281. Identity with R in an acute triangle (ILL - 1974).

by Virgil Nicula, May 26, 2011, 2:31 AM

PP. Let $ABC$ be an acute triangle with the circumcircle $w=C(O,R)$ . Parallel through $O$ to $BC$ cuts $AB$ , $AC$ at $A_1$ , $A_2$

respectively and define similarly the points $B_1$ , $B_2$ and $C_1$ , $C_2$ . Then $\overline{OA_1} \cdot \overline{OA_2}+\overline{OB_1} \cdot \overline{OB_2}+\overline{OC_1} \cdot \overline{OC_2}=R^2$ .


Proof. Sinus' theorem in $\left\{\begin{array}{cc}
\triangle OAA_1\ : & \frac {OA_1}{\cos C}=\frac {R}{\sin B}\\\\
\triangle OAA_2\ : & \frac {OA_2}{\cos B}=\frac {R}{\sin C}\end{array}\right\|$ $\implies$ $OA_1\cdot OA_2=R^2\cot B\cot C$ $\implies$ $\sum OA_1\cdot OA_2=R^2$ because $\sum \cot B\cot C=1$ .

Generalization. Let $P$ be an interior point of $\triangle ABC$ with circumcircle $w=C(O,R)$ . Consider the points $\{C_2,B_1\}\subset (BC)$ , $\{A_2, C_1\}\subset (CA)$

and $\{B_2, A_1\}\subset (AB)$ so that $A_1A_2\parallel BC$ , $B_1B_2\parallel CA$ , $C_1C_2\parallel (AB)$ and $P\in A_1A_2\cap B_1B_2\cap C_1C_2$ . Then $p_w(P)=\sum\overline{PA_1} \cdot \overline{PA_2}$ .


Proof. Let $X,Y,Z$ be the orthogonal projections of $P$ onto $BC$ , $CA$ , $AB$ . Denote the circumradius $R_1$ of $\triangle AA_1A_2$ . By Euler's theorem for $P$ and its pedal triangle

$\triangle PYZ$ w.r.t. $\triangle AA_1A_2$ we get $\frac{[PYZ]}{[AA_1A_2]}=\frac{{\overline{PA_1}} \cdot \overline{PA_2}}{4{R_1}^2}$ . But $\triangle ABC \sim \triangle AA_1A_1$ gives $\frac{[ABC]}{[A_1B_1C_1]}=\frac{R^2}{{R_1}^2}$ $\Longrightarrow \ \frac{[PYZ]}{[ABC]}=\frac{{\overline{PA_1}} \cdot \overline{PA_2}}{4R^2}$ .

By cyclic exchange of elements we obtain the expressions $\frac{[PZX]}{[ABC]}=\frac{{\overline{PB_1}} \cdot \overline{PB_2}}{4R^2} \ , \ \frac{[PXY]}{[ABC]}=\frac{{\overline{PC_1}} \cdot \overline{PC_2}}{4R^2} \ \Longrightarrow$

$\frac{\overline{PA_1} \cdot \overline{PA_2}+\overline{PB_1} \cdot \overline{PB_2}+\overline{PC_1} \cdot \overline{PC_2}}{4R^2}=\frac{[PYZ]+[PZX]+[PXY]}{[ABC]}$ . Therefore, $\overline{PA_1} \cdot \overline{PA_2}+\overline{PB_1} \cdot \overline{PB_2}+\overline{PC_1} \cdot \overline{PC_2}=$

$4R^2 \cdot \frac{[XYZ]}{[ABC]}=4R^2 \cdot \frac{R^2-PO^2}{4R^2}$ . In conclusion, $\overline{PA_1} \cdot \overline{PA_2}+\overline{PB_1} \cdot \overline{PB_2}+\overline{PC_1} \cdot \overline{PC_2}=R^2-PO^2\le R^2$ .


Lemma (well-known). The power $p_w(P)$ of the point $P(x,y,z)$ w.r.t. the circumcircle $w=C(O,R)$ of $\triangle ABC$ is given by

$\boxed{p_w(P)=-\left(yza^{2}+zxb^{2}+xyc^{2}\right)=PO^2- R^{2}\ }$ , where $(x,y,z)$ - normalized barycentrical coordinates of $P$ w.r.t. $w$ .


Lemma. Let $w=(O,R)$ be a circle and consider $A, B, C$ so that $C\in AB$ . Then $\overline{BC}\cdot\overline{CA}\cdot\overline{AB}+\sum p_w(A)\cdot \overline{BC}=0$ .

Proof. $\overline{BC}\cdot\overline{CA}\cdot\overline{AB}+\sum p_w(A)\cdot \overline{BC}=$ $\overline{BC}\cdot\overline{CA}\cdot\overline{AB}+\sum\left(OA^{2}-R^{2}\right)\cdot \overline{BC}=$ $\overline{BC}\cdot\overline{CA}\cdot\overline{AB}+$

$\sum OA^{2}\cdot \overline{BC}-R^{2}\cdot\sum \overline{BC}=$ $\overline{BC}\cdot\overline{CA}\cdot\overline{AB}+\sum OA^{2}\cdot \overline{BC}=0$ by the Stewart's theorem.

Proof. Apply lemma to $\{P,A_1,A_2\}\ :\ p_w(P)\cdot $ $\overline{A_1A_2}+p_w(A_1)\cdot \overline{A_2P}+p_w(A_2)\cdot \overline{PA_1}+\overline{A_1A_2}\cdot \overline{A_2P}\cdot\overline{PA_1}=0$ $\Longrightarrow$

$p_w(P)=p_w(A_1)\cdot \frac{\overline{PA_2}}{\overline{A_1A_2}}-p_w(A_2)\frac{\overline{PA_1}}{\overline{A_1A_2}}+\overline{PA_1}\cdot\overline{PA_2}=$ $\frac{\overline{A_1A}\cdot\overline{A_1B}\cdot\overline{PA_2}}{\overline{A_1A_2}}-\frac{\overline{A_2A}\cdot\overline{A_2C}\cdot\overline{PA_1}}{\overline{A_1A_2}}+\overline{PA_1}\cdot\overline{PA_2}=$

$\frac{\overline{PC_1}\cdot\overline{A_1B}\cdot \overline{PA_2}}{\overline{PA_2}}+\frac{\overline{PB_2}\cdot\overline{A_2C}\cdot\overline{PA_1}}{\overline{PA_1}}+\overline{PA_1}\cdot\overline{PA_2}=$ $\overline{PC_1}\cdot\overline{PC_2}+\overline{PB_2}\cdot\overline{PB_1}+\overline{PA_1}\cdot \overline{PA_2}$ $\Longrightarrow$ $\sum\overline{PA_1}\cdot\overline{PA_2}=R^{2}-OP^{2}\le R^{2}$ .

Remark. The proposed identity is truly generally, i.e. for any point $P$ from the plane of $\triangle ABC$ we"ll have $\sum \overrightarrow{PA_{1}}\cdot \overrightarrow{PA_{2}}=\left|R^2-PO^2\right|\ .$



Same generalization with other notations and other proof.

Let $M$ be a point in the plane of $\triangle ABC$ with circumcircle $w=C(O,R)$ . Consider the points $\{E_1,F_2\}\subset BC$ , $\{F_1,D_2\}\subset (CA)$ , $\{D_1,E_2\}\subset (AB)$

so that $D_1D_2\parallel BC$ , $E_1E_2\parallel CA$ , $F_1F_2\parallel (AB)$ and $M\in E_1E_2\cap F_1F_2\cap D_1D_2$ . Then $p_w(M)=\sum\overline{MD_1} \cdot \overline{MD_2}$ .


Proof. I"use barycentrical coordinates, i.e. I"ll consider that the point $M$ has the normalized barycentrical coordinates $(x,y,z)$ , where $x+y+z=1$ .

Denote $A_1\in AM\cap BC$ . Since $\frac {MD_1}{A_1B}=\frac {AM}{AA_1}=\frac {MD_2}{A_1C}$ obtain that $\overline{MD_1}\cdot\overline{MD_2}=\left(\frac {AM}{AA_1}\right)^2\cdot \overline{A_1B}\cdot\overline{A_1C}$ . Since $\frac {\overline{MA}}{\overline {MA_1}}=-\frac {y+z}{x}$

obtain that $\left(\frac {MA}{AA_1}\right)^2=(y+z)^2$ and from $\frac {\overline{A_1B}}{\overline{A_1C}}=-\frac zy$ obtain that $\overline{A_1B}=-\frac {z}{y+z}\cdot\overline{BC}$ and $\overline{A_1C}=\frac {y}{y+z}\cdot\overline{BC}$ .

Therefore, $\overline{MD_1}\cdot\overline{MD_2}=-yza^2$ . Obtain analogously $\overline{ME_1}\cdot\overline{ME_2}=-zxb^2$ and $\overline{MF_1}\cdot\overline{MF_2}=-xyc^2$ .

In conclusion, $\sum \overline{MD_1}\cdot\overline{MD_2}=-\sum yza^2=p_w(M)$ . Study some particular case, for exemple $M\in w$ or $M\equiv O$ .
This post has been edited 48 times. Last edited by Virgil Nicula, Nov 22, 2015, 6:16 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a