239. Algebraic marathon.

by Virgil Nicula, Mar 4, 2011, 12:47 PM

$\blacksquare\ V.N.0^{\circ}\ .$ Solve the equation $a+{b\over {a+{b\over {a+_{{.}_{{.}_{{.}_{+{b\over{a+{b\over x }}}}}}}}}}}=x$, where $b\ne 0$ and the bar is repeated $n$ times.

Answer. For any $n\in N^*$ the solutions are the roots of the equation $x^2=ax+b$, i.e. $x=a+\frac bx\ .$

$\blacksquare\ V.N.1^{\circ}.\ 0\le x\le 1,\ 0<a,b\ne 1\Longrightarrow 2\sqrt{ab}\le a\left(\frac ba\right)^x+b\left(\frac ab\right)^x\le a+b\ .$

$\blacksquare\ V.N.2^{\circ}$. Let $a,b,c$ be three real numbers greater than 1. Find the extremes of the set $A=\left\{\ x^{\log_y z }\ |\ \{x,y,z\}=\{a,b,c\}\ \right\}\ .$

$\blacksquare\ V.N.3^{\circ}.\ \{a,b\}\subset Z\setminus\{-1\}\Longrightarrow -2\le \frac{ab+a-b}{(a+1)(b+1)}\le 4\ .$

$\blacksquare\ V.N.4^{\circ}.\ n\in 2N+1,\ \left(\forall\right)\{i,j\}\subset\overline {1,n}$ , $i\ne j$ , $x_i\in Z$ , $x_i\ne x_j$ $\Longrightarrow$ $\sum\limits_{k+1}^n x^2_k\ge \frac{n(n^2-1)}{12}$ .

$\blacksquare\ V.N.5^{\circ}$. For $a>1,\ b>1$ solve the equation $(a+x)^{\log_a b}-(b+x)^{\log_b a}=b-a.$

$\blacksquare\ V.N.6^{\circ}$. Study the monotony of the function $f\ : \ (0,\infty )\rightarrow R$, where $f(x)=a^x+a^{\frac 1x}$ and $a>1\ .$

$\blacksquare\ V.N.7^{\circ}.\ \left(\forall\right) n\in N^*,\ \left(\exists\right) x_n\in (0,1)$, so that $n\left(x^{n-1}_n-x^n_n\right) >\frac 1e\ .$

$\blacksquare\ V.N.8^{\circ}$. Study the nature of the sequence $a_1=0,\ a_{n+1}=a_n\sqrt 2+\sqrt{2+a^2_n},\ n\in N^*\ .$

$\blacksquare\ V.N.9^{\circ}$. Solve the equation $2^x+2^{\sqrt{1-x^2}}=3\ .$

$\blacksquare\ V.N.10^{\circ}$. If $y-x\le 1,\ y+x\le 1,\ x^2-1\le y$, then ascertain $\min y$ and $\max y\ .$

$\blacksquare\ V.N.11^{\circ}$. The system of the equations $x_1-x_2=x_3-x_4=a$, $x_1+x_2+x_3+x_4=1$

has at least a positive solution, i.e. $x_k>0,\ k\in \overline {1,4}$ if and only if $|a|<\frac 12\ .$

$\blacksquare\ V.N.12^{\circ}$. Let $0<a_1<a_2<\ldots <a_{n-1}<a_n$ and the set $S_n$ of the all permutations $\sigma : \overline {1,n}\rightarrow \overline {1,n}\ .$

Ascertain the permutation $\sigma$ for which the sum $S_{\sigma}$ is maximum (minimum), where:

$12.1.\ S_{\sigma}=\sum\limits_{k=1}^n \frac{a_k-a_{\sigma (k)}}{a_k+a_{\sigma (k)}}\ ;\ \ \ 12.2.\ S_{\sigma}=\sum\limits_{k=1}^n \ \ln\left(a^{\alpha}_k +a^{\beta}_{\sigma (k)}\right)$, where $\alpha \ne 0$ and $\beta \ne 0\ .$

$\blacksquare\ V.N.13^{\circ}.\ \left(\forall\right)\sigma \in S_n,\ \sum\limits_{k=1}^n\frac{\sigma (k)}{k^2}$ $\ge$ $\sum\limits_{k=1}^n \frac 1k\ .$


Proof. Denote $x\ .a.s.\ y$ $\Longleftrightarrow$ $xy>0\ \vee\ x=y=0\ .$ Must to have in view the effect of a transposition $\tau =(i,j)\in S_n$, i.e. $i\ne j$ , $\tau (i)=j$ , $\tau (j)=i$ ,

$\tau (k)=k$ , $k\not\in \{i,j\}\ .$ Denote $\boxed {S(\sigma )=\sum_{k=1}^n \frac{\sigma (k)}{k^2}}\ .$ Prove easily that $S(\sigma \circ\tau )-S(\sigma )=$ $\frac{\sigma (i)}{j^2}+\frac{\sigma (j)}{i^2}-$ $\frac{\sigma (i)}{i^2}-$ $\frac{\sigma (j)}{j^2}\ .a.s.$

$\sigma (i)-\sigma (j)](i-j)\ .$ Therefore, if the permutation $\sigma$ has not the inversion $(i,j)$ , i.e. $[\sigma (i)-\sigma (j)](i-j)>0$ , then $S(\sigma\circ\tau)>S(\sigma)$ .

So that, the sum $S(\sigma)$ is minimum if and only if the permutation $\sigma$ has not one inversion, i.e. $\sigma =\iota$ , where $\iota (k)=k$ , $k\in \overline {1,n}$ (the identical permutation).

We came to the conclusion that for any $\sigma \in S_n$ , $\boxed {\ S(\sigma)\ge S(\iota )=\sum_{k=1}^n \frac 1k\ }\ .$ Similarly prove and the exercises $12.1$ and $12.2\ .$


$\blacksquare\ V.N.14^{\circ}.\ 1<x<y\ ,\ 0<z\Longrightarrow \log_x y>\log_{x+z} (y+z)\ .$

$\blacksquare\ V.N.15^{\circ}$. Ascertain the general term for the sequence $x_1\ge 0,\ x_{n+1}=|x_n-n|,\ n\in N^*.$

Answer. $x_n= \left \{ \begin {array}{ccc} 
x_1-\frac 12\cdot n(n-1) & \iff & n\in \overline {1,p}\\\\
 (-1)^{n-p}\left(x_1-\frac{p^2}{2}\right)+\frac n2 -\left\{\frac{n-p}2\right\} & \iff & n\ge p+1\end{array}\right\|$

where $p=\left[\frac 12\left(1+\sqrt{1+8x_1}\right)\right]$, i.e. $\frac{p(p-1)}{2}\le x_1<\frac{p(p+1)}{2}$ and $\{x\}=x-[x]\ .$

Remark. $\lim_{n\to \infty} \frac{x_n}{n}=\frac 12\ .$

$\blacksquare\ V.N.16^{\circ}.\ a_k\in (0,1),\ k\in \overline {1,n}\Longrightarrow \sum_{k=1}^n \log_{a_k} \frac{na_1\cdot a_2\cdot \ldots \cdot a_n}{a_1+a_2+\ldots +a_n}\ge n(n-1)\ .$

$\blacksquare\ V.N.17^{\circ}.\ x^3_k=x_k,\ k\in \overline {1,n}\Longrightarrow$ $\sum_{1\le i<j\le n}x_i x_j\ge -\left[\frac n2\right]$, where $z\equiv [x]\in Z,\ z\le x<z+1\ .$

$\blacksquare\ V.N.18^{\circ}.\ a,b,c,d>0\Longrightarrow 1<\frac{a}{a+b+d}+\frac{b}{a+b+c}+$ $\frac{c}{b+c+d}+\frac{d}{a+c+d}<2\ .$

$\blacksquare\ V.N.19^{\circ}.\ \left(\exists\right)x\in R,\ x^4+ax^3+bx^2+ax+1=0\Longrightarrow a^2+b^2\ge \frac 45\ .$

$\blacksquare\ V.N.20^{\circ}.\ \sum_{k=1}^{2n+1}\frac {1}{n+k}>1$ and $\frac{2n}{3n+1}<\sum_{k=1}^n \frac{1}{n+k} <\frac{-1+\sqrt{8n^2+1}}{4n}<\frac 34-\frac {1}{4n}<\frac 34$ for any $n\in \mathbb N^*\ .$


Proof. $\sum_{k=1}^{2n+1}\frac {1}{n+k}\cdot\sum_{k=1}^{2n+1}(n+k)>(2n+1)^2$ and $\sum_{k=1}^{2n+1}(n+k)=n(2n+1)+\frac{(2n+1)(2n+2)}{2}=(2n+1)^2$ $\implies$

$\boxed{\ \sum_{k=1}^{2n+1}\frac {1}{n+k}>1\ }$ . Denote $A_n=\frac{1}{n+1}+\frac{1}{n+2}+\dots +\frac{1}{2n}$ and apply the Chebyshev's inequality for two decreasing sentencies.

$\blacktriangleright\ \sum_{k=1}^n\frac {1}{n+k}\cdot\sum_{k=1}^n(n+k)>n^2\iff$ $\boxed{\ \sum_{k=1}^n\frac {1}{n+k}>\frac {2n}{3n+1}\ }$ because $\sum_{k=1}^n(n+k)=\frac {n(3n+1)}{2}$ .

$\blacktriangleright\ A_n\cdot \left(A_n+\frac {1}{2n}\right)=A_n\cdot \left(A_n+\frac 1n-\frac {1}{2n}\right)=\left(\frac{1}{n+1}+\frac{1}{n+2}+\dots +\frac{1}{2n}\right)$ $\cdot \left(\frac 1n+\frac {1}{n+1}+\dots +\frac {1}{2n-1}\right)<$

$n\cdot\left[\frac {1}{n\cdot (n+1)}+\frac {1}{(n+1)\cdot (n+2)}+\dots \frac {1}{(2n-1)\cdot 2n}\right]=$ $n\cdot\sum_{k=0}^{n-1} \left(\frac {1}{n+k}-\frac {1}{n+k+1}\right)=\frac 12$ .

In conclusion, $A_n\cdot \left(A_n+\frac {1}{2n}\right)<\frac 12\ \Longrightarrow\ 2n\cdot A_n^2+A_n-n<0\iff$ $\boxed{\ A_n<\frac {-1+\sqrt{8n^2+1}}{4n}\ }$ .


$\blacksquare\ V.N.21^{\circ}$ Let $n\in\mathbb N^*$ and $ x_k\in\mathbb R$ , $ k\in \overline{1,n}$ . Prove that $\left\{\begin{array}{c}
 na = \sum x_k\\\\
nb = \sum x_k^2\end{array}\right\|\ \implies\ (\forall)\ k\in \overline{1,n}$ we have $ \left|x_k - a\right|\ \le\ \sqrt {(n - 1)\left(b - a^2\right)}$ .

$\blacksquare\ V.N.22^{\circ}$ Prove that $\frac 1n+\frac {1}{n+1}+\dots +\frac {1}{n^2-1}+\frac {1}{n^2}\ <\ 1+\frac 12+\frac 13+\dots +\frac 1n+\frac {1}{n+1}$ , where $n\in\mathbb N^*$ and $n\ge 2$ .


Proof. From well-known inequality $\frac {1}{k+1}<\ln (k+1)-\ln k<\frac 1k$ for any $k\in\mathbb N^*$ obtain that (right) $\boxed{\ln (n+2)<\sum_{k=1}^{n+1}\frac 1k}$ and (left) $\boxed{\sum_{k=n}^{n^2}\frac {1}{k}<\ln \frac {n^2}{n-1}}$ . Prove easily that

$\ln \frac {n^2}{n-1}<\ln (n+2)$ for any $n\in\mathbb N$ , $n\ge 2$ . Thus, $\sum_{k=n}^{n^2}\frac {1}{k}<\ln \frac {n^2}{n-1}<\ln (n+2)<\sum_{k=1}^{n+1}\frac 1k$ $\implies$ $\sum_{k=n}^{n^2}\frac {1}{k}<\sum_{k=1}^{n+1}\frac 1k$ for any $n\in\mathbb N^*$ .


$\blacktriangleright$ Daca $d$ are ecuatia baricentrica $ax+by+cz=0$ , atunci ecuatia dreptei care trece prin $P(u,v,w)$ si paralela cu $d$ este $\left|\begin{array}{ccc}
x & y & z\\\
u & v & w\\\
b-c & c-a & a-b\end{array}\right|=0$ .

$\blacktriangleright$ Daca $P\in d\cap d'$ , unde cele doua drepte au ecuatiile baricentrice $\left\{\begin{array}{c}
 ax+by+cz=0\\\
a'x+b'y+c'z=0\end{array}\right\|$ ,

atunci coordonatele baricentrice ale lui $P$ sunt $\left(\left|\begin{array}{cc}
b & c\\\
b' & c'\end{array}\right|\ ,\ \left|\begin{array}{cc}
c & a\\\
c' & a'\end{array}\right|\ ,\ \left|\begin{array}{cc}
a & b\\\
a' & b'\end{array}\right|\right)$ .


$\blacktriangleright$ PP1. Find $x\in\mathbb R$ that satisfy the equation $(x+1)(x^{2}+1)(x^{3}+1)=30x^{3}$ .

Proof. Denote $f(x)=(x+1)(x^{2}+1)(x^{3}+1)-30x^{3}$ , where $x\in\mathbb R$ . Observe that $f\left(\frac 1x\right)=f(x)$ . This means that our equation $f(x)=0$ is reciprocally (even grade). Hence I"ll use the substitution $\boxed{t=x+\frac 1x}\ :$ $\left(x^2+1\right)\cdot\left[\left(x^4+1\right)+x\left(x^2+1\right)\right]-30x^3=0$ $\iff$ $\left(x+\frac 1x\right)\cdot\left[\left(x^2+\frac {1}{x^2}\right)+\left(x+\frac 1x\right)\right]-30=0$ $\iff$ $t\left(t^2+t-2\right)-30=0$ $\iff$ $t^3+t^2-2t-30=0\iff$ $(t-3)\left(t^2+4t+10\right)=0$ . Prove easily that $x\in\mathbb R\iff t\in\mathbb R$ and $|t|\ge 2$ . In conclusion, $t=3$ and $x+\frac 1x=3$ , i.e. $x\in\left\{\frac {3\pm \sqrt 5}{2}\right\}$ .


PP2. Solve the following inequality in real numbers $x+\frac{x}{\sqrt{x^2-1}} > \frac{35}{12}$ .

Proof. Observe that $x<-1\implies x\in\emptyset$ . Therefore, $x>1$ and $(\forall )\ x>1$ there is uniquely $\phi\in \left(0,\frac{\pi}{2}\right)$ so that $\boxed{x=\frac {1}{\sin\phi}>1}$ . Our inequation becomes $\frac {1}{\sin\phi}+\frac {1}{\cos\phi }>\frac {35}{12}\ (*)$ . Denote $\boxed{\sin\phi +\cos \phi =t\in \left(1,\sqrt 2\right]}$ . The equation $(*)$ becomes $\frac {2t}{t^2-1}>\frac {35}{12}$ , i.e. $t\in \left(-\frac 57,\frac 75\right)\cap\left(1,\sqrt 2\right]\implies$ $t\in \left(1,\frac 75\right)$ . Now you can return easily to the initial variable $x$ , i.e. exists $\theta \in\left(0,\frac {\pi}{4}\right)$ , where $\sin \theta +\cos\theta =\frac 75$ and $\phi\in\left(0,\theta\right)\cup\left(\frac {\pi}{2}-\theta ,\frac {\pi}{2}\right)$ . In conclusion, $\sin \theta \in\left\{\frac 35,\frac 45\right\}$ and $\sin\phi\in \left(0,\frac 35\right)\cup\left(\frac 45,1\right)$ $\implies$ $\boxed{x\in\left(1,\frac 54\right)\cup\left(\frac 53,\infty\right)}$ .

Remark. Prove analogously that $(\forall )\ x>1\ ,\ x+\frac {x}{\sqrt{x^2-1}}\ge 2\sqrt 2$ $\iff$ $(\forall )\ \phi\in\left(0,\frac {\pi}{2}\right)\ ,\ \frac {1}{\sin\phi}+\frac {1}{\cos\phi }\ge 2\sqrt 2\iff$ $(\forall )\ t\in \left(1,\sqrt 2\right]\ ,\ \frac {t}{t^2-1}\ge \sqrt 2$ .



PP3. Solve equation $\lfloor x^2+1\rfloor =\lfloor 2x\rfloor$ .

Proof. $\lfloor x^2+1\rfloor =\lfloor 2x\rfloor =z\in\mathbb Z\iff$ $0\le z\le 2x \le x^2+1 < z+1$ and $\left(x^2+1\right)-2x\le 1$ , i.e. $x\in [0,2]$ .

Thus, $\max\left\{\frac {(z-1)+1}{2},\sqrt {z-1}\right\}=\boxed{\frac z2\le x<\sqrt z}=\min\left\{\frac {z+1}{2},\sqrt z\right\}$ , where $\frac  z2<\sqrt z\iff z\in\overline{1,3}$ .

In conclusion, $x\in\bigcup_{z\in\overline {1,3}}\left[\frac z2,\sqrt z\right)=\left[\frac 12,1\right)\cup\left[1,\sqrt 2\right)\cup\left[\frac 32,\sqrt 3\right)=\left[\frac 12,\sqrt 2\right)\cup\left[\frac 32,\sqrt 3\right)$ .


PP4. Prove that $\boxed{\left(\sqrt{a^2+1}+a+1\right)\left(\sqrt{b^2+1}+b+1\right)=2\implies ab=1}\ .$

Proof. $\left\|\begin{array}{c}
\left(a+1+\sqrt{a^2+1}\right)\left(b+1+\sqrt{b^2+1}\right)=2\\\\
\left(a+1-\sqrt{a^2+1}\right)\left(b+1-\sqrt{b^2+1}\right)=2ab\end{array}\right\|\ \bigoplus\implies$ $(a+1)(b+1)+$ $\sqrt {\left(a^2+1\right)\left(b^2+1\right)}=ab+1\implies$

$\sqrt {\left(a^2+1\right)\left(b^2+1\right)}=-(a+b)\implies$ $a+b<0\ \wedge\ a^2b^2-2ab+1=0\implies$ $\boxed{\ ab=1\ \ \wedge\ \ a<0\ \ \wedge\ \ b<0\ }$ .


PP5. Prove that $\left(\sqrt{a^2-2a+2}+a-1\right)\left(\sqrt{b^2-2b+2}+b-1\right)=1\implies a+b=2\ .$

Proof. I"ll use the substitution $\left\{\begin{array}{c}
x=a-1\\\
y=b-1\end{array}\right\|$ . Our implication becomes $\boxed{\left(\sqrt {x^2+1}+x\right)\left(\sqrt {y^2+1}+y\right)=1\implies x+y=0}$ . Therefore,

$\left\{\begin{array}{c}
\left(\sqrt {x^2+1}+x\right)\left(\sqrt {y^2+1}+y\right)=1\\\\
\left(\sqrt {x^2+1}-x\right)\left(\sqrt {y^2+1}-y\right)=1\end{array}\right\|\ \bigoplus\ \implies$ $xy+\sqrt {\left(x^2+1\right)\left(y^2+1\right)}=1\implies$ $xy<1\ \wedge\ x^2+y^2+2xy=0\implies \boxed{\ x+y=0\ }$ .



PP6. Prove that the inequality $\sqrt {n^2+1}<n+\frac 1{10}$ , where $n\ge 5$ and $n\in\mathbb N$ .

Proof 1 (middle school). $n\ge 5\iff$ $\frac n5\ge 1>\frac {99}{100}\iff$ $\frac n5+\frac 1{100}>1\iff$ $n^2+\frac n5+\frac 1{100}>n^2+1\iff$ $\left(n+\frac 1{10}\right)^2>n^2+1\iff$ $n+\frac 1{10}>\sqrt {n^2+1}$ .

Proof 2 (high school). Can use the Bernoulli's inequality $\sqrt[p]{x+1}< 1+\frac xp$ , where $p\ge 2\ ,\ p\in\mathbb N$ and $x>0$ . In the particular case $p:=2$ and $x:=\frac 1{n^2}$ obtain our inequality.

Indeed, $\sqrt{1+\frac 1{n^2}}< 1+\frac 1{2n^2}\le 1+\frac 1{10n}$ because $n\ge 5$ . Hence $\sqrt{1+\frac 1{n^2}}<1+\frac 1{10n}\iff$ $\frac {\sqrt{n^2+1}}n<1+\frac 1{10n}\iff$ $\sqrt {n^2+1}<n+\frac 1{10}$ .
This post has been edited 66 times. Last edited by Virgil Nicula, Nov 22, 2015, 1:48 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a