46. Outside of a quadrilateral.

by Virgil Nicula, Jun 19, 2010, 8:46 PM

PP1. Construct outside of the convex $ABCD$ the triangles $AMB$ , $BNC$ . $CPD$ , $DRA$

so that $\left\|\begin{array}{c}
MA=MB\ ,\ PC=PD\ ,\ NB\perp NC\ ,\ RA\perp RD\\\\
\widehat {MBA}\equiv \widehat {NBC}\equiv\widehat {RAD}\ ,\ \widehat{NCB}\equiv\widehat{PCD}\equiv\widehat {RDA}\end{array}\right\|$ .

Denote $m(\widehat{MBA})=x$ . Prove that $MP\perp NR\ \ \wedge\ \ NR=MP\cdot\sin 2x$ .



Proof 1 (metric). Denote $AB=a$ $BC=b$ , $CD=c$ , $DA=d$ , $AC=e$ , $BD=f$ . Thus $MA=MB=\frac {a}{2\cos x}$ , $PC=PD=\frac {c}{2\sin x}$ ,

$NB=b\cos x$ , $NC=b\sin x$ , $RA=d\cos x$ , $RD=d\sin x$ . Apply the generalised Pitagora's theorem in the triangles $MBN$ , $NCP$ ,

$PDR$ and $RAM$ . $MN^2=BM^2+BN^2-2\cdot BM\cdot BN\cdot \cos\widehat{MBN}=$ $\frac {a^2}{4\cos^2x}+b^2\cos^2x-ab\cdot\cos (B+2x)\implies$

$\boxed {MN^2=\frac {a^2}{4\cos^2x}+b^2\cos^2x-\frac 12\cdot\left(a^2+b^2-e^2\right)\cdot \cos 2x+2\sin 2x\cdot [ABC]}$ .

$MR^2=AM^2+AR^2-2\cdot AM\cdot AR\cdot \cos\widehat{MAR}=$ $\frac {a^2}{4\cos^2x}+d^2\cos^2x-ad\cdot\cos (A+2x)\implies$

$\boxed {MR^2=\frac {a^2}{4\cos^2x}+d^2\cos^2x-\frac 12\cdot\left(a^2+d^2-f^2\right)\cdot \cos 2x+2\sin 2x\cdot [BAD]}$ .

$PN^2=CP^2+CN^2-2\cdot CP\cdot CN\cdot \cos\widehat{NCP}=$ $\frac {c^2}{4\sin^2x}+b^2\sin^2x+bc\cdot\cos (C-2x)\implies$

$\boxed {PN^2=\frac {c^2}{4\sin^2x}+b^2\sin^2x+\frac 12\cdot\left(b^2+c^2-f^2\right)\cdot \cos 2x+2\sin 2x\cdot [BCD]}$ .

$PR^2=DP^2+DR^2-2\cdot DP\cdot DR\cdot \cos\widehat{PDR}=$ $\frac {c^2}{4\sin^2x}+d^2\sin^2x+cd\cdot\cos (D-2x)\implies$

$\boxed {PR^2=\frac {c^2}{4\sin^2x}+d^2\sin^2x+\frac 12\cdot\left(c^2+d^2-e^2\right)\cdot \cos 2x+2\sin 2x\cdot [ACD]}$ .

Observe that $\left(MN^2+PR^2\right)-\left(PN^2+MR^2\right)=$ $b^2\cos 2x-d^2\cos 2x+\frac 12\cdot\left(c^2+d^2+a^2+d^2-a^2-b^2-b^2-c^2\right)\cdot\cos 2x=$

$\left(b^2-d^2\right)\cdot\cos 2x+\frac 12\left(2d^2-2b^2\right)\cdot\cos 2x=0$ . In conclusion $MP\perp NR$ .

Remarks. For $m(\widehat {MBA})=30^{\circ}$ obtain the problem from
here. For $m(\widehat {MBA})=45^{\circ}$ obtain an well-known problem :

"Construct four squares outside of the convex quadrilateral $ABCD$ on its sides. Denote the centers $M$ , $N$ , $P$ , $R$ of these squares

(in this order). Prove that $MP=NR$ , $MP\perp NR$ and the midpoints of $MP$ , $NR$ , $AC$ , $BD$ are the vertices of a square".


Remark. The quadrilateral $MNPR$ is a "psudosquare", i.e. $MP=NR$ and $MP\perp NR$ . See here (<== click).


Proof 2 (with complex numbers). Define $X(x)$ - the point $X$ with the affix (complex coordinate) $x\in \mathbb C$ . Therefore, $A(a)$ , $B(b)$ , $C(c)$ , $D(d)$ , where $\{a,b,c,d\}\subset \mathbb C$ .

Denote $m(\widehat {MAB})=\phi$ and $w=\cos \phi +i\cdot\sin\phi$ . Prove easily that $\boxed {m=\frac {a+bw^2}{1+w^2}}$ , $\boxed {n=\frac {b(1-w^2)+c(1+w^2)}{2}}$ , $\boxed {p=\frac {d-cw^2}{1-w^2}}$ ,

$r=\frac {a(1-\overline w^2)+d(1+\overline w^2)}{2}$ , i.e. $\boxed {r=\frac {a(w^2-1)+d(w^2+1)}{2w^2}}$ . Thus, $m-p=\frac {(a+bw^2)(1-w^2)+(cw^2-d)(1+w^2)}{(1+w^2)(1-w^2)}$ ,

$n-r=\frac {(a+bw^2)(1-w^2)+(cw^2-d)(1+w^2)}{2w^2}$ and $\frac {n-r}{m-p}=\frac {1-w^4}{2w^2}$ . Prove easily that $\frac {1-w^4}{2w^2}=-i\sin 2\phi$ .

Thus, $\boxed {i\cdot( n-r)=(m-p)\cdot\sin 2\phi}$ what means $\boxed {NR=MP\cdot\sin 2\phi\ \ \wedge\ \ MP\perp NR}$ .



PP2. Construct outside of the convex $ABCD$ the equilateral triangles $AMB$ , $BNC$ . $CPD$ , $DQA$ . Denote the

centroids $N_1$ and $Q_1$ of the triangles $BNC$ , $DQA$ respectively. Prove that $N_1Q_1\perp MP$ and $MP=\sqrt 3\cdot N_1Q_1$ .


Proof (with complex numbers). Denote $X(x)$ - the point $X$ with thw affix $x\in\mathbb C$ and $w=\cos 60^{\circ}+i\cdot\sin 60^{\circ}$ , where

$w^3=-1\ ,\ w^2-w+1=0$ and $\overline w=\frac 1w=-w^2$ . Therefore, $\left\{\begin{array}{ccccc}
m-a=w\cdot (b-a) & \implies & m=w\cdot b-w^2\cdot a\\\\
p-c=w\cdot (d-c) & \implies & p=w\cdot d-w^2\cdot c\\\\
c-n_1=w^2\cdot (b-n_1) & \implies & \left(1-w^2\right)\cdot n_1=c-w^2\cdot b\\\\
a-q_1=w^2\cdot (d-q_1) & \implies & \left(1-w^2\right)\cdot q_1=a-w^2\cdot d\end{array}\right|$ .

Observe that $m-p=\left(w^2+w\right)\cdot \left(n_1-q_1\right)=i\sqrt 3\cdot\left(n_1-q_1\right)$ , i.e. $N_1Q_1\perp MP$ and $MP=\sqrt 3\cdot N_1Q_1$ .

Remark. Prove easily that $\left\{\begin{array}{c}
(1+w)\cdot n_1=b+w\cdot c\\\
(1+w)\cdot q_1=d+w\cdot a\\\
(1+w)\cdot (n_1-q_1)=(b-d)+w\cdot (c-a)\end{array}\right|$ and $m-p=w\cdot (b-d)+w^2\cdot (c-a)=$ $w(w+1)\cdot (n_1-q_1)$ .
This post has been edited 42 times. Last edited by Virgil Nicula, Nov 23, 2015, 8:47 AM

Comment

2 Comments

The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Virgil Nicula wrote:
Quote:
Constructing four squares outside a quadrilateral, their centers determine a square.

In fact, that is a pseudo-square, having equal and perpendicular diagonals.

Best regards,
sunken rock
Attachments:

by sunken rock, Jul 26, 2010, 5:41 PM

The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Multumesc, Sunken Rock ! Am vazut ca Miculita a mentionat aici (<== click) cateva proprietati ale unui pseudo-patrat.
This post has been edited 1 time. Last edited by Virgil Nicula, Oct 10, 2011, 7:03 AM

by Virgil Nicula, Oct 10, 2011, 7:02 AM

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a