133. Some problems with projections/perpendiculars (1).

by Virgil Nicula, Sep 28, 2010, 10:10 AM

http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=369056
Quote:
PP1. (M.D. Vasiliou, Greece & W. Pompe, Polonia) Let $t$ be a mobile tangent line to the incircle $w=C(I,r)$ of the square

$ABCD$ . Denote the projections $A'$ , $B'$ , $C'$ , $D'$ of $A$ , $B$ , $C$ , $D$ on $t$ respectively. Prove that $AA'\cdot CC'=BB'\cdot DD'$ .

Generalization (Toshio Seimyia, Japan) Let $t$ be a mobile tangent line to the incircle $w=C(I,r)$ of the convex quadrilateral $ABCD$ .

Denote the projections $A'$ , $B'$ , $C'$ , $D'$ of $A$ , $B$ , $C$ , $D$ on $t$ respectively. Prove that $\boxed{\frac {AA'\cdot CC'}{BB'\cdot DD'}=\frac {IA\cdot IC}{IB\cdot ID}}\ (*)$ .

Another particular case. Denote the tangent points $D\in BC$ , $E\in CA$ , $F\in AB$ of the incircle of $\triangle ABC$ with the sides. Let $t$ be a mobile tangent line

to the incircle $w=C(I,r)$ of the triangle $ABC$ . Denote the distance $\delta (X)$ of a point $X$ to the line $t$ . Prove that $\frac {\delta (A)\cdot\delta (B)\cdot\delta (C)}{\delta (D)\cdot\delta (E)\cdot\delta (F)}=\frac {4R}{r}\ge 2$ .


PP2. (M. Fianu, Romania) Let $ABC$ be a $A$-right angle triangle. Denote the midpoint $D$ of the $[BC]$ . Consider two mobile points $M$ , $N$ which belong

to the sidelines $AB$ , $AC$ respectively so that $DM\perp DN$ . Prove that the projection of the segment $[MN]$ on $BC$ is constant. Generalization.

Proof 1 of PP1 (synthetic). Suppose w.l.o.g. that the tangent $t$ in a point $T\in w$ to $w$ cut the side $[CD]$ in $M$ and the sideline $AB$ in $N$ .

Denote the midpoints $P$ , $R$ of $[AB]$ , $[CD]$ . Observe that $\triangle IPN\sim\triangle MRI$ , i.e. $\frac {PI}{PN}=\frac {RM}{RI}$ and $\frac {AA'}{BB'}=\frac {NA}{NB}=$ $\frac {PN+PA}{PN-PB}=$ $\frac {PN+PI}{PN-PI}=$

$\frac {1+\frac {PI}{PN}}{1-\frac {PI}{PN}}=$ $\frac {1+\frac {RM}{RI}}{1-\frac {RM}{RI}}=$ $\frac {RI+RM}{RI-RM}=$ $\frac {RM+RD}{RC-RM}=$ $\frac {MD}{MC}=$ $\frac {DD'}{CC'}$ , i.e. $\frac {AA'}{BB'}=\frac {DD'}{CC}$ $\iff$ $AA'\cdot CC'=BB'\cdot DD'$ .

Proof 2 of PP1 (metric). Suppose w.l.o.g. that the tangent $t$ separates $A$ , $I$ and $r=1$ . Thus, $IA=\sqrt 2$ . Denote $T\in w\cap t$ and $m(\angle AIT)=\phi\in\left(0,\frac {\pi}{4}\right)$ .

Prove easily that $\begin{array}{c}
AA'=\sqrt 2\cdot \cos\phi -1\ ;\ CC'=\sqrt 2\cdot\cos \phi +1\\\
BB'=1-\sqrt 2\cdot\sin \phi\ ;\ DD'=1+\sqrt 2\cdot\sin\phi\end{array}$ . Thus, $\begin{array}{c}
AA'\cdot CC'=2\cos^2\phi -1\\\
BB'\cdot DD'=1-2\sin^2\phi\end{array}\ \implies\ AA'\cdot CC'=BB'\cdot DD'=\cos 2\phi$ .

Proof 3 of PP1 (analytic). Choose the origin in $I$ . Thus, the circle $w=C(I,1)$ has the equation $x^2+y^2=1$ and $A(1,1)$ , $B(-1,1)$ , $C(-1,-1)$ , $D(1,-1)$ . A point $M(u,v)\in w$ verifies the relation $u^2+v^2=1$ and the equation of the tangent $t$ in $M$ to $w$ is $ux+vy-1=0$ . Therefore, $AA'\cdot CC'=BB'\cdot DD'$ $\iff$ $|(u+v-1)((-u-v-1)|=|(-u+v-1)(u-v-1)|$ $\iff$ $|(u+v-1)(u+v+1)|=|(1+u-v)(1-u+v)|$ $\iff$ $\left|(u+v)^2-1\right|=\left|1-(u-v)^2\right|$ $\iff$ $|2uv|=|2uv|$ , what is truly.

Remark (Toshio Seimyia, Japan). If $t$ separates $A$ , $I$ and $P\in AB\cap t$ , $R\in AC\cap t$ , $Q\in AD\cap t$ , then $\boxed {\frac {PA}{PB}+\frac {RA}{RC}+\frac {QA}{QD}=1}$ .

Proof. Suppose w.l.o.g. $r=1$ . Denote $S\in BC\cap t$ , $AP=x$ , $AQ=y$ . Prove easily that $\boxed{2(1-x)(1-y)=1}$ . Observe that $\frac {BS}{AQ}=\frac {PB}{PA}$ $\implies$

$BS=\frac {y(1-x)}{x}$ , $SC=\frac {x+y-xy}{x}$ and $\frac {RA}{RC}=\frac {AQ}{SC}$ $\implies$ $\frac {RA}{RC}=\frac {xy}{x+y-xy}$ . Therefore, $\frac {PA}{PB}+\frac {RA}{RC}+\frac {QA}{QD}=1$ $\iff$

$\frac {x}{1-x}+\frac {xy}{x+y-xy}+\frac {y}{1-y}=1$ $\iff$ $\frac {x+y-2xy}{(1-x)(1-y)}=\frac {x+y-2xy}{x+y-xy}$ $\iff$ $(1-x)(1-y)=x+y-xy$ $\iff$ $\boxed{2(1-x)(1-y)=1}$ .

Proof of the "Generalization" (analytic).

Proof of the "Another particular case". Apply the relation $(*)$ to the degenerated tangential quadrilaterals $ABDC$ , $BCEA$ , $CAFB\ :\ \frac {\delta(B)\cdot\delta (C)}{\delta (A)\cdot\delta (D)}=\frac {IB\cdot IC}{IA\cdot ID}$ ,

$\frac {\delta(C)\cdot\delta (A)}{\delta (B)\cdot\delta (E)}=\frac {IC\cdot IA}{IB\cdot IE}$ and $\frac {\delta (A)\cdot\delta (B)}{\delta (C)\cdot\delta (F)}=\frac {IA\cdot IB}{IC\cdot IF}$ . From the product of these relations obtain $\frac {\delta (A)\cdot\delta (B)\cdot\delta (C)}{\delta (D)\cdot\delta (E)\cdot\delta (F)}=\frac {IA\cdot IB\cdot IC}{ID\cdot IE\cdot IF}=$ $\frac {4R}{r}\ge 2$ .


Proof of PP2 (analytic). Choose the origin in $D$ and $B(-1,0)$ , $C(1,0)$ , $A(u,v)$ , where $u^2+v^2=1$ . Therefore,

$\left\|\begin{array}{ccc}
N\left\{\begin{array}{cc}
DN\ : & mx-y=0\\\
AC\ : & y=\frac {v}{u-1}\cdot (x-1)\end{array}\right| & \implies & x_N=\frac {v}{v+m(1-u)}\\\\
M\left\{\begin{array}{cc}
DM\ : & x+my=0\\\
AB\ : & y=\frac {v}{u+1}\cdot (x+1)\end{array}\right| & \implies & x_M=-\frac {v}{mv+u+1}\end{array}\right\|$ . Thus, the length $l$ of the projection $\mathrm{pr}_{BC}[MN]$ is given by $l=\left|x_M-x_N\right|=$

$\left|v\cdot \left(\frac {1}{v+m-mu}+\frac {m}{mv+u+1}\right)\right|=$ $\left|v\cdot\frac {(1-u)\cdot m^2+2v\cdot m+(u+1)}{v(1-u)\cdot m^2+\left[v^2+(1-u)(1+u)\right]\cdot m+v(u+1)}\right|=1$ $\implies l=\frac a2$ (constant).

Remark. If $M\in (AB)$ and $N\in (AC)$ , then can prove easily synthetically. Denote $\{U,V\}\subset [AD]$ so that $MU\perp AD$ ,

$NV\perp AD$ . Prove easily that $AU=DV$ and $AU+AV=AD$ , i.e. $\mathrm{pr}_{AD}([AM]\cup [AN])=AD$ . Since

$\mathrm{pr}_{BC}[MN]=\mathrm{pr}_{BC}([AM]\cup[AN])=\mathrm{pr}_{AD}([AM]\cup[AN])$ obtain $\mathrm{pr}_{BC}[MN]=AD=\frac a2$ .
This post has been edited 76 times. Last edited by Virgil Nicula, Nov 23, 2015, 7:22 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a