24. A fine and cool inequalities.

by Virgil Nicula, Apr 22, 2010, 10:10 PM

Prove that in any triangle $ABC$ there are the following inequalities :

$1.\blacktriangleright \ \  \frac {\sqrt 3}{R}\le \frac 1a+\frac 1b+\frac 1c\le \frac {\sqrt 3}{2r}\le\frac {1}{b+c-a}+\frac {1}{c+a-b}+\frac {1}{a+b-c}$ .

$2.\blacktriangleright \ \ a+b+c\le \frac {a^2+b^2}{a+b}+\frac {b^2+c^2}{b+c}+\frac {c^2+a^2}{c+a}\le 3\cdot\frac {a^2+b^2+c^2}{a+b+c}$ .

$3.\blacktriangleright \ \ \frac 1{4r^2}\ge\frac {1}{a^2}+\frac {1}{b^2}+\frac {1}{c^2}\ge \frac {1}{ab}+\frac {1}{bc}+\frac {1}{ab}\ge \frac {1}{R^2}$ (Goldstone's inequality).

Proof.

$\blacktriangleright\ a^2\ge 4(s-b)(s-c)$ a.s.o. $\implies$ $\sum\frac 1{a^2}\le \sum \frac 1{4(s-b)(s-c)}=$ $\sum\frac {s-a}{4(s-a)(s-b)(s-c)}=$ $\sum\frac {s-a}{4sr^2}=$ $\frac {\cancel s}{4\cancel sr^2}=$ $\frac 1{4r^2}\implies$ $\boxed{\frac 1{a^2}+\frac 1{b^2}+\frac 1{c^2}\le\frac 1{4r^2}}\ .$

$\blacktriangleright\ \sum b^2c^2=\sum (bc)^2\ge (bc)\cdot (ca)+(ca)\cdot (ab)+(ab)\cdot (bc)=abc(a+b+c)\implies \sum b^2c^2\ge abc\cdot\sum a\ \stackrel{:\ (abc)^2}{\implies}\ \sum \frac 1{a^2}\ge \sum \frac 1{bc}\implies$ $\boxed{\frac 1{bc}+\frac 1{ca}+\frac 1{ab}\le \frac 1{a^2}+\frac 1{b^2}+\frac 1{c^2}}\ .$

$\blacktriangleright\ \sum \frac 1{bc}=\frac {2s}{abc}=\frac {2s}{4Rsr}=\frac 1{2Rr}\ge \frac 1{R^2}\implies$ $\boxed{\frac 1{R^2}\le\frac 1{bc}+\frac 1{ca}+\frac 1{ab}}\ .$ In conclusion, $\boxed{\frac 1{R^2}\le \frac 1{bc}+\frac 1{ca}+\frac 1{ab}\le \frac 1{a^2}+\frac 1{b^2}+\frac 1{c^2}\le\frac 1{4r^2}}\ .$ Otherwise. Direct proof of $\boxed{\frac 1{R^2}\le \frac 1{a^2}+\frac 1{b^2}+\frac 1{c^2}}\ :$

$\blacktriangleright\ \left\{\begin{array}{c}
4(s-a)(s-b)\le c^2\\\\
4(s-a)(s-c)\le b^2\end{array}\right|\bigodot\implies$ $16(s-a)sr^2\le b^2c^2\ \stackrel{:\ (abc=4Rrs)}{\iff}\ \frac {16(s-a)sr^2}{4Rsr}\le \frac {b^2c^2}{abc}\iff$ $\frac {4r(s-a)}{R}\le\frac {bc}{a}\ \stackrel{\sum}{\implies}\ \frac {4Rrs}{R^2}\le \sum \frac {bc}{a}\ \stackrel{:\ (abc=4Rrs)}{\implies}\ \boxed{\frac 1{R^2}\le \frac 1{a^2}+\frac 1{b^2}+\frac 1{c^2}}\ .$



$4.\blacktriangleright \ \ 1+\frac {b+c-a}{a}+$ $\frac {c+a-b}{b}+\frac {a+b-c}{c}\le\frac {2r}{R}+$ $\frac {a}{b+c-a}+\frac {b}{c+a-b}+\frac {c}{a+b-c}$ .

$5.\blacktriangleright \ \ a^2+b^2+c^2+16r^2\le 2(ab+bc+ca)$ (easy !).

$6.\blacktriangleright$ IF $x$ , $y$ , $z$ are positive numbers, THEN $\boxed{\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge\frac{x+y+z}{\sqrt[3]{xyz}}}>3\ .$


Proof. $3\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)=$ $\left(\frac{2x}{y}+\frac{y}{z}\right)+\left(\frac{2y}{z}+\frac{z}{x}\right)+\left(\frac{2z}{x}+\frac{x}{y}\right)\ge$ $\frac{3x}{\sqrt[3]{xyz}}+\frac{3y}{\sqrt[3]{xyz}}+\frac{3z}{\sqrt[3]{xyz}}$ .

$7.\blacktriangleright$ Prove that $(\forall )$ an acute $\triangle ABC$ there is the inequality $\sum\frac 1{a^2}+\sum\frac 1{HA^2}\le \frac 1{4\rho^2}\ ,$ where $\rho$ is the length of the inradius for the orthic $\triangle DEF$ w.r.t. $\triangle ABC\ .$

Proof. Denote the orthic triangle $DEF\ ,$ where $D\in (BC)\ ,$ $E\in (CA)$ and $F\in (AB)\ .$ Prove easily that the orthocenter $H\in AD\cap BE\cap CF$ of $\triangle ABC$ is the incenter of $\triangle DEF$ and $\rho$

is the distance $\delta_{EF}(H)$ from $H$ to $EF\ .$ Thus, $EF\cdot \delta_{EF}(H)=2\cdot [EHF]=$ $HE\cdot HF\cdot\sin\widehat{EHF}\ \stackrel{(2)}{\iff}\ R\sin 2A\cdot\delta_{EF}(H)=$ $AH\cos \widehat{AHE}\cdot AH\cos\widehat{AHF}\cdot\sin\widehat{EHF}\ \stackrel{(1)}{\iff}$

$\cancel{2R}\cancel{\sin A}\cancel{\cos A}\cdot\rho =$ $\cancel{2R}\cancel{\cos A}\cos C\cdot 2R\cos A\cos B\cdot\cancel{\sin A}\iff$ $\boxed{\rho =2R\cos A\cos B\cos C}\ (*)\ .$ I"ll use the well-known relations $:\ \left\{\begin{array}{cc}
\frac {BC}{\sin A}=\frac {CA}{\sin B}=\frac {AB}{\sin C}=2R & (0)\\\\
\frac {HA}{\cos A}=\frac {HB}{\cos B}=\frac {HC}{\cos C}=2R & (1)\\\\
\frac {EF}{\sin 2A}=\frac {FD}{\sin 2B}=\frac {DE}{\sin 2C}=R & (2)\end{array}\right\|$ and

$BC^2+AH^2=CA^2+BH^2=AB^2+CH^2=4R^2\ (3)\ .$ Therefore, $\sum\frac 1{a^2}+\sum\frac 1{HA^2}\le \frac 1{4\rho^2}\ \stackrel{(3)}{\iff}\ \sum\frac {4R^2}{a^2\cdot HA^2}\le \frac 1{4\rho^2}\ \stackrel{(*\wedge 0\wedge 1)}{\iff}\ \sum \frac {\cancel{4R^2}}{\cancel{4R^2}\sin^2A\cdot \cancel{4R^2}\cancel{\cos^2A}}\le $

$\frac 1{4\cdot \cancel{4R^2}\cancel{\cos^2A}\cos^2B\cos^2C}$ $\iff$ $\sum\frac {\cos^2B\cos^2C}{\sin^2A}\le \frac 14\ .$ With the substitutions $A\to \frac {\pi - A}2$ a.s.o. this inequality becomes $\frac {\cos^2\left(90^{\circ}-\frac B2\right)\cos^2\left(90^{\circ}-\frac C2\right)}{\sin^2\left(90^{\circ}-\frac A2\right)}\le\frac 14\iff$ $\frac {\sin^2\frac B2\sin^2\frac C2}{\cos^2\frac A2}\iff$

$\sum \frac {\cancel{(s-a)}(s-c)}{a\cancel c}\cdot\frac {(s-a)(s-b)}{a\cancel b}\cdot\frac {\cancel{bc}}{s\cancel{(s-a)}}\le \frac 14\iff$ $\sum\frac {(s-a)(s-b)(s-c)}{sa^2}\le\frac 14\iff$ $\sum\frac{\cancel sr^2}{\cancel sa^2}\le \frac 14\iff$ $\sum\frac 1{a^2}\le\frac 1{4r^2}\ ,$ what is true. Hence and required inequality is true.

Application (particular case). Apply the inequality 1.7 to $\triangle I_aI_bI_c$ w.r.t. $\triangle ABC\ :\ \boxed{\sum\frac 1{I_bI_c^2}+\sum\frac 1{II_a^2}\le\frac 1{4r^2}}\ .$
This post has been edited 110 times. Last edited by Virgil Nicula, Aug 22, 2017, 10:09 AM

Comment

1 Comment

The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
These are nice problems! I may try some of them and post my solutions on my blog tomorrow. Be sure to check it out! :D

by Kingofmath101, Aug 10, 2011, 2:54 AM

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a