166. Some constant geometrical expressions.

by Virgil Nicula, Oct 25, 2010, 7:40 AM

PP1. Let $ABC$ be an $A$-isoceles triangle. For a mobile point $P\in BC$ so that $B\in (PC)$ denote the length of the

inradius $\rho$ of $\triangle APB$ and the $P$-exinradius $\theta$ of $\triangle APC$ . Prove that the sum $\rho +\theta=h_a$ (constant). (Virgil Nicula).


Proof. Observe that $c=b$ and $PC-PB=a$ . Apply the Stewart's relation to the cevian $[AB]$ in $\triangle APC\ :\ AP^2\cdot BC+AC^2\cdot PB=$

$AB^2\cdot PC+PB\cdot PC\cdot BC$ $\iff$ $AP^2\cdot a=b^2\cdot (PC-PB)+PB\cdot PC\cdot a$ $\iff$ $\boxed{PA^2=PB\cdot PC+b^2}\ (*)$ . Otherwise. Denote

the midpoint $D$ of $[BC]$ . Thus, $AP^2-AB^2=DP^2-DB^2=$ $PB\cdot (DP+DB)=$ $PB\cdot (DP+DC)=$ $PB\cdot PC$ , i.e. $PA^2=PB\cdot PC+b^2$ .

Therefore, $\rho +\theta =h_a$ $\iff$ $\frac {\rho}{h_a}+\frac {\theta}{h_a}=1$ $\iff$ $\frac {PB}{PA+PB+AB}+\frac {PC}{PA+PC-AC}=1$ $\iff$

$PB\cdot (PA+PC-b)+PC\cdot (PA+PB+b)=(PA+PB+b)\cdot (PA+PC-b)$ $\iff$

$PB\cdot (PA+PC-b)=(PA+PB+b)\cdot (PA-b)$ $\iff$

$PB\cdot PC+PB\cdot (PA-b)=$ $PB\cdot (PA-b)+(PA+b)\cdot (PA-b)$ $\iff$

$PB\cdot PC=(PA+b)\cdot (PA-b)$ $\iff$ $PA^2=PB\cdot PC+b^2$ , i.e. the relation $(*)$ .



PP2. Given are a fixed segment $[AB]$ and a fixed line $d$ so that $d\parallel AB$ . Denote the circle $w=C(O,r)$ with diameter $[AB]$ and suppose that $d\cap w=\emptyset$ . For a mobile

$P\in d$ the tangent lines from $P$ to $w$ meet $AB$ in $M$ , $N$ . Prove that the ratio $\frac {PM+PN}{MN}$ is constant and the inradius of $\triangle MNP$ is also constant (Polonia, 1994).


Proof. Since the ray $[PO$ is the $P$-bisector in $\triangle MPN$ results that $MO=\frac {MN\cdot PM}{PM+PN}\ (*)$ . Denote the distance $h=\delta_{AB}(P)$ , $R\in AB$ for which $PR\perp AB$

and $T\in PM\cap w$ . From $\triangle MTO\sim\triangle MRP$ obtain $\frac {MP}{MO}=\frac {RP}{TO}=\frac hr$ . Thus, $\frac {PM+PN}{MN}\stackrel {(*)}{=}\frac {PM}{MO}=\frac hr$ (constant). Denote the incenter $I$ of $\triangle MPN$ .

Then $I\in (PO)$ and $\frac {IP}{IO}=\frac {PM+PN}{MN}=\frac hr$ (constant). Thus, the locus of $I$ is a parallel line to $d$ , i.e. the length of the inradius of $\triangle MPN$ is constant.

Remark. Denote the midpoint $D$ of $[MN]$ and the point $E\in PD$ so that $EO\perp AB$ . Observe that $PM^2-PN^2=MN^2-2\cdot PN\cdot MN\cdot\cos\widehat{PNM}$

and $\frac {EO}{h}=\frac {DO}{DR}=\frac {ND-NO}{ND+NR}=$ $\frac {\frac 12\cdot MN-\frac {MN\cdot PN}{PM+PN}}{\frac 12\cdot MN-PN\cdot\cos\widehat{PNM}}=$ $\frac {MN\cdot (PM-PN)}{(PM+PN)\cdot \left(MN-2\cdot PN\cdot\cos\widehat{PNM}\right)}=$

$\frac {MN^2\cdot (PM-PN)}{(PM+PN)\cdot \left(PM^2-PN^2\right)}=$ $\left(\frac {MN}{PM+PN}\right)^2=$ $\left(\frac rh\right)^2$ , i.e. $EO=\frac {r^2}{h}$ (constant). In conclusion the $P$-median of $\triangle MPN$

pass through a fixed point
$E$ for which $EO\perp AB$ and $EO=\frac {r^2}{h}$ . With other words, the point $E$ belongs to the polar of $F$ w.r.t. $w$ , where $F\in d$ and $FO\perp AB$ .



PP3. Consider two mobile points $\{A,B\}\subset w=C(O,r)$ (fixed) so that $AB=r$ . Denote the points $\{C,D\}\subset w$ for which $AC\parallel BD$ and $AC=x$ ,

$BD=y$ . Prove that the expression $x^2+\epsilon xy+y^2=3r^2$ (constant), where $\epsilon =1$ sau $\epsilon =-1$ if the line $AB$ separates or doesn't separate $C$ , $D$ (Virgil Nicula).


Proof. Denote $m(\widehat {ABC})=\alpha$ , $m(\widehat{BAD})=\beta$ . Observe that in the first case when $AB$ separates $C$ , $D$

we have $|\alpha -\beta |=120^{\circ}$ and in the second case when $AB$ doesn't separate $C$ , $D$ we have $|\alpha +\beta |=120^{\circ}$ . Therefore :

Case I$.\ \ |\alpha -\beta |=120^{\circ}$ and $x^2+xy+y^2=4r^2\left(\sin^2\alpha +\sin^2\beta +\sin\alpha\sin\beta\right)=$ $2r^2\left[2-(\cos 2\alpha +\cos 2\beta )+\cos (\alpha -\beta )-\cos (\alpha +\beta )\right]=$

$2r^2\left[2-2\cos (\alpha +\beta )\cos (\alpha -\beta )-\frac 12-\cos (\alpha +\beta )\right]=$ $2r^2\left[\frac 32+\cos (\alpha +\beta )-\cos (\alpha +\beta )\right]=3r^2$ .

Case II$.\ \  \alpha +\beta =120^{\circ}$ and $x^2-xy+y^2=4r^2\left(\sin^2\alpha +\sin^2\beta -\sin\alpha\sin\beta\right)=$ $2r^2\left[2-(\cos 2\alpha +\cos 2\beta )-\cos (\alpha -\beta )+\cos (\alpha +\beta )\right]=$

$2r^2\left[2-2\cos (\alpha +\beta )\cos (\alpha -\beta )-\cos (\alpha -\beta )-\frac 12\right]=$ $2r^2\left[\frac 32+\cos (\alpha -\beta )-\cos (\alpha -\beta )\right]=3r^2$ .

In conclusion, in both cases the corresponding expressions are constant and the constant is the same $3r^2$ .



PP4. Let $\triangle ABC$ with the centroid $G$ and a fixed $F\not\equiv G$ . Consider a variable circle $w=C(M,\rho )$ for which $F\in w$ and its center $M$ belongs to a fixed line $d\perp GF$ .

Prove that the sum of the powers w.r.t. $w$ of $A$ , $B$ , $C$ is constant, i.e. exists $k\in \mathbb R$ so that $p_w(A)+p_w(B)+p_w(C)=k$ for any $w$ with mentioned properties.


Proof. Since $M\in d$ and $d\perp GF$ exists $k_1\in \mathbb R$ so that $MG^2-MF^2=k_1\ (*)$ . Using the well-known property $\sum MA^2=3\cdot MG^2+\frac 13\cdot\sum a^2$

obtain $\sum p_w(A)=\sum \left(MA^2-\rho ^2\right)=$ $\sum MA^2-3\rho ^2=$ $3\cdot\left(MG^2-MF^2\right)+\frac 13\cdot  \sum a^2\stackrel{(*)}{=}$ $3k_1+\frac 13\cdot\sum a^2=k$ (constant).



PP5. Let $\triangle ABC$ with the incircle $w$ . Denote the midpoint $M$ of $[BC]$ and $D\in AB\cap w$ , $E\in AC\cap w$ . Let the incircles $w_1=C(P,r_1)\ ,\ w_2=C(Q,r_2)$

of the triangles $ABM$ , $ACM$ respectively. Prove that $PD\parallel QE$ $\iff$ $AB\perp AC$ and in this case $PD^2+QE^2=PQ^2$ (Toshio Seimyia).


Proof. Denote the points of contact $X$ , $Y$ with $BC$ of $w_1$ , $w_2$ respectively and the points of contact $U$ , $V$ with $AB$ , $AC$ of $w_1$ , $w_2$ respectively. Observe that

$\triangle PXM\sim\triangle MYQ\implies$ $MX\cdot MY=r_1r_2\ (1)$ . Since $2\cdot MX=m_a+$ $\frac a2-c\ ,\ 2\cdot EV=2\cdot (AV-AE)=$ $m_a+b-\frac a2-(b+c-a)=$

$m_a+\frac a2-c$ results $EV=MX\ (2)$ . Since $2\cdot MY=m_a+$ $\frac a2-b\ ,\ 2\cdot DU=2\cdot (AU-AD)=$ $m_a+c-\frac a2-(b+c-a)=$ $m_a+\frac a2-b$

results $DU=MY\ (3)$ . From the relations $(1)$ , $(2)$ , $(3)$ obtain $DU\cdot EV=r_1r_2$ , i.e, $\triangle DUP\sim\triangle QVE$ . Thus $m(\widehat{UDP})+m(\widehat{QEV})=90^{\circ}$ and

$m(\widehat{PDE})+m(\widehat{QED})=90^{\circ}+A$ . Therefore, $PD\parallel QE\iff$ $m(\widehat{PDE})+m(\widehat{QED})=180^{\circ}\iff$ $A=90^{\circ}$ $\iff$ $AB\perp AC$ . In this case

$PQ^2=XY^2+\left(r_1-r_2\right)^2=$ $(MX+MY)^2+\left(r_1-r_2\right)^2=$ $(EV+DU)^2+\left(r_1-r_2\right)^2=$ $\left(EV^2+r_2^2\right)+\left(DU^2+r_1^2\right)+$

$2\cdot\left(DU\cdot EV-r_1r_2\right)$ . Since $EV^2+r_2^2=QE^2\ ,\ DU^2+r_1^2=PD^2$ and $DU\cdot EV=r_1r_2$ obtain that $PQ^2=PD^2+QE^2$ . Very nice !



Here are some simple problems with constant geometrical expressions (without proofs).

PS1. Let an $A$-isosceles $\triangle ABC$ with circumcircle $w$ . Prove that $(\forall )X\in w$ for which $BC$ doesn't separate $A$ , $X$ the expression $XB\cdot XC+XA^2$ is constant.

PS2. Are given $:\ w$ with diameter $[AB]$ ; a fixed $D\in [AB]$ , a mobile $M\in w$ ; $d$ for which $M\in d\ ,\  d\perp DM\ ;\ P\in AA\cap d\ ,\ R\in BB\cap d$ . Prove that $AP\cdot AR$ is constant.

PS3. Let $ABC$ be a triangle with the circumcircle $w$ . For a mobile point $M\in AA$ denote $N\in MB\cap w$ , $P\in MC\cap w$ . Prove that $\frac {AN\cdot AP}{NP}=\frac {bc}{a}$ (constant). Very nice !

PS4. Let a cyclic $ABCD$ , where $E\in AD\cap BC$ , $F\in AC\cap BD$ and the midpoints $M$ , $N$ of $[AB]$ , $[CD]$ . Prove that $\frac {MN}{EF}=\frac 12\cdot\left|\frac {AB}{CD}-\frac {CD}{AB}\right|$ (Bulgaria, 1997).
This post has been edited 80 times. Last edited by Virgil Nicula, Dec 1, 2015, 10:04 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a