 2P + 3$ , with equality iff $ 1\in\{a,b\}$ .

$\blacktriangleright\ 3S^2 = (2S + 1)\cdot S + (S^2 - S)\le (2P + 3)\cdot S + 2P$ $ \implies$ $ \boxed {\ 3S^2\le (2P + 3)\cdot S + 2P\ }$

with equality iff $ \{a,b\} = \{0,1\}$ and $ 1\in \{a,b\}$ , i.e. $ \left\|\begin{array}{c} a = 1 \\
\ b = 1\end{array}\right\|$ or $ \left\|\begin{array}{c} a = 1 \\
\ b = 0\end{array}\right\|$ or $ \left\|\begin{array}{c} a = 0 \\
\ b = 1\end{array}\right\|$ .



Lemma (Goldstone's inequality). Let $\triangle ABC$ with the circumcircle $\mathbb C(O,R)$ and the incircle $\mathbb C(I,r)\ .$ Prove that there is the inequality $\boxed {\ \frac 1{R^2}\le\frac 1{a^2}+\frac 1{b^2}+\frac 1{c^2}\le\frac 1{4r^2}\ }$ (standard notations).

Proof.

$\bullet$ $\left\{\begin{array}{c}
4(s-a)(s-b)\le c^2\\\\
4(s-a)(s-c)\le b^2\end{array}\right|\bigodot\implies$ $16(s-a)sr^2\le b^2c^2\iff$ $4(s-a)rabc\le b^2c^2R\iff$ $\frac {bc}{a}\ge \frac {4r(s-a)}{R}\implies$ $\sum \frac {bc}{a}\ge \frac {4rs}{R}\implies$ $\frac 1{a^2}+\frac 1{b^2}+\frac 1{c^2}\ge\frac 1{R^2}\ (1)\ .$

$ \bullet\ 4(s-b)(s-c)\le a^2\iff\frac 1{a^2}\le \frac 1{4(s-b)(s-c)}\implies$ $\sum\frac 1{a^2}\le \sum\frac 1{4(s-b)(s-c)}=\frac {(s-a)+(s-b)+(s-c)}{4(s-a)(s-b)(s-c)}=\frac {\cancel s}{4\cancel sr^2}=\frac 1{4r^2} \implies \frac 1{a^2}+\frac 1{b^2}+\frac 1{c^2}\le\frac 1{4r^2}\ (2)\ .$

In conclusion, from the relations $(1)$ and $(2)$ obtain that bilateral inequality $\boxed {\ \frac 1{R^2}\le\frac 1{a^2}+\frac 1{b^2}+\frac 1{c^2}\le\frac 1{4r^2}\ }$ with the name Goldstone's inequality.


PP11 (George APOSTOLOPOULOS, Greece. Let $\triangle ABC$ with the circumcircle $\mathbb C(O,R)$ and the incircle $\mathbb C(I,r)\ .$ Prove that there is the inequality $\boxed {\ \frac 1{IA^2}+\frac 1{IB^2}+\frac 1{IC^2}\ge 3\cdot\left(\frac 1{a^2}+\frac 1{b^2}+\frac 1{c^2}\right)\ }\ .$

Proof. We can prove easily or can use the well known identities $\boxed{\ \sum a(s-b)(s-c)=2sr(2R-r)\ }\ (1)$ and $\boxed{\ IA^2=\frac {bc(s-a)}s\ }\ (2)$ a.s.o. Therefore, $\frac 1{IA^2}\ \stackrel{(2)}{=}\ \frac s{bc(s-a)}=$ $\frac {a\cancel s}{4R\cancel sr(s-a)}=$

$\frac 1{4Rr}\cdot\frac a{s-a}$ $\implies$ $\frac 1{IA^2}=\frac 1{4Rr}\cdot\frac a{s-a}$ a.s.o. $\implies$ $\sum\frac 1{IA^2}=\frac 1{4Rr}\cdot\sum \frac a{s-a}=$ $\frac 1{4Rr}\cdot \frac {\sum a(s-b)(s-c)}{(s-a)(s-b)(s-c)}\ \stackrel{(1)}{=}\ \frac 1{4R\cancel r}\cdot \frac {2\cancel s\cancel r(2R-r)}{\cancel sr^2}=$ $\frac {2R-r}{2Rr^2}\implies$ $\boxed{\ \sum\frac 1{IA^2}=\frac {2R-r}{2Rr^2}\ }\ (3)\ .$

I"ll apply upper Goldstone's inequality $:\ \sum \frac 1{a^2}\le \frac 1{4r^2}\iff$ $3\cdot\sum\frac 1{a^2}\le\frac 3{4r^2}$ and $\frac 3{4r^2}\le \frac {2R-r}{2Rr^2}\ \stackrel{(3)}{=}\ \sum\frac 1{IA^2}$ because $\frac 3{4\cancel{r^2}}\le \frac {2R-r}{2R\cancel{r^2}}\iff$ $\frac 32\le \frac {2R-r}R\iff$ $2r\le R\ ,$ what is true.



See here
This post has been edited 201 times. Last edited by Virgil Nicula, Jan 30, 2018, 6:44 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a