353. Some problems of the analytical geometry.

by Virgil Nicula, Aug 8, 2012, 6:23 PM

PP1. Consider an ellipse $\mathcal E$ with foci $F_1$ and $F_2$ . For a random point $P\in\mathcal E$ let $\left\{\begin{array}{ccc}
F_1E & ; & E\in PF_2\\\\
F_2D & ; & D\in PF_1\end{array}\right|$

be the angle bisectors of $\triangle F_1PF_2$ . Find the area of $\triangle DPE$ in function of the point $P(x,y)\in\mathcal E$ .


Proof. Let $\frac {X^2}{a^2}+\frac {Y^2}{b^2}=1$ be the equation of the ellipse $\mathcal E$ with foci $F_1(c,0)$ , $F_2(-c,0)$ , where $c>0$ and $a^2=b^2+c^2$ . If $P(x,y)$ $\in\mathcal E$ , then denote $S\in F_1F_2$ so that the ray $[PS$

is the angle-bisector of $\widehat{F_1PF_2}$ . Thus, $PF_1+PF_2=2a$ and $F_1F_2=$ $SF_1+SF_2=$ $2c$ . The equation of the tangent line $t=PP$ to $\mathcal E$ is $b^2x\cdot X+a^2y\cdot Y=a^2b^2$ with the slope

$s_t=-\frac {b^2x}{a^2y}$ . Thus, the slope of the normal line $n=PS$ in same point $P\in \mathcal E$ is $s_n=\frac {a^2y}{b^2x}$ and the equation of $n$ is $Y-y=\frac {a^2y}{b^2x}\cdot (X-x)$ . Therefore, $S\in n\cap Ox\implies$

$\boxed{S\left(\frac {c^2x}{a^2},0\right)}$ . Using the theorem of the angle-bisector for $[PS$ obtain that $\frac {PF_1}{PF_2}=$ $\frac {SF_1}{SF_2}=$ $\frac {c-\frac {c^2x}{a^2}}{\frac {c^2x}{a^2}+c}=$ $\frac {a^2-cx}{a^2+cx}$ $\implies$ $\frac {PF_1}{a^2-cx}=$ $\frac {PF_2}{a^2+cx}=$ $\frac {PF_1+PF_2}{2a^2}=$ $\frac {2a}{2a^2}=$ $\frac 1a$ .

In conclusion, the lengths of the sides for $\triangle F_1PF_2$ are $F_1F_2=2c$ and $\boxed{\begin{array}{c}
PF_1=a-\frac {cx}{a}\\\\
PF_2=a+\frac {cx}{a}\end{array}}$ . From the well-known relations $\left\{\begin{array}{c}
PD=\frac {F_2P\cdot F_1P}{F_2P+F_2F_1}\\\\
PE=\frac {F_1P\cdot F_2P}{F_1P+F_1F_2}\end{array}\right|$ obtain that

$\left\{\begin{array}{c}
PD=\frac {\left(a^2+cx\right)\left(a^2-cx\right)}{a\left(a^2+cx+2ac\right)}\\\\
PE=\frac {\left(a^2+cx\right)\left(a^2-cx\right)}{a\left(a^2-cx+2ac\right)}\end{array}\right|$ . So $[DPE]=[F_1PF_2]\cdot \frac {PD}{PF_1}\cdot\frac {PE}{PF_2}=$ $cy\cdot\frac {a^2+cx}{a^2+2ac+cx}\cdot\frac {a^2-cx}{a^2+2ac-cx}\implies$ $\boxed{\ [DPE]=\frac {cy\left(a^4-c^2x^2\right)}{\left(a^2+2ac\right)^2-c^2x^2}\ }$ .

Remark. $\cos\widehat{F_1PF_2}=\frac {PF_1^2+PF_2^2-F_1F_2^2}{2\cdot PF_1\cdot PF_2}=$ $\frac{\left(a-\frac {cx}{a}\right)^2+\left(a+\frac {cx}{a}\right)^2-4c^2}{2\left(a-\frac {cx}{a}\right)\left(a+\frac {cx}{a}\right)}\implies$ $\boxed{\cos\widehat{F_1PF_2}=\frac {a^4+c^2x^2-2a^2c^2}{\left(a^2-cx\right)\left(a^2+cx\right)}}$ . Analogously prove $\boxed{\ \begin{array}{c}
\cos\widehat{PF_1F_2}=\frac {a(c-x)}{a^2-cx}\\\\
\cos\widehat{PF_2F_1}=\frac {a(c+x)}{a^2+cx}\end{array}\ }$ .



PP2. Find the minimum of $x^2+y^2$ , where $\{x,y\}\subset\mathbb R$ and $(x+5)^2+(y-12)^2=196$ .

Proof 1. This problem is equivalently (geometrically) with the finding of the point $P(x,y)$ on the circle $w=C(S,14)$ with the radius $R=14$ and the center

is $S(-5,12)$ such that $P$ has minimal distance from the origin. Observe that the origin is inside w.r.t. $w$ and $OS=13$ . In conclusion, the minimum value is equally to $1$ .

Proof 2. For any point $P(x,y)\in w$ exists $\phi\in \left[0,2\pi\right)$ so that $\left\{\begin{array}{c}
x=-5+14\cos\phi\\\
y=12+14\sin\phi\end{array}\right\|$ . Thus, our problem begins the finding $\phi$ for which $x^2+y^2=365+28(-5\cos\phi +12\sin\phi )$

is minimum $\iff$ $-5\cos\phi +12\sin\phi$ is minimum. Since $|-5\cos\phi +12\sin\phi|\le 13$ obtain that the minimum of $x^2+y^2$ is $365-13\cdot 28$ , i.e. this minimum is equally to $1$ .



PP3. In an orthogonal cartesian system $xOy$ let a fixed $P (a, b)$ and mobile $M\in Ox\ ,$ $N\in Oy$ so that $PM\perp PN$ . Find the geometrical locus of $L\in MN$ for which $PL\perp MN$ .

Proof. Denote the fixed $A(a,0)\ ,\ B(0,b)$ and the mobile $M(m,0)$ , $N(0,n)$ , $K\in AB\cap MN$ . I"ll show that $PK\perp MN$ , i.e. $K\equiv L$ and the geometrical locus of $L$ is the fixed

$AB$ . Therefore, $PM\perp PN$ $\iff$ $\boxed{b(n-b)=a(a-m)}\ (*)$ and $\left\{\begin{array}{cccc}
AB\ : & \frac xa+\frac yb=1 & \iff & bx+ay=ab\\\\
MN\ : & \frac xm+\frac yn=1 & \iff & nx+my=mn\end{array}\right\|\ \cap$ $\implies$ $K\left\{\begin{array}{c}
x_K=\frac {am(n-b)}{an-bm}\\\\
y_K=\frac {bn(a-m)}{an-bm}\end{array}\right|$ . Thus, $PK\perp MN$

$\iff$ $\frac {b-y_K}{a-x_K}\cdot\frac nm=1$ $\iff$ $\frac {b-\frac {bn(a-m)}{an-bm}}{a-\frac {am(n-b)}{an-bm}}\cdot\frac nm=1$ $\iff$ $\frac {bm(n-b)}{an(a-m)}\cdot\frac nm=1$ , what is truly from the relation $(*)$ .


Lemma. The projection of $P(x,y)$ on $d(X,Y)\equiv aX+bY+c=0$ is $P_0:\ \boxed{\begin{array}{c}
x_0=x-\frac {a}{a^2+b^2}\cdot d(x,y)\\\\
y_0=y-\frac {b}{a^2+b^2}\cdot d(x,y)\end{array}}$ .

Proof 1. $\left\{\begin{array}{ccc}
P_0\in d & \iff & ax_0+by_0+c=0\\\\
PP_0\perp d & \iff & \frac {x_0-x}{a}=\frac {y_0-y}{b}\end{array}\right\|$ . Thus, $\frac {a\left(x_0-x\right)}{a^2}=\frac {b\left(y_0-y\right)}{b^2}=\frac {a\left(x_0-x\right)+b\left(y_0-y\right)}{a^2+b^2}=$ $\frac{\left(ax_0+by_0\right)-(ax+by)}{a^2+b^2}=$

$\frac {-c-(ax+by)}{a^2+b^2}=$ $\frac {-\left(ax+by+c\right)}{a^2+b^2}=$ $-\frac {d(x,y)}{a^2+b^2}\implies$ $\frac {x_0-x}{a}=\frac {y_0-y}{b}=-\frac {d(x,y)}{a^2+b^2}$ . In conclusion, the projection of $P(x,y)$ on the line

$d(X,Y)\equiv aX+bY+c=0$ is $P_0:\left\{\begin{array}{c}
x_0=x-\frac {a}{a^2+b^2}\cdot d(x,y)\\\\
y_0=y-\frac {b}{a^2+b^2}\cdot d(x,y)\end{array}\right\|$ .
[/hide]

Proof 2 (classic). Let the slope $p$ of $PM$ . Thus, the slope of $PN$ is $-\frac 1p$ . Thus, $\left\{\begin{array}{cccc}
PM\ : & y-b=p\cdot (x-a) & \implies &  M\left(a-\frac bp,0\right)\\\\
PN\ : & y-b=-\frac 1p\cdot (x-a) & \implies & N\left(0, b+\frac ap\right)\end{array}\right\|\implies$ equation of $MN$ is

$\boxed{\frac{x}{a-\frac bp}+\frac {y}{b+\frac ap}=1}\ (*)$ , i.e. $d(x,y)\equiv p(a+bp)x+p(ap-b)y-(ap-b)(a+bp)=0$ . Prove easily that $d(a,b)=ab\left(1+p^2\right)$ and $\left[p(a+bp)\right]^2+\left[p(ap-b)\right]^2=$

$p^2\left(1+p^2\right)\left(a^2+b^2\right)$ . Apply upper lemma. The projection $L$ of $A$ on $d$ is $\left\{\begin{array}{c}
x_L=a-\frac {p(a+bp)}{p^2\left(1+p^2\right)\left(a^2+b^2\right)}\cdot ab\left(1+p^2\right)=\frac {a^2(pa-b)}{p\left(a^2+b^2\right)}=\frac {a^3}{a^2+b^2}-\frac {a^2b}{p\left(a^2+b^2\right)}\\\\ 
y_L=b-\frac {p(ap-b)}{p^2\left(1+p^2\right)\left(a^2+b^2\right)}\cdot ab\left(1+p^2\right)=\frac {b^2(pb+a)}{p\left(a^2+b^2\right)}=\frac {b^3}{a^2+b^2}+\frac {ab^2}{p\left(a^2+b^2\right)}\end{array}\right\|$ $\implies$

$\frac {\frac {a^3}{a^2+b^2}-x}{y-\frac {b^3}{a^2+b^2}}=\frac {a^2b}{ab^2}=\frac ab\implies$ $b\left(\frac {a^3}{a^2+b^2}-x\right)=a\left(y-\frac {b^2}{a^2+b^2}\right)\iff$ $bx+ay=\frac {ba^3+ab^3}{a^2+b^2}\implies$ $bx+ay=ab\implies$ locus of $L$ is $\frac Xa+\frac Yb=1$ , i.e. the line $AB$ .



PP4. Let $ABCD$ be a square so that $AB$ lies along the line $y=x+8$ and $C\ ,\ D$ lie on the parabola $y=x^2$ . Find all values of $AB$ .

Proof. Let $C\left(c,c^2\right)$ and $D\left(d,d^2\right)$ . Thus, $CD\parallel AB\iff$ $\frac {d^2-c^2}{d-c}=1\iff$ $\boxed{s=c+d=1}\ (1)$ , where $\boxed{CD=|c-d|\sqrt 2}\ (*)$ and must that the distance

$\delta_{AB}(C)=CD\iff$ $\frac {\left|c-c^2+8\right|}{\sqrt 2}=|c-d|\sqrt 2\stackrel{(1)}{\iff}$ $|cd+8|=2|c-d|\stackrel{\mathrm{cd=p}}{\iff}$ $(p+8)^2=4(1-4p)\iff$ $ p^2+32p+60=0\left|\begin{array}{c}
\nearrow\ -2\\\\
\searrow\ -30\end{array}\right|$ . Therefore,

the sum $s=c+d=1$ and the produkt $p=\left\{\begin{array}{ccccc}
-2 & \implies & t^2-t-2=0\iff\{c,d\}=\{-1,2\} & \implies & AB\stackrel{(*)}{=}3\sqrt 2\\\\
-30 & \implies & t^2-t-30=0\iff\{c,d\}=\{-5,6\} & \implies & AB\stackrel{(*)}{=}11\sqrt 2\end{array}\right\|$ $\implies$ $\boxed{AB\in\left\{3\sqrt 2,11\sqrt 2\right\}}$ .



PP5. Let a square $ABCD$ and $N\in (BC)$ , $P\in (CD)$ . Denote $O\in AC\cap BD$ and the midpoint $M$ of $[AB]$ . Prove that $m\left(\widehat{NOP}\right)=\frac{\pi}{4}\iff MN\parallel AP\ .$

Proof 1 (analytic). Suppose w.l.o.g. that $\left\{\begin{array}{cc}
A(0,0)\ ;\ B(0,2)\ ; & C(2,2)\ ;\ D(2,0)\\\\
N(a,2)\ ,\ a>1\ ; & P(2,b)\ ,\ b>1\end{array}\right\|$ . Observe that $M(0,1)$ , $O(1,1)$ and $MN\parallel AP\iff s_{MN}=s_{AP}\iff$ $\frac 1a=\frac b2\ ,$

where $s_d$ is the slope of the line $d$ . Thus, $\boxed{MN\parallel AP\iff ab=2}\ (1)$ . If denote $\phi =m\left(\widehat{NOP}\right)$ , then $\tan\phi =\frac {s_{ON}-s_{OP} }{1+s_{ON}\cdot s_{OP}}=$ $\frac {\frac 1{a-1}-\frac {b-1}1}{1+\frac {b-1}{a-1}}\implies$ $\tan\phi =\frac {a+b-ab}{a+b-2}\implies$

$\boxed{\phi =\frac {\pi}{4}\iff ab=2}\ (2)$ . In conclusion, using the equivalencies $(1)$ and $(2)$ obtain that $MN\parallel AP\iff ab=$ $2\iff $ $\phi =\frac {\pi}{4}$ , i.e. $m\left(\widehat{NOP}\right)=\frac{\pi}{4}\iff MN\parallel AP$ .

Proof 2. Suppose w.l.o.g. $AB=2$ . Let $\left|\begin{array}{c}
BN=1+a\\\\
DP=1+b\end{array}\right|$ , where $\{a,b\}\subset (0,1)$ , midpoints $R$ , $S$ of $[BC]$ , $[CD]$ and $\left|\begin{array}{c}
u=m\left(\widehat{NOC}\right)\\\\
v=m\left(\widehat{POS}\right)\end{array}\right|$ . So $\frac {NB}{NC}=\frac {\sin (90^{\circ}-u)}{\sin u}\iff$

$\tan u=\frac {1-a}{1+a}$ and $\tan v=b$ . Therefore, $m\left(\widehat{NOP}\right)=\frac {\pi}{4}\iff u=v$ . In conclusion, $\boxed{m\left(\widehat{NOP}\right)=\frac {\pi}{4}\iff b=\frac {1-a}{1+a}}\ (1)$ . On other hand $MN\parallel AP \iff $

$MBN\sim PAD\iff$ $\frac {BN}{BM}=\frac {AD}{AP}\iff$ $1+a=\frac 2{b+1}\iff$ $(1+a)(b+1)=2\iff$ $b(a+1)=1-a\iff$ $b=\frac {1-a}{1+a}$ , i.e. $\boxed{MN\parallel AP\iff b=\frac {1-a}{1+a}}\ (2)$ .


PP6. $[AB]$ is major axis of elipse $\Sigma$ with center $O$ and let $F$ be one of its foci. For $P\in\Sigma$ let $CD$ be chord through $O$ such that $CD\parallel PP$ and $Q\in PF\cap CD$ . Prove $PQ=OA$ .

Proof. $b^2x^2+a^2y^2=a^2b^2$ isquation of the ellipse $\Sigma$ , where $b^2+c^2=a^2$ and let $F(\epsilon c,0)$ be a focus, where $\epsilon ^2=1$ . Let $P(au,bv)\in \Sigma$ be a mobile point, where

$u^2+v^2=1$ . Then the slope of the tangent $PP$ in the point $P\in \Sigma$ to the ellipse $\Sigma$ is $m_{PP}=-\frac{bu}{av}$ . The equation of the line $CD$ is $y=-\frac{bu}{av}\cdot x$ and the equation of the line $CF$ is

$y=\frac{bv}{au-\epsilon c}\cdot (x-\epsilon c)$ . Thus, for the intersection point $Q\in CD\cap PF$ we have $x_Q=\frac{\epsilon acv^2}{a-\epsilon cu}$ , $y_Q=-\frac{\epsilon bcuv}{a-\epsilon cu}$ and $\left(\frac{a-\epsilon cu}{a}\right)^2\cdot PQ^2=$ $\left[u(a-\epsilon cu)-\epsilon cv^2\right]^2+b^2v^2=$

$(au-\epsilon c)^2+b^2v^2=$ $a^2u^2+b^2(1-u^2)+c^2-2\epsilon acu=$ $(a^2-b^2)u^2+a^2-2\epsilon acu=$ $c^2u^2+a^2-2\epsilon acu=$ $(a-\epsilon cu)^2\Longrightarrow PQ=a$ , i.e. $PQ=OA$ .



PP7. Let the circle $w=C(O,r)$, the fixed points $\{A,B\}\subset w$ and a fixed line $d$. For a mobile point $P\in w$ denote the

intersections $M\in PA\cap d$ and $N\in PB\cap d$ . Prove that the circle with the diameter $MN$ is always tangent to a fixed circle.


Proof. Suppose w.l.o.g. $w$ is $x^2+y^2=1$ , $d$ is $y=k$ and $\left\{\begin{array}{ccc}
A & (\cos a,\sin a)\\\\
B & (\cos b,\sin b)\\\\
P & (\cos p,\sin p)\end{array}\right\|$ . I"ll find the mobile $M(u,k)$ , $N(v,k)$ which is function of $p\in[0,2\pi ]\ :$

$\blacktriangleright\ \left|\begin{array}{ccc}
u & k & 1\\\\
\cos a & \sin a & 1\\\\
\cos p & \sin p & 1\end{array}\right|=0\implies$ $u=\frac {k(\cos a-\cos p)+\sin (a-p)}{\sin a-\sin p}=$ $\frac {k\sin\frac {a+p}2\sin\frac {p-a}2+\sin \frac{a-p}2\cos\frac {a-p}2}{\sin\frac{a-p}2\cos\frac {a+p}2}=$ $\frac {-k\sin\frac {a+p}2+\cos\frac {a-p}2}{\cos\frac {a+p}2}$ $\implies $

$\boxed{u=\frac {-k\left(\tan\frac p2+\tan\frac a2\right)+1+\tan\frac p2\tan\frac a2}{1-\tan\frac p2\tan\frac a2}}\ (1)$ .

$\blacktriangleright\ \left|\begin{array}{ccc}
v & k & 1\\\\
\cos b & \sin b & 1\\\\
\cos p & \sin p & 1\end{array}\right|=0\implies$ $v=\frac {k(\cos b-\cos p)+\sin (b-p)}{\sin b-\sin p}=$ $\frac {k\sin\frac {b+p}2\sin\frac {p-b}2+\sin \frac{b-p}2\cos\frac {b-p}2}{\sin\frac{b-p}2\cos\frac {b+p}2}=$ $\frac {-k\sin\frac {b+p}2+\cos\frac {b-p}2}{\cos\frac {b+p}2}$ $\implies $

$\boxed{v=\frac {-k\left(\tan\frac p2+\tan\frac b2\right)+1+\tan\frac p2\tan\frac b2}{1-\tan\frac p2\tan\frac b2}}\ (2)$ .

Let $\left\{\begin{array}{c}
\tan \frac a2=m\\\\
\tan\frac b2=n\\\\
\tan\frac p2=l\end{array}\right\|$ . $(1)$ and $(2)$ become $\odot\begin{array}{ccc}
\nearrow & u=\frac {-k(l+m)+1+lm}{1-lm} & \searrow\\\\
\searrow & v=\frac {-k(l+n)+1+ln}{1-ln} & \nearrow\end{array}\odot$ . Prove easily $\left\{\begin{array}{ccc}
u+v & = & \frac {[k(m+n)-2mn]l^2+2k(mn-1)l+2-(m+n)}{(1-ml)(1-nl)}\\\\
uv & = & \frac {(k-m)(k-n)l^2+\left[(m+n)\left(k^2+1\right)-2k(1+mn)\right]l+k^2mn-k(m+n)+1}{(1-ml)(1-nl)}\end{array}\right\|$ .

Prove easily the circle with the diameter $MN$ has equation $x^2+y^2-(u+v)x-2ky+k^2+uv=0$ a.s.o.



PP8. $k$ and $l$ (intersecting in $A$) are tangent to ellipse $\xi$ in $B$ and $C$. Let $F$ and $G$ be focuses of $\xi$. Let $D$ be the projection of $A$ on $FG$. Prove that $\widehat{ADB}\equiv\widehat{ADC}\ .$

Proof. Suppose w.l.o.g. that the equation of $\xi$ is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\ .$ Let mobile $\{A,B\}\subset\xi$ , i.e. $\left\{\begin{array}{ccc}B(am,bn) & , & \boxed{m^{2}+n^{2}=1}\\\\ C(ap,br) & , & \boxed{p^{2}+r^{2}=1}\end{array}\right\|\Longrightarrow$

$\left\{\begin{array}{ccc}\mathrm{the\ tangent\ }BB & : & bmx+any-ab=0\\\\ \mathrm{the\ tangent\ }CC & : & bpx+ary-ab=0\end{array}\right\|$ $\Longrightarrow$ $A\left[\frac{a(r-n)}{mr-np}\ ,\ \frac{b(m-p)}{mr-np}\right]\Longrightarrow$ $\left\{\begin{array}{c}\mathrm{\ the\ slope\ of\ }DB\mathrm{\ is\ }s(DB)=\frac{b}{a}\cdot (mr-np)\cdot \frac{n}{m(mr-np)+n-r}\\\\ \mathrm{the\ slope\ of\ }DC\mathrm{\ is\ }s(DC)=\frac{b}{a}\cdot (mr-np)\cdot \frac{r}{p(mr-np)+n-r}\end{array}\right\|\ .$

Therefore, $s(DB)+s(DC)=$ $\boxed * \cdot [(mr-np)(mr+np)+(n-r)(n+r)]=$ $\boxed * \cdot [r^{2}(m^{2}-1)+n^{2}(1-p^{2})]=$ $\boxed * \cdot (-r^{2}n^{2}+r^{2}n^{2})=0\ ,$

where $\boxed * =\frac{b\cdot(mr-np)}{a\cdot [p(mr-np)+n-r]\cdot [m(mr-np)+n-r]}\ .$ In conclusion, $s(DB)+s(DC)=0\ ,$ i.e. $\widehat{ADB}\equiv\widehat{ADC}\ .$

Remark. You can prove easily if the ellipse $\xi$ is a circle $c=C(O)$ and $D$ is the projection of the mobile $A$ to the fixed diameter $[XY]\ .$ Indeed, $B,C,D$ belong to the circle

with the diameter $OA$ and $\widehat{ABC}\equiv\widehat{ACB}\ ,\ \widehat{ABC}\equiv\widehat{ADC}\ ,\ \widehat{ACB}\equiv\widehat{ADB}$ $\Longrightarrow$ $\widehat{ADB}\equiv\widehat{ADC}\ .$ Then you can project on an any plane with the common line $XY$.



PP9. Let the parabola $w$ with the equation $y=x^2$ and the line $d$ with the equation $y=2x-3$ . For a mobile point $P(a,b)\in d$ , where $a^2>b$ denote

$\{M,N\}\subset w$ so that $P\in MM\cap NN$ (for $X\in w$ let $XX$ - the tangent line to $w$). Find the minimum value of the area $[PMN]$ , letting $P$ moves on $d$ .


Proof. $P\in d\iff \boxed{b=2a-3}\ (*)$ and the equations of $MM$ , $NN$ are $:\ \left\{\begin{array}{ccccc}
M\left(m,m^2\right) & \implies & MM\ :\ y-m^2=2m(x-m) & \implies & y=2mx-m^2\\\\
N\left(n,n^2\right) & \implies & NN\ :\ y-n^2=2n(x-n) & \implies & y=2nx-n^2\end{array}\right\|$ ,

where $m\ne n\ .$ Thus, $\left\{\begin{array}{ccc}
P\in MM & \implies & b=2ma-m^2\\\\
P\in NN & \implies & b=2na-n^2\end{array}\right\|$ $\implies$ $\left\{\begin{array}{cccccccc}
2ma-m^2=2na-n^2 & \implies & 2a(m-n)=m^2-n^2 & \implies & m+n & = & 2a & (1)\\\\
n\left(b+m^2\right)=m\left(b+n^2\right)  & \implies & b(m-n)=mn(m-n) & \implies & mn & = & b & (2)\end{array}\right\|\ .$

The area $S=[PMN]=\frac 12\cdot|\Delta|$ , where $\Delta =\left|\begin{array}{ccc}
a & b & 1\\\\
m & m^2 & 1\\\\
n & n^2 & 1\end{array}\right|\ \stackrel{1\wedge 2}{=}\ \left|\begin{array}{ccc}
\frac {m+n}2 & mn & 1\\\\
m & m^2 & 1\\\\
n & n^2 & 1\end{array}\right|\ \stackrel{\begin{array}{c}
L_2:=L_2-L_1\\\
L_3:=L_3-L_1\end{array}}{=}\ \left|\begin{array}{ccc}
\frac {m+n}2 & mn & 1\\\\
\frac{m-n}2 & m(m-n) & 0\\\\
\frac{n-m}2 & n(n-m) & 0\end{array}\right|=$ $\left|\begin{array}{cc}
\frac{m-n}2 & m(m-n)\\\\
\frac{n-m}2 & n(n-m)\end{array}\right|=$

$\frac {(m-n)^2}2\cdot \left|\begin{array}{cc}
1 & m\\\\
-1 & -n\end{array}\right|\implies$ $\Delta=\frac {(m-n)^3}2$ and $\boxed{S=\frac 14\cdot |m-n|^3}\ (3)\ .$ In conclusion, $S$ is $\min\iff$ $|m-n|$ is $\min\iff$ $|m-n|^2=(m-n)^2$ is $\min\iff$

$(m+n)^2-4mn$ is $\min\iff$ $4a^2-4b$ is $\min\iff$ $a^2-b$ is $\min\stackrel{*}{\iff} a^2-2a+3$ is $\min\iff$ $\boxed{a=1\ \wedge\ b=-1}$ , i.e. $P(1,-1)$ $\iff$ $m+n=2\ \wedge\ mn=-1\iff$

$|m-n|=2\sqrt 2\ \stackrel{3}{\iff}\ 4S=16\sqrt 2\iff$ $\boxed{S=4\sqrt 2}\ .$ I denoted $L_k$ - the line $k\in \overline{1,3}$ in the determinant $\Delta$ .



PP10. Let $\left\{M\left(\frac {m^2}{2p},m\right)\ ,\ N\left(\frac {n^2}{2p},n\right)\right\}\subset\mathcal P$ with equation $y^2=2px$ and $P(a,b)\in MM\cap NN$ , where $XX$ is the tangent to $\mathcal P$ at $X\in\mathcal P$ . Prove that $\left\{\begin{array}{ccc}
2pa & = & mn\\\\
2b & = & m+n\end{array}\right\|$

Proof. $2yy'=2p\implies$ $y'=\frac py$ and the tangent $TT$ to $\mathcal P$ , where $T\left(\frac {t^2}{2p},t\right)\in \mathcal P$ is $y-t=\frac pt\left(x-\frac {t^2}{2p}\right)$ $\implies$ $\boxed{y=\frac {px}t+\frac t2}\ (*)$ $\implies$ $\left\{\begin{array}{cccc}
MM\ : & y & = & \frac {px}m+\frac m2\\\\
NN\ : & y & = & \frac {px}n+\frac n2\end{array}\right\|$ $\implies$

$\left\{\begin{array}{c}
\frac {px}m+\frac m2=\frac {px}n+\frac n2 \implies n\left(2px+m^2\right)=m\left(2px+n^2\right)\implies 2px(m-n)=mn(m-n)\ \stackrel{m\ne n}{\implies}\ 2px=mn\\\\
\frac {y-\frac m2}{y-\frac n2}=\frac {\frac {px}m}{\frac {px}n}\implies\frac {2y-m}{2y-n}=\frac nm\implies m(2y-m)=n(2y-n)\implies 2y(m-n)=m^2-n^2\implies\  m+n=2y\end{array}\right\|$ $\implies$ $\left\{\begin{array}{ccc}
2pa & = & mn\\\\
2b & = & m+n\end{array}\right\|$
This post has been edited 124 times. Last edited by Virgil Nicula, Apr 9, 2016, 3:04 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404413
  • Total comments: 37
Search Blog
a