6. Interesting problems from JBMO.

by Virgil Nicula, Apr 19, 2010, 3:01 PM

Interesting problems.


PP1 (JBMO 2012). Let $ABC$ be an acute triangle with the orthocenter $H$ . Denote the feet $E$ , $F$ of the altitudes from $B$ , $C$ respectively and the

intersection $L$ between $[AH]$ and the circle with the diameter $[BC]$ . Prove that the circles $\odot ALE$ and $\odot HLF$ are tangent in the point $L$ .


Method 1. Prove easily that :

$1\blacktriangleright\ \widehat{EAL}\equiv\widehat{EBC}\equiv\widehat{ELC}==>$ $\widehat{EAL}\equiv\widehat{ELC}==>$ $CL$ is tangent to $\odot ALE$ .

$2\blacktriangleright\ \widehat{HFL}\equiv\widehat{CBL}\equiv\widehat{HLC}==>$ $\widehat{HFL}\equiv\widehat{HLC}==>$ $CL$ is tangent to $\odot HLF$ .

Method 2. Prove easily that :

$1\blacktriangleright\ CL^2=CD.CB=CE.CA ==>$ $CL^2=CE.CA ==>$ $\widehat{EAL}\equiv\widehat{ELC} ==>$ $CL$ is tangent to $\odot ALE$ .

$1\blacktriangleright\ CL^2=CD.CB=CH.CF ==$ $CL^2=CH.CF ==>$ $\widehat{HFL}\equiv\widehat{HLC} ==>$ $CL$ is tangent to $\odot HLF$ .

Remark. Prove that $BL$ is common tangent in $L$ to $\odot AFL$ , $\odot EHL$ . Thus, $BL\perp CL\implies$ the pairs $\left\{\left|\begin{array}{ccc}
\odot EAL & \wedge & \odot EHL\\\\
\odot FAL & \wedge & \odot FHL\end{array}\right|\left|\begin{array}{ccc}
\odot EAL & \wedge & \odot FAL\\\\
\odot EHL & \wedge & \odot FHL\end{array}\right|\right|$ are ortogonally.



PP2 (JBMO 2013). Let $ABC$ be an acute-angled triangle with circumcircle $w=C(O,R)$ and $c<b$ . Let $D\in BC$ be the point such that

$\widehat{BAD}\equiv\widehat{CAO}$ . Denote $\{A,E\}=AD\cap w$ and the midpoints $M$, $N$ and $P$ of $[BE]$ , $[OD]$ and $[AC]$ respectively. Show $P\in MN$ .


Proof. Are well-known that $DE=DH$ and $BH=2\cdot OP$ , what means $DM\parallel  BH$ , $BH=2\cdot DM$ and $OP\parallel BH$ , $BH=2\cdot OP$ .

In conclusion, $DM=OP$ and $DM\parallel OP$ , i.e. $OPDM$ is a parallelogram $\implies$ the midpoint $N$ of $OD$ belongs to $MP$ , i.e. $P\in MN$ .

Remark. Can apply to the orthodiagonal and cyclical quadrilateral $ABEC$ the following well-known property:


RP. Let $ABCD$ be an orthodiagonal and cyclical quadrilateral with the circumcircle $w=C(O,R)$ . Denote $E\in AC\cap BD$ , the midpoints $M , N , P , Q$ of $[AB] , [BC] , [CD] , [DA]$

respectively and the projections $X , Y , Z , T$ of the point $D\in AC\cap BD$ on $[AB] , [BC] , [CD] , [DA]$ respectively. Then $D\in MX\cap NY\cap PZ\cap QT$ , $ MNPQ$ is a rectangle

and the points $\{X,Y,Z,T\}$ belong to the circle with the diameter $[MP]$ and the center in the midpoint of $[OE]$ . Hint. The quadrilaterals $OMEP$ and $ONEQ$ are parallelograms.



PP3. (SBMO 2013). In $\triangle ABC$ , the $A$-exincircle $w_a$ is tangent to $AB$ and $AC$ in $P$ and $Q$ respectively. The $B$-exincircle $w_b$ is tangent to $BA$

and $BC$ in $M$ and $N$ respectively. Denote the projection $K$ of $C$ on $MN$ and the projection $L$ of $C$ on $PQ$ . Prove that $MKLP$ is a cyclical quadrilateral.


Proof 1. Denote $S\in KM\cap LP$ , $R\in AB\cap SC$ and $X\in AI\cap PQ$ , $Y\in BI\cap MN$ . Observe that $\frac {CK}{CL}=\frac {CN\cdot\cos \frac B2}{CQ\cdot \cos \frac A2}=$ $\frac {(s-a)\cos\frac B2}{(s-b)\cos\frac A2}=$ $\frac {\frac {s-a}{\cos\frac A2}}{\frac {s-b}{\cos\frac B2}}=$ $\frac {IA}{IB}$ .

Since $\widehat{AIB}\equiv\widehat{KCL}$ obtain that $\triangle KCL\sim\triangle AIB$ . Thus, $\widehat{ABY}\equiv\widehat {ABI}\equiv\widehat{KLC}\equiv\widehat {KSC}\implies$ $BRYS$ is cyclically $\implies SC\perp AB$ (analogously $ARXS$

is cyclically). Since $RMKC$ and $RPLC$ are cyclically obtain that $\left\{\begin{array}{ccc}
SC\cdot SR & = & SK\cdot SM\\\\
SC\cdot SR & = & SL\cdot SP\end{array}\right\|\implies$ $SK\cdot SM=SL\cdot SP\implies$ $MKLP$ is a cyclical quadrilateral.

Proof 2. Denote $S\in KM\cap LP$ . t\Thus, $AM=BP=s-c$ , $MP=a+b$ and $\left\{\begin{array}{c}
m\left(\widehat{PMS}\right)=90^{\circ}-\frac B2\\\\
m\left(\widehat{MPS}\right)=90^{\circ}-\frac A2\\\\
m\left(\widehat{MSP}\right)=90^{\circ}-\frac C2\end{array}\right\|$ . Theorem of Sines in $\triangle MPS\ :\ \frac {a+b}{\cos\frac C2}=$

$\frac {SM}{\cos \frac A2}=\frac {SP}{\cos \frac B2}\implies$ $SM^2-SP^2=\frac {(a+b)^2}{\cos^2\frac C2}\cdot\left(\cos ^2\frac A2-\cos^2\frac B2\right)=$ $\frac {ab(a+b)^2}{2s(s-c)}\cdot(\cos A-\cos B)=$ $\frac {ab(a+b)^2}{2s(s-c)}\cdot\frac {2(b-a)s(s-c)}{abc}\implies$

$\boxed{SM^2-SP^2=\frac {(a+b)(b^2-a^2)}{c}}$ . Apply the theorem of Cosines in the triangles $CAM$ and $CBM\ :\ \left\{\begin{array}{c}
CM^2=(s-c)^2+b^2+2b(s-c)\cos A\\\\
CP^2=(s-c)^2+a^2+2a(s-c)\cos B\end{array}\right\|\implies$

$CM^2-CP^2=b^2-a^2+2(s-c)(b\cos A-a\cos B)$ . Observe that $b\cos A-a\cos B=\frac 1{2c}\cdot\left[\left(b^2+c^2-a^2\right)-\left(a^2+c^2-b^2\right)\right]=$ $\frac {b^2-a^2}{c}$ si $CM^2-CP^2=$

$b^2-a^2+2(s-c)\cdot \frac {b^2-a^2}{c}=\left(b^2-a^2\right)\cdot\left(1+\frac {a+b-c}{c}\right)\implies$ $\boxed{CM^2-CP^2=\frac {(a+b)(b^2-a^2)}{c}}$ . In conclusion, $SM^2-SP^2=CM^2-CP^2\implies$ $SC\perp AB$ .

Denote $R\in SC\cap AB$ . Since $RMKC$ and $RPLC$ are cyclically obtain that $\left\{\begin{array}{ccc}
SC\cdot SR & = & SK\cdot SM\\\\
SC\cdot SR & = & SL\cdot SP\end{array}\right\|\implies$ $SK\cdot SM=SL\cdot SP\implies$ $MKLP$ is cyclically.


An easy extension. Let $\triangle ABC$ , $\{M,P\}\subset AB$ so that $\left\{\begin{array}{c}
A\in (BM)\\\\
B\in (AP)\end{array}\right\|$ and $N\in BC\ ,\ Q\in AC$ so that $C\in (BN)\cap (AQ)$ . Denote

$\left\{\begin{array}{c}
K\in MN\ ,\ CK\perp MN\\\\
L\in PQ\ ,\ CL\perp PQ\end{array}\right\|$ . Suppose that $AP=AQ=BM=BN=x>\max\{a,b,c\}$ . Prove that $MKLP$ is cyclically $\iff 2x=a+b+c$ .


Proof. Denote $S\in PQ\cap MN$ and $R\in SC\cap AB$ . Observe that $MP=2x-c$ . Apply the theorem of Sines in $\triangle MPS\ :\ \frac {SM}{\cos\frac A2}=$ $\frac {SP}{\cos\frac B2}=$ $\frac {2x-c}{\cos\frac C2}\implies$

$\left\{\begin{array}{c}
SM=\frac {(2x-c)\cos\frac A2}{\cos\frac C2}\\\\
SP=\frac {(2x-c)\cos\frac B2}{\cos\frac C2}\end{array}\right\|$ . Thus, $SM^2-SP^2=\frac {(2x-c)^2}{\cos^2\frac C2}\cdot\left(\cos^2\frac A2-\cos^2\frac B2\right)=$ $\frac {ab(2x-c)^2}{2s(s-c)}\cdot (\cos A-\cos B)=$ $\frac {ab(2x-c)^2}{2s(s-c)}\cdot\frac {2s(b-a)(s-c)}{abc}\implies$

$\boxed{SM^2-SP^2=\frac {(b-a)(2x-c)^2}{c}}$ . Theorem of Cosines in $\triangle CAM$ and $CBM\ :\ \left\{\begin{array}{c}
CM^2=(x-c)^2+b^2+2b(x-c)\cos A\\\\
CP^2=(x-c)^2+a^2+2a(x-c)\cos B\end{array}\right\|\implies$

$CM^2-CP^2=b^2-a^2+2(x-c)(b\cos A-a\cos B)$ . Observe that $b\cos A-a\cos B=\frac 1{2c}\cdot\left[\left(b^2+c^2-a^2\right)-\left(a^2+c^2-b^2\right)\right]=$ $\frac {b^2-a^2}{c}$ si $CM^2-CP^2=$

$b^2-a^2+2(x-c)\cdot \frac {b^2-a^2}{c}=\left(b^2-a^2\right)\cdot\left(1+\frac {2x-2c}{c}\right)\implies$ $\boxed{CM^2-CP^2=\frac {(2x-c)(b^2-a^2)}{c}}$ . In conclusion, the quadrilateral $MKLP$ is cyclic $\iff$

$SC\perp AB\iff$ $SC\perp MP\iff$ $SM^2-SP^2=CM^2-CP^2\iff$ $\frac {(b-a)(2x-c)^2}{c}=\frac {(2x-c)(b^2-a^2)}{c}\stackrel{2x\ne c}{\iff} 2x-c=a+b\iff 2x=a+b+c$ .



PP4. Let f be a function $f(x)=a_0x^3+a_1x^2+a_2x+a_3,\ a_0\ne 0,\ x\in R$ and a line $d$ for which $ d\cap {G_f} =(P_k |k\in \overline {1,3}).$

$(\forall ) k\in\overline{1,3}$ the tangent at $G_f$ in the point $P_k\in {G_f}$ meets once more again the graph $G_f$ in the point $Q_k.$ Prove that the point $Q_k,\ k\in \overline{1,3}$ are collinear.


Lemma. The points $X_k(x_k,f(x_k)),\ k\in \overline{1,3}$ are collinear$\Longleftrightarrow x_1+x_2+x_3=-\frac{a_1}{a_0}.$

Proof of the problem. The points $P_k,\ k\in \overline {1,3}$ are collinear $\Longleftrightarrow p_1+p_2+p_3=-\frac{a_1}{a_0}. $ But the points $P_k,P_k,Q_k $are collinear, i.e. $2p_k+q_k=-\frac{a_1}{a_0},\ k\in \overline {1,3}.$

Thus, $2(p_1+p_2+p_3)+(q_1+q_2+q_3)=-\frac{3a_1}{a_0}$, i.e$- \frac{2a_1}{a_0}+(q_1+q_2+q_3)=-\frac{3a_1}{a_0}$, i.e. $q_1+q_2+q_3=-\frac{a_1}{a_0}$, i.e. the points $Q_1,Q_2,Q_3$ are collinear.



PP5. Let an $A$-right $\triangle ABC$ with $\frac b2<c<b$ and $M\in (AC)$ , $N\in (AB)$ so that $MC=AB$ and $NB=AM$ . Find $m\left(\widehat {BPN}\right)$ , where $P\in BM\cap CN$ .

Proof. $\left\{\begin{array}{c}
MC=AB=c\\\\
AM=BN=b-c\\\\
AN=AB-BN=2c-b\end{array}\right\|$ and $\left\{\begin{array}{ccc}
m\left(\widehat {ABM}\right)=x & \implies & \tan x=\frac {AM}{AB}=\frac {b-c}{c}\\\\
m\left(\widehat {ACN}\right)=y & \implies & \tan y=\frac {AN}{AC}=\frac {2c-b}{b}\end{array}\right\|$ . Thus, $m\left(\widehat {BPN}\right)=m\left(\widehat {ANC}\right)-m\left(\widehat {ABM}\right)\implies$

$m\left(\widehat {BPN}\right)=\left(90^{\circ}-y\right)-x\implies$ $\tan \left(\widehat {BPN}\right)=\tan \left[90^{\circ}-(x+y)\right]=$ $\cot (x+y)=$ $\frac {1-\tan x\tan y}{\tan x+\tan y}=$ $\frac {1-\frac {b-c}{c}\cdot \frac {2c-b}{b}}{\frac {b-c}{c}+\frac {2c-b}{b}}=\frac {b^2-2bc+2c^2}{b^2-2bc+2c^2}=1\implies$ $m\left(\widehat {BPN}\right)=45^{\circ}$
This post has been edited 192 times. Last edited by Virgil Nicula, Nov 27, 2015, 10:54 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a