335. Some difficult geometric/trigonometric inequalities.

by Virgil Nicula, Jan 29, 2012, 3:43 PM

PP1 (USAMO - 2007). Let an acute $\triangle  ABC$ with incircle $ \omega = C(I,r)$ and circumcircle $\rho = C(O,R)$ . The circles $ C_{1}= C(P,r_{1})$ and $ C_{2}= (Q,r_{2})$ are tangent internally

to $ \rho$ in the same $A$ . $ w$ is tangent externally to $ C_{1}$ and is tangent internally to $ C_{2}$ . Prove that $ \boxed{PQ =\frac{a^{2}(p-a)}{4S}}$ , where $ 2p = a+b+c$ and $ S\equiv [ABC]$- the area of $ \triangle ABC$ .


Proof 1. Prove easily that $ \left\{\begin{array}{cc}
IP = r+r_{1} & IQ = r_{2}-r\\\\
PO = R-r_{1}& PA = r_{1}\\\\
QO = R-r_{2} & QA = r_{2}\\\\
OA = R  & \boxed{PQ = r_{2}-r_{1}}\end{array}\right|$ ; $ \left\{\begin{array}{cc}
IO^{2}= R(R-2r) & IA^{2}=\frac{bc(p-a)}{p}=\frac{4Rr(p-a)}{a}\\\\
p(p-a)-(p-b)(p-c)=bc\cdot\cos A  & IA^{2}+4Rr = bc\\\\
p(p-a)+(p-b)(p-c) = bc & IA^{2}-r^{2}= (p-a)^{2}\end{array}\right|$ . Let $ IO = m$, $ IA = n$.

Apply Stewart's theorem in $ \triangle OIA$ for $ [IP$ and $ [IQ\ :\ \left\{\begin{array}{c}m^{2}r_{1}^{2}+n^{2}(R-r_{1}) = R(r+r_{1})^{2}+Rr_{1}(R-r_{1})\\ \\ m^{2}r_{2}+n^{2}(R-r_{2}) = R(r_{2}-r)^{2}+Rr_{2}(R-r_{2})\end{array}\right\|$ $ \implies$ $ r_{1}(R^{2}+2Rr+n^{2}-m^{2}) =$ $ R(n^{2}-r^{2}) =$

$ r_{2}(R^{2}-2Rr+n^{2}-m^{2})$ $ \implies$ $ r_{1}(R^{2}+2Rr+bc-4Rr-R^{2}+2Rr) =$ $ R(p-a)^{2}=$ $ r_{2}(R^{2}-2Rr+bc-4Rr-R^{2}+2Rr)$ $ \implies$ $ r_{1}bc = R(p-a)^{2}= r_{2}(bc-4Rr)$

$ \implies$ $4(t+a)(t+b)\le 4\left(t^2+1\right)+(a+b)^2\left(t^2+1\right)\iff$ $ PQ = r_{2}-r_{1}=$ $ \frac{4R^{2}r(p-a)^{2}}{bc(bc-4Rr)}=$ $ \frac{4R^{2}pr(p-a)^{2}}{b^{2}c^{2}(p-a)}=$ $ \frac{4R^{2}pra^{2}(p-a)^{2}}{16R^{2}p^{2}r^{2}(p-a)}$ $ \implies$ $ \boxed{\ PQ =\frac{a^{2}(p-a)}{4S}\ }$.

Proof 2. Apply the Pythagoras' theorem in the triangles :

$ \triangle\ IOP\blacktriangleright$ $ (r+r_{1})^{2}= (R-r_{1})^{2}+(R^{2}-2Rr)-2(R-r_{1})\cdot$ $ OI\cdot\frac{(R^{2}-2Rr)+R^{2}-\frac{4Rr(p-a)}{a}}{2R\cdot IO}\implies$ $ \boxed{r_{1}=\frac{R(p-a)^{2}}{bc}}\ .$

$ \triangle\ IOQ\blacktriangleright$ $ (r_{2}-r)^{2}= (R-r_{2})^{2}+(R^{2}-2Rr)-2(R-r_{2})\cdot$ $ IO\cdot\frac{(R^{2}-2Rr)+R^{2}-\frac{4Rr(p-a)}{a}}{2R\cdot IO}\implies$ $ \boxed{r_{2}=\frac{Rp(p-a)}{bc}}\ .$

Therefore, $ \frac{r_{1}}{p-a}=\frac{r_{2}}{p}=\frac{R(p-a)}{bc}=\frac{PQ}{a}$, i.e. $ \boxed{PQ =\frac{aR(p-a)}{bc}}=\frac{a^{2}(p-a)}{4S}$. Observe that $ \frac{r_{1}}{r}=\frac{r_{2}}{r_{a}}$, where $ r_{a}$ is the $ A$- exinradius of $ \triangle ABC$.

Remark. Prove easily that two more interesting relations : $ \boxed{\sum PQ = R+r\ }$ and $ r_{1}= R-\frac{a(4R+r)}{4p}$ , $ \boxed{r_{2}=\frac{ r_{b}+r_{c}}{4}}$ .

Remark. $8\cdot \prod PQ=\frac{8(abc)^{2}(p-a)(p-b)(p-c)}{(4S)^{3}}=\frac{8(4RS)^{2}Sr}{(4S)^{3}}=$ $R^{2}\cdot 2r$ $\implies$ $\left\{\begin{array}{c}\boxed{\ r\le \sqrt [3]{\prod PQ}\le \frac{R}{2}\ }\\\\ \boxed{\ r\le\frac{1}{3}\cdot \sum PQ\le \frac{R^{2}}{4r}\ }\end{array}\right\|$ .



PP2. Let $\triangle ABC$ so that $b\ge c$ . Prove that $\frac ba+\frac {a}{b+c}\ge\sqrt {2+\frac {b^2-c^2}{a^2}}\ (*)$ with equality iff $A=2C$ .

Remark. If $B=90^{\circ}$ , then our inequality becomes $\frac ba+\frac {a}{b+c}\ge\sqrt 3$ with equality iff $A=60^{\circ}$ .


Proof. If $b=c$ , then the inequality $(*)$ becomes $\frac ba+\frac {a}{2b}\ge \sqrt 2\iff$ $(a-b\sqrt 2)^2\ge 0$ , what is true. We have equality iff $a=b\sqrt 2$ , i.e. $\sin \frac A2=\frac {\sqrt 2}{2}\iff$ $A=2C$ . Suppose $b>c$

and denote $b^2-c^2=\lambda a^2$ , i.e. $b^2=c^2+\lambda a^2$ , where $\lambda >0$ . Inequality $(*)$ becomes $\frac ba+\frac {b-c}{\lambda a}\ge \sqrt {2+\lambda}\iff$ $(1+\lambda )b\ge c+\lambda a\cdot\sqrt {2+\lambda }\iff$ $(\lambda +1)^2\left(\lambda a^2+c^2\right)\ge$

$c^2+2ac\lambda \sqrt {2+\lambda}+\lambda^2a^2(2+\lambda )$ $\iff$ $a^2-2ac\sqrt{2+\lambda }+(2+\lambda )c^2\ge 0\iff$ $\left(a-c\sqrt {2+\lambda }\right)^2\ge 0$ , what is true.

We have equality iff $a=c\cdot\sqrt {2+\lambda}$ , i.e. $\left|a^2-c^2\right|=bc\iff$ $|A-B|=C\iff A=2B$ .

Remark. If $\lambda =1$ , i.e. $b^2=a^2+c^2 \iff$ $B=90^{\circ}$ , then $(*)$ becomes $\frac ba+\frac {a}{b+c}\ge \sqrt 3$ , with equality iff $A=60^{\circ}$ .



PP3 (Mateescu Constantin). Prove that $(\forall ) \triangle ABC$ with semiperimeter $s$ there is relation $\boxed{\, s\sqrt 3\le n_a+n_b+n_c\le 7R-5r \, }$ ,

where $n_a$ , $n_b$ and $n_c$ denote the lengths of the Nagel cevians corresponding to the vertices $A$ , $B$ and $C$ respectively.


Proof 1. $\left\{\begin{array}{c}
AI_a \le n_a +r_a \\\
BI_b\le n_b+r_b\\\
CI_c\le n_c+r_c\end{array}\right\|\implies$ $\sum n_a+\sum r_a\ge \sum AI_a$ . Denote $\left\{\begin{array}{c}
\tan\frac {B+C}{4}=x\\\\
\tan\frac{C+A}{4}=y\\\\\
\tan\frac {A+B}{4}=z\end{array}\right\|$ . Observe that $\sum\frac {B+C}{4}=90^{\circ}$ and $xy+yz+zx=1$ .

Thus, $(x+y+z)^2\ge 3(xy+yz+zx)=3\implies$ $x+y+z\ge \sqrt 3\implies$ $\boxed{\sum\tan\frac {B+C}{4}\ge \sqrt 3}$ . Since $\left\{\begin{array}{c}
\tan \frac A2=\frac {r_a}{s}\ \wedge\ AI_a=\frac {s}{\cos\frac A2}\\\\
\frac {1}{\cos\frac A2}=\tan\frac {B+C}{4}+\tan\frac A2\end{array}\right\|$

obtain that $\sum AI_a= s\cdot \sum\frac{1}{\cos\frac{A}{2}}=$ $s\cdot \left(\sum\tan\frac{A+B}{4}+\sum\tan\frac A2\right)=$ $s\cdot\sum\tan\frac{A+B}{4}+\sum r_a\ge s\sqrt 3+\sum r_a$ .

In conclusion, $n_a+n_b+n_c+(r_a+r_b+r_c)\ge AI_a+BI_b+CI_c\ge $ $s\sqrt  3+(r_a+r_b+r_c)\implies$ $n_a+n_b+n_c\ge s\sqrt{3}$ .

Proof 2. I will use the following well known results: $\left\{\begin{array}{lll}
1\blacktriangleright & n_a^2=s^2-\frac {4s(s-b)(s-c)}a \\ \\ 
2\blacktriangleright & a^2\ge 4(s-b)(s-c) \\ \\ 
3\blacktriangleright & \sqrt {xy}\ge\frac {2xy}{x+y}\ ,\ x,y>0 
\end{array}\right\|$ . Consequently: $\left(\sum\, n_a\right)^2=$ $\sum\, n_a^2+2\sum\, n_bn_c \stackrel{(1)}{=}$

$ \sum\, \left[s^2-\frac {4s(s-b)(s-c)}a\right]+$ $2\sum\, \sqrt{\left[s^2-\frac {4s(s-c)(s-a)}b\right]\cdot \left[s^2-\frac {4s(s-a)(s-b)}c\right]}=$

$3s^2-\sum\, \frac {4s(s-b)(s-c)}a+2s\sum\, \sqrt{\frac {\left[sb-4(s-c)(s-a)\right]\cdot\left[sc-4(s-a)(s-b)\right]}{bc}}\stackrel{(2)}{\ge}$

$ 3s^2-\sum\, \frac {4s(s-b)(s-c)}a+2s\sum\, \sqrt {\frac {\left(sb-b^2\right)\left(sc-c^2\right)}{bc}}=$ $3s^2-\sum\, \frac {4s(s-b)(s-c)}a+$

$2s\sum\, \sqrt {(s-b)(s-c)}\stackrel{(3)}{\ge}$ $ 3s^2-\sum\, \frac {4s(s-b)(s-c)}a+2s\sum\, \frac {2(s-b)(s-c)}a= 3s^2$ .

$\mathrm{RHS}\blacktriangleright$ Firstly, we will establish the following identity: $\boxed{\, n_a^2=s^2-\tfrac {4s\left(s-b\right)\left(s-c\right)}a\, }$ . Let $E$ be the foot of the Nagel-cevian issued from vertex $A$ to the side $[BC]$.

Thus, $BE=s-c$ and by using the law of cosine in $\triangle\, ABE$ one obtains: $n_a^2=c^2+\left(s-c\right)^2-2c\left(s-c\right)\cdot\cos B$ and since $\cos B=\tfrac {c^2+a^2-b^2}{2ca}$ , the latter

equality rewrites as: $n_a^2=s^2-2sc+2c^2-2c\left(s-c\right)\cdot\tfrac {c^2+a^2-b^2}{2ca}=$ $s^2-2c\left(s-c\right)-\left(s-c\right)\cdot\tfrac {c^2+a^2-b^2}a=$ $s^2-\left(s-c\right)\left[2c+\tfrac {c^2+a^2-b^2}a\right]=$

$s^2-\left(s-c\right)\cdot\tfrac {\left(c+a\right)^2-b^2}a=$ $s^2-\tfrac {4s\left(s-b\right)\left(s-c\right)}a$ , as desired. Of course, the cyclic versions hold as well, so by summing them up we get:

$\begin{array}{cc}\sum\, n_a^2=3s^2-4s\cdot\sum\, \frac {\left(s-b\right)\left(s-c\right)}a\end{array}$ . On the other hand, note that $\sum\, bc\left(s-b\right)\left(s-c\right)=$ $\sum\, bc\cdot\left[s^2-s\left(b+c\right)+bc\right]=$

$s^2\cdot\sum\, bc-s\cdot\sum\, bc\cdot\left(2s-a\right)+\sum\, b^2c^2=$ $-s^2\cdot\sum\, bc+3s\cdot abc+\left(\sum\, bc\right)^2-2abc\cdot\left(a+b+c\right)=$

$\left(ab+bc+ca\right)\left(ab+bc+ca-s^2\right)-s\cdot abc=$ $\left(s^2+r^2+4Rr\right)\left(r^2+4Rr\right)-4Rrs^2=$ $s^2r^2+r^2\cdot (4R+r)^2$ and therefore our above summation is

finally equal to: $\boxed{\begin{array}{cc}\, \sum\, n_a^2=\frac{s^2\left(3R-r\right)-r\left(4R+r\right)^2}R\end{array}}$ . By the well-known inequality $\left(x+y+z\right)^2\, \le\, 3\left(x^2+y^2+z^2\right)$ , which holds for $x,y,z\in\mathbb{R}$, we now deduce

that: $\boxed{\, n_a+n_b+n_c\, \le\, \sqrt{\tfrac{s^2\left(9R-3r\right)-3r\left(4R+r\right)^2}R}\, }$ , so it suffices to show that: $\tfrac {s^2\left(9R-3r\right)-3r\left(4R+r\right)^2}R\, \le\, \left(7R-5r\right)^2$ or $\boxed{\, s^2\, \le\, \tfrac {R\left(7R-5r\right)^2+3r\left(4R+r\right)^2}{9R-3r}\, }$ .

But the latter inequality is weaker than Gerretsen's one i.e. $\boxed{\, s^2\, \le\, 4R^2+4Rr+3r^2\, }$ as can be seen from the fact that the inequality

$\left(9R-3r\right)\left(4R^2+4Rr+3r^2\right)\, \le\, R\left(7R-5r\right)^2+3r\left(4R+r\right)^2$ reduces to the obvious $\left(R-2r\right)\left(13R^2-20Rr-6r^2\right)\, \ge\, 0$ .



PP4. Prove that $\boxed{\ \triangle\, ABC\ \implies\ \frac {\cos^2A}{1+\cos A}+\frac {\cos^2B}{1+\cos B}+\frac {\cos^2C}{1+\cos C}\, \ge\, \frac 12\ }$ .

Proof 1 (M.C.). The L.H.S. of the inequality can be written as $\sum\, \frac {\cos^2A}{1+\cos A}=\sum\, -\left[\frac {1-\cos^2A-1}{1+\cos A}\right]=$ $-\sum\, \left(1-\cos A\right)+\sum\, \frac 1{1+\cos A}=$

$\sum\cos A+\frac {\sum\, \left(1+\cos B\right)\left(1+\cos C\right)}{\prod\, \left(1+\cos A\right)}-3$ . Making use of the following set of identities $\left\{\begin{array}{cccc} 
\sum\, \cos A=1+\frac rR \\ \\ 
\sum\, \cos B\cos C=\frac {s^2+r^2-4R^2}{4R^2} \\ \\ 
\prod\, \cos A=\frac {s^2-\left(2R+r\right)^2}{4R^2}\end{array}\right\|$ one obtains (after some computations) that

$\boxed{\ \sum\, \frac {\cos^2A}{1+\cos A}=\frac {R\left(4R+r\right)^2-\left(3R-2r\right)s^2}{2Rs^2}\ }$ . Therefore, it remains to prove the inequality $\frac {R\left(4R+r\right)^2-\left(3R-2r\right)s^2}{2Rs^2}\, \ge\, \frac 12\iff\boxed{\ s^2\, \le\, \frac {R\left(4R+r\right)^2}{2\left(2R-r\right)}\ }$ , which

is true since it follows from the remarkable distance $\boxed{\ H\Gamma^2=4R^2\left[1-\frac{2s^2\left(2R-r\right)}{R\left(4R+r\right)^2}\right]\ }$ , where $H$ and $\Gamma$ represent the orthocenter and Gergonne's point respectively of $\triangle\, ABC$ .

Proof 2. Observe that $\sum \frac {\cos^2A}{1+\cos A}=$ $\sum\frac {\left(b^2+c^2-a^2\right)^2}{4b^2c^2\cdot 2\cos^2\frac A2}=$ $\sum\frac {\left(b^2+c^2-a^2\right)^2}{8bc\cdot s(s-a)}$ . Thus, $\sum \frac {\cos^2A}{1+\cos A}\ge \frac 12\iff$ $\sum\frac {\left(b^2+c^2-a^2\right)^2}{bc(b+c-a)}\ge a+b+c\ (*)$ .

$\sum\frac {\left(b^2+c^2-a^2\right)^2}{bc(b+c-a)}\stackrel{(C.B.S.)}{\ge} \frac {\left[\sum\left(b^2+c^2-a^2\right)\right]^2}{\sum bc(b+c-a)}=\frac {\left(a^2+b^2+c^2\right)^2}{\sum bc(b+c-a)}$ . It remains to prove the inequality $\frac {\left(a^2+b^2+c^2\right)^2}{\sum bc(b+c-a)}\ge a+b+c$ . Indeed, this relation is equivalently with

$\left(a^2+b^2+c^2\right)^2\ge (a+b+c)\cdot \sum bc(b+c-a)\iff$ $\sum a^4+2\sum b^2c^2\ge \sum bc\left[(b+c)^2-a^2\right]\iff$ $\sum a^4+2\sum b^2c^2\ge $ $\sum bc\left(b^2+c^2\right)+$

$2\sum b^2c^2-abc(a+b+c)\iff$ $\sum a^4+abc(a+b+c)\ge \sum a^3(b+c)\iff$ $a^2(a-b)(a-c)+b^2(b-a)(b-c)+c^2(c-a)(c-b)\ge 0$ (Schur's inequality).

Proof 3 (own).

Remarks. Here are some equivalent forms of the Schur's inequalities for $p=1$ and $p=2$ , where $\{a,b,c\}\subset \mathbb R^*_+\ :$

$sum a(a-b)(a-c)\ge 0\iff \sum a^3+3abc\ge \sum bc(b+c)\iff$ $(a+b+c)^3+9abc\ge 4(a+b+c)(ab+bc+ca)\iff$ $s_1^3+9s_3\ge 4s_1s_2$ .

$\sum a^2(a-b)(a-c)\ge 0\iff$ $a^4+b^4+c^4+abc(a+b+c)\ge a^3(b+c)+b^3(c+a)+c^3(a+b)\iff$ $s_1^4+6s_1s_3+4s_2^2\ge 5s_1^2s_2$ , where $\boxed{\begin{array}{c}
a+b+c=s_1\\\
ab+bc+ca=s_2\\\
abc=s_3\end{array}}$ .

$\sum\frac {\cos^2A}{1+\cos A}\ge\frac 12\iff$ $\sum\left(\frac {1}{1+\cos A}+\cos A-1\right)\ge \frac 12\iff$ $\sum\frac {1}{1+\cos A}+\left(1+\frac rR\right)-3\ge \frac 12\iff$ $\boxed{\sum\frac {1}{1+\cos A}\ge \frac 52-\frac rR}$ . I used $\sum\cos A=1+\frac rR$ .

Example. Prove that $\{a,b,c\}\subset \mathbb R^*_+\ \implies\ 6\ \le\ \boxed{\frac {b+c}{a}+\frac {c+a}{b}+\frac {a+b}{c}\le\  3+\frac {\left(a^2+b^2+c^2\right)^2}{abc(a+b+c)}}$ ==>
http://www.artofproblemsolving.com/blog/65909


PP5. Let $a,b,c$ be the lengths of the sides for $\triangle ABC$ and $2p=a+b+c$ its semiperimeter. Show that

$a\sqrt{\frac{(p-b)(p-c)}{bc}}+b \sqrt{\frac{(p-c)(p-a)}{ac}}+c\sqrt{\frac{(p-a)(p-b)}{ab}}\geq p$ , i.e. $\sum a\cdot\sin\frac A2\ge p$ .


Proof 1 (own). Let $C(I,r)$ be the incircle for the triangle $ABC$. Denote the second intersections $A',B',C'$ of the lines $IA,IB,IC$ respectively with circumcircle $C(O,R)$

of the triangle $ABC$. We remark the following three properties $:\ \boxed {A'B=A'C=A'I}\ (1)\ ;\ [AC'BA'CB']=\sum [OBA'C]=$ $\sum \frac{Ra}{2}=pR$ $\Longrightarrow$

$ \boxed {\ [AC'BA'CB']=pR\ }\ (2)\ ;\ [IBA'C]=\frac 12\cdot a\cdot IA'\cdot \sin \left(B+\frac A2\right)\le $ $\frac 12\cdot a\cdot IA'$ $\Longrightarrow $ $\boxed {\ a\cdot IA'\ge 2\cdot [IBA'C]\ }\ (3)$ . In conclusion,

$\sum a\cdot \sin \frac A2 =$ $\sum a\cdot \frac{IA'}{2R}=$ $\frac{1}{2R}\cdot \sum a\cdot IA'\ge\frac{1}{2R}\cdot \sum 2\cdot [IBA'C]=$ $\frac 1R\cdot \sum [IBA'C]=\frac 1R\cdot [AC'BA'CB']=p\Longrightarrow\boxed {\ \sum a\cdot \sin \frac A2\ge p\ }\ .$

Proof 2. I"ll use a simple inequality $a\ge (b+c)\cdot \sin\frac{A}{2}$ and two identities $\left\{\begin{array}{c}
\sum \sin^{2}\frac{A}{2}=1-\frac{r}{2R}\\\\
\sum a\cos A=\frac{2S}{R}\end{array}\right\|$ . Indeed, $\sum a\cdot \sin\frac{A}{2}\ge $ $\sum (b+c)\cdot \sin^{2}\frac{A}{2}=$

$\sum [(a+b+c)-a]\cdot \sin^{2}\frac{A}{2}=$ $2p\cdot \sum\sin^{2}\frac{A}{2}-\frac 12\cdot \sum a\cdot (1-\cos A)=$ $2p\cdot\left(1-\frac {r}{2R}\right)-p+\frac {S}{R}=$ $p\left(2-\frac rR-1+\frac rR\right)=p$ .



PP6. Let the point $P$ in the interior of $\triangle ABC$ . $(AP, (BP, (CP$ intersect the circumcircle of $\triangle ABC$ at $A_{1}, B_{1}, C_{1}$ respectively.

Prove that $[A_{1}BC]\ +\ [B_{1}AC]\ +\ [C_{1}AB]\ \le\ p(R-r)$ , where $p$ , $r$ , $R$ are the usual notations for $\triangle ABC$ .


Proof. I"ll use the well-known relations $:\ \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}=2R\ ;\ S=pr=2R^2\sin A\sin B\sin C\ ;\ \sin 2A+$ $\sin 2B+\sin 2C=$ $4\sin A\sin B\sin C=\frac{2pr}{R^2}\ .$ Let

the middlepoints $M,N,P$ of the sides $[BC]$, $[CA]$, $[AB]$ and the middlepoints $A'$ , $B'$, $C'$ of the arcs $BA_1C$ , $CB_1A$ , $AC_1B$ respectively in the circumcircle. Then $OM=R\left|\cos A\right|\ ;$

the arrow of the arc $BA_1C$ has the length $MA'=R(1-\cos A)$ a.s.o. ; $[BA_1C]\le [BA'C]=$ $\frac 12 aR(1-\cos A)$ a.s.o. Thus, $\sum [BA_1C]\le \frac 12 R\sum a(1-\cos A)=$

$pR-\frac 12 R\sum a\cos A=$ $pR-\frac 12\cdot R^2\sum \sin 2A=$ $p(R-r)\ . $ Therefore, $\boxed {\ \sum [BA_1C]\le p(R-r)\ }\Longleftrightarrow [AC_1BA_1CB_1]\le pR\ \ (1)\ .$

Remark. Define : $m(\widehat {BAA_1})=x_1$, $m(\widehat {CAA_1})=x_2$; $m(\widehat {CBB_1})=y_1$ , $m(\widehat {ABB_1})=y_2$ ; $m(\widehat {ACC_1})=z_1$ , $m(\widehat {BCC_1})=z_2$ . We observe that $x_1+x_2=A$ , $y_1+y_2=B$ ,

$z_1+z_2=C$ and $\sin x_1\sin y_1\sin z_1=\sin x_2\sin y_2\sin z_2$ (the trigonometrical form of the Ceva's theorem). Then the inequality $(1)$ , i.e. $[AC_1BA_1CB_1]\le pR$ $\Longleftrightarrow$

$\frac 12R^2\sum (\sin 2x_1+\sin 2x_2)\le pR$ $\Longleftrightarrow$ $R\sum \sin A\cos (x_1-x_2)\le p$ $\Longleftrightarrow$ $\sum a\cos (x_1-x_2)\le a+b+c$ , what is truly. Thus, we obtain an another proof of the proposed

problem.
We have the equality in the inequality $(1)$ if and only if $x_1=x_2$ $\wedge$ $y_1=y_2$ $\wedge$ $z_1=z_2$, i.e. the point $P$ is the incentre of the triangle $ABC\ .$



PP7. Prove that $(\forall )\ x\in\mathbb R\ ,\ (\sin x+a\cos x)(\sin x+b\cos x)\le1+\left(\frac{ a+b}{2}\right)^2$ .

Proof 1. Denote $E=(\sin x+a\cdot\cos x)(\sin x+b\cdot\cos x)=$ $\sin^2x+(a+b)\sin x\cos x+ab\cos^2x$ , where $x\in\mathbb R$ . Thus, $2E=(1-\cos 2x)+(a+b)\cdot \sin 2x+ab\cdot (1+\cos 2x)=$ $(1+ab)+(a+b)\cdot\sin 2x+(ab-1)\cdot\cos 2x\le$ $(1+ab)+\sqrt {(a+b)^2+(ab-1)^2}=$ $(1+ab)+\sqrt {\left(1+a^2\right)\cdot\left(1+b^2\right)}\le $ $(1+ab)+\frac {\left(1+a^2\right)+\left(1+b^2\right)}{2}=$ $\frac 12\cdot\left(4+2ab+a^2+b^2\right)=$ $2+\frac {(a+b)^2}{2}$. In conclusion, $E\le 1+\left(\frac{ a+b}{2}\right)^2$ , what is truly. We have the equality iff $a^2=b^2$ and $\tan 2x=\frac {a+b}{ab-1}$ .

Proof 2. Denote $\tan x=t$ . Therefore, $(\sin x+a\cos x)(\sin x+b\cos x)\le1+\left(\frac{ a+b}{2}\right)^2\iff$ $\frac {(t+a)(t+b)}{t^2+1}\le 1+\left(\frac {a+b}{2}\right)^2\iff$

$4(t+a)(t+b)\le 4\left(t^2+1\right)+(a+b)^2\left(t^2+1\right)\iff$ $4t^2+4(a+b)t+4ab\le 4\left(t^2+1\right)+(a+b)^2t^2+(a+b)^2\iff$

$0\le (a+b)^2t^2-4(a+b)t+4+(a-b)^2\iff$ $0\le (a-b)^2+\left[(a+b)t-2\right]^2$ , what is truly. We have the equality iff $a=b$ and $t=\frac {2}{a+b}$ .


An easy extension. Prove that $(\forall )\ x\in\mathbb R\ ,\ (m\sin x+a\cos x)(n\sin x+b\cos x)\le \left(\frac {m+n}{2}\right)^2+\left(\frac{ a+b}{2}\right)^2$ .


PP8. Let $ABC$ be a triangle. Denote the inradius of $\triangle I_aI_bI_c$ . Prove that $\left\{\begin{array}{c}
6r\le IA+IB+IC \le 2(R+r)\ ;\ R\ge r_0\ge 2r\\\\
\sum\sin\frac{B}{2}\sin\frac{C}{2}\leq\frac{1}{2}+\frac{r}{2R}\end{array}\right\|$ .

Proof. Show easily that $AI=\frac{bc}s\cdot\cos\frac A2=\frac 1s\cdot\sqrt{bc }\cdot\sqrt {s(s-a)}$ a.s.o. Thus, we have $\left(\sum AI\right)^2=$ $\frac{1}{s^2}\cdot\left(\sum\sqrt {bc}\cdot\sqrt{s(s-a)}\right)^2\ \stackrel{C.B.S.}{\le}$

$\frac 1{s^2}\cdot (ab+bc+ca)\cdot\sum s(s-a)=$ $ab+bc+ca\ \stackrel{\mathrm{(Gerretsen)}}{\le}\ 4(R+r)^2\implies$ $\boxed{\ AI+BI+CI\ \le\ 2(R+r)\ }$ . The circumradius of $\triangle I_aI_bI_c$ has the length $2R$ .

I"ll use same well-known identity in both triangles $\left\{\begin{array}{ccc}
\triangle ABC\ : & \prod\sin \frac A2=\frac {r}{4R}\\\\
\triangle I_aI_bI_c\ : & \prod\sin\frac {B+C}{4}=\frac {r_0}{8R}\end{array}\right\|\ (*)$ . Observe that $\boxed{\sin^2\frac {B+C}{4}\ge\sin\frac B2\sin\frac C2}\iff$ $1-\cos\frac {B+C}{2}\ge $

$\cos\frac {B-C}{2}-\cos\frac {B+C}{2}\iff$ $1\ge\cos\frac {B-C}{2}$ , what is truly. In conclusion, $\prod\sin\frac {B+C}{4}\ge$ $\prod\sin\frac A2\stackrel{(*)}{\implies}$ $\frac {r_0}{8R}\ge \frac {r}{4R}\implies$ $\boxed{r_0\ge 2r}$ . The Euler's inequality

in $\triangle I_aI_bI_c\implies$ $2R\ge 2r_0\implies \boxed{R\ge r_0}$ . I"ll use the identities $\left\{\begin{array}{cc}
\sin\frac A2=\sqrt{\frac {(s-b)(s-c)}{bc}} & (1)\\\\
(s-a)(s-b)(s-c)=sr^2 & (2)\end{array}\right\|$ . Therefore, $\sum\sin\frac{B}{2}\sin\frac{C}{2}=$ $\frac {r}{4R}\cdot\sum\frac {1}{\sin\frac A2}\stackrel{(1)}{=}$

$\frac {r}{4R}\cdot \sum\sqrt{\frac {bc}{(s-b)(s-c)}}\stackrel{(2)}{=}\frac {1}{4R\sqrt s}\cdot\sum\sqrt{bc}\cdot\sqrt {s-a}$ . Since $\sum\sqrt{bc}\cdot\sqrt {s-a}\stackrel{\mathrm{(C.B.S.)}}{\le}$ $\sqrt{\sum bc\cdot \sum (s-a)}=$ $\sqrt{s(ab+bc+ca)}\stackrel{\mathrm{(Gerretsen)}}{\le}2(R+r)\sqrt s$ obtain

that $\sum\sin\frac{B}{2}\sin\frac{C}{2}\le \frac {1}{4R\sqrt s}\cdot 2(R+r)\sqrt s=\frac 12\left(1+\frac rR\right)$ . Obtain equivalently that $\boxed{\sum\frac {1}{\sin\frac A2}\le 2\left(\frac Rr+1\right)}$ . Apply to the orthic triangle of an acute triangle $:$

$\boxed{2\cdot\sum\cos B\cos C\le 1+4\cdot\prod\cos A}$ and $3r'\sqrt 3\le s'\implies \boxed{\prod\cos A\le \frac {S\sqrt 3}{18R^2}}\le \frac 18$ because $s'=\frac SR$ and $\frac {S'}{S}=\frac {r'}{R}=2\cdot\prod\cos A$ . Remark. Gerretsen's

inequality
$\boxed{s^2\le 4R^2+4Rr+3r^2}\ (*)\ \implies\ ab+$ $bc+ca=s^2+r^2+4Rr\stackrel{(*)}{\le}$ $\left(4R^2+4Rr+3r^2\right)+r^2+4Rr=4(R+r)^2\implies$ $\sqrt {ab+bc+ca}\le 2(R+r)$ .



PP9. $(\forall ) \triangle ABC$ we have $\boxed {\ \sin \frac A2\le \frac{a}{b+c}\ }\ \ (*)$ and prove that $\frac 12\cdot \left(\frac rR\right)^2\le\boxed{\prod \sin \frac A2\le \prod \frac{a}{b+c}}\le \frac 18$ .

Method 0. $\sin \frac A2\le \frac{a}{b+c}\iff$ $\sin \frac A2\le \frac{\sin A}{\sin B+\sin C}\iff$ $\sin B+\sin C\le 2\cos\frac A2\iff$ $2\sin\frac {B+C}{2}\cos\frac {B-C}{2}\le 2\cos\frac A2\iff$

$\cos\frac {B-C}{2}\le 1$ , what is truly. We have the equality if and only if $B=C$ , i.e. the triangle $ABC$ is $A$-isosceles.

Method 1. Let: the second intersection $A'$ between circumcircle $C(O,R)$ and bisector $[AI$ of $\widehat {BAC}$; the intersection $D\in BC\cap AI$ $(l_a=AD)$. From the relations

$l_a=\frac{2bc}{b+c}\cdot \cos \frac A2$ and $AA'\cdot AD=bc$ because $ABA'\sim ADC$ results: $AA'\le 2R$ $\Longrightarrow$ $bc\le 2Rl_a$ $\Longleftrightarrow$ $bc\le 2R\cdot \frac{2bc}{b+c}\cdot\cos\frac A2$ $\Longleftrightarrow$ $b+c\le 4R\cos \frac A2$ $\Longleftrightarrow$

$\frac{b+c}{a}\le 2\cdot \frac{\cos \frac A2 }{\sin A}$ $\Longleftrightarrow$ $\frac{b+c}{a}\le \frac{1}{\sin \frac A2}$ $\Longleftrightarrow$ $\sin \frac A2\le \frac{a}{b+c}$ . Therefore, the inequality $(*)$ is equivalently with $AA'\le 2R$ .

Method 2. Using the identity $bc=p(p-a)+(p-b)(p-c)$ results $(*)\Longleftrightarrow \sqrt{\frac{(p-b)(p-c)}{bc}}\le \frac{a}{b+c}$ $\Longleftrightarrow$ $(p-b)(p-c)(b+c)^2\le a^2bc$ $\Longleftrightarrow$

$(p-b)(p-c)(b+c)^2\le a^2 [p(p-a)+(p-b)(p-c)]$ $\Longleftrightarrow$ $(p-b)(p-c)\left[(b+c)^2-a^2\right]\le a^2p(p-a)$ $\Longleftrightarrow$

$4p(p-a)(p-b)(p-c)\le a^2p(p-a)\Longleftrightarrow 4(p-b)(p-c)\le a^2\Longleftrightarrow$ $a^2-(b-c)^2\le a^2\Longleftrightarrow (b-c)^2\ge 0$ .

Remark. Using this lemma, our inequality is a consequence. The equality holds $\iff a=b=c$ . Prove easily that $\frac 12\cdot \left(\frac rR\right)^2\le\boxed{\prod \sin \frac A2\le \prod \frac{a}{b+c}}\le \frac 18$ .



PP10. Prove that in an acute $\triangle ABC$ with the circumcircle $w=C(O,R)$ there is the inequality $b+c\ge a\cdot\cos A+2h_a\cdot\sin A$ .

Proof. Denote the circumcenter $O$ of $\triangle ABC$ and the projections $D$ , $M$ of the points $A$ , $O$ on the sideline $BC$ respectively. Prove easily that $AD\le OA+OM$ ,

i.e. $h_a\le R(1+\cos A)\ (*)$ and $a\cdot\cos A+2h_a\cdot\sin A\le \sqrt {a^2+4h_a^2}\ (1)$ . Remain to show that $\sqrt {a^2+4h_a^2}\le b+c$ . Indeed, $\sqrt {a^2+4h_a^2}\le b+c\iff$

$a^2+4h_a^2\le b^2+c^2+2bc\iff$ $4h_a^2\le 2bc(1+\cos A)\iff$ $4h_a^2\le 4Rh_a(1+\cos A)\iff$ $h_a\le R(1+\cos A)$ , i.e. the relation $(*)$ .

Remark. $(1)$ is a application of $\left|\alpha \cdot \sin x+\beta\cdot\cos x\right|\le\sqrt {\alpha^2+\beta^2}\iff$ $\left(\alpha \cdot \sin x+\beta\cdot\cos x\right)^2\le\alpha^2+\beta^2\iff$ $\alpha^2\cos^2x-2\alpha\beta\cos x\sin x+\beta^2\sin^2 x\ge 0\iff$

$\left(\alpha\cos x-\beta\sin x\right)^2\ge 0$ . Remark that $\{A,S\}=AO\cap w\implies$ $\triangle ABD\sim ASC\iff$ $\frac {AD}{AB}=\frac {AC}{AS}\iff$ $\frac {h_a}{c}=\frac {b}{2R}\iff$ $bc=2Rh_a$ .



PP11. Prove that $\sqrt 2\cdot \max\{b,c\}\le \sqrt {a^2+4Rm_a}$ .

Proof. Prove easily $\boxed{16S^2+\left(b^2-c^2\right)^2=4a^2m_a^2}$ and apply upper trigonometrical inequality $\left|\alpha \cdot \sin x+\beta\cdot\cos x\right|\le\sqrt {\alpha^2+\beta^2}$ for $x=A$ , $\alpha =\left|b^2-c^2\right|$ and $\beta  =4S\ :$

$4S\cos A+\left|b^2-c^2\right|\sin A\le 2am_a\ \stackrel{\odot\ 2R}{\implies}\ 2bc$ $\cdot\cos A+\left|b^2-c^2\right|\le 4Rm_a\iff$ $2\max\left\{b^2,c^2\right\}\le a^2+4Rm_a\iff$ $\sqrt 2\cdot \max\{b,c\}\le \sqrt {a^2+4Rm_a}$ .



PP12. Prove that in an acute-angled triangle $ABC$ there is the inequality $\sqrt{\frac{\cos A \cos B}{\cos C}}+\sqrt{\frac{\cos B \cos C}{\cos A}}+\sqrt{\frac{\cos C \cos A}{\cos B}}\ge 2$ .

Let $m=\frac{\cos B \cos C}{\cos A}$ , $n=\frac{\cos C \cos A}{\cos B}$ and $p=\frac{\cos A \cos B}{\cos C}$ . Thus $\{m,n,p\}\subset\mathbb R^*_+$ and prove easily $mn+np+pm+2mnp=1$ $\iff$ $\sum\cos^2A+2\prod\cos A=1$ , what

is truly. So $(x+y)(y+z)(z+x)=$ $xy(x+y)+yz(y+z)+$ $zx(z+x)+2xyz$ $\iff$ $\frac {x}{y+z}\cdot \frac {y}{z+x}+$ $\frac {y}{z+x}\cdot \frac {z}{x+y}+$ $\frac {z}{x+y}\cdot \frac  {x}{y+z}+$ $2\cdot\frac {x}{y+z}\cdot\frac {y}{z+x}\cdot\frac z{x+y}=1$ .

If denote $\{m,n,p\}\subset\mathbb R^*_+$ so that $m=\frac{x}{y+z}$ , $n=\frac{y}{z+x}$ and $p=\frac{z}{x+y}$ , then $mn+np+pm+2mnp=1$ . Since $\frac {2}{\sqrt m}\le \frac 1m+1\iff$ $\sqrt {m}\ge \frac {2m}{m+1}\iff$ $\sqrt {\frac {x}{y+z}}\ge$

$\frac {2x}{x+y+z}$ a.s.o. Hence $\sum\sqrt {\frac {x}{y+z}}\ge $ $\sum\frac {2x}{x+y+z}=2$ with equality iff $A=0$ , $B=\frac{\pi}{2}$ and $C=\frac{\pi}{2}$ or any cyclic permutation.



PP13. Let $\triangle ABC$ with circumcircle $w$ , its interior $P$ and $\left\{\begin{array}{c}
A_1\in BC\cap [AP\\\\
\left\{A,A_2\right\}=AP\cap w\end{array}\right\|$ . For the same way we get $B_1$ , $B_2$ , $C_1$ , $C_2$ . Prove that $\sum \frac{A_1A_2}{A_1A}\le \frac {1}{a+b+c}\cdot \sum \frac {a^2}{b+c-a}$ .

Proof. Denote $\left\{\begin{array}{ccccc}
m\left(\widehat {PAB}\right)=a_1 & ; & m\left(\widehat {PAC}\right)=a_2 & ; & a_1+a_2=A\\\\
m\left(\widehat {PBC}\right)=b_1 & ; & m\left(\widehat {PBA}\right)=b_2 & ; & b_1+b_2=B\\\\
m\left(\widehat {PCA}\right)=c_1 & ; & m\left(\widehat {PCB}\right)=c_2 & ; & c_1+c_2=C\end{array}\right|$ . Thus, $\frac{A_1A_2}{A_1A}=$ $\frac {A_2B\cdot A_2C}{AB\cdot AC}=$ $\frac {\sin a_1\sin a_2}{\sin B\sin C}=$ $\frac {2R^2\cdot 2\sin a_1\sin a_2}{bc}=$

$\frac {2R^2\left[\cos \left(a_1-a_2\right)-\cos A\right]}{bc}\le $ $\frac {2R^2(1-\cos A)}{bc}=$ $\frac {4R^2\sin ^2\frac A2}{bc}=$ $\frac {4R^2(s-b)(s-c)}{b^2c^2}\stackrel{(*)}{= }$ $\frac {a^2}{4s(s-a)}=$ $\frac {1}{a+b+c}\cdot\frac {a^2}{b+c-a}$ because $4R^2(s-b)(s-c)\cdot 4s(s-a)\stackrel{(*)}{=}$

$b^2c^2\cdot a^2\iff$ $4RS=abc$ , what is truly. In conclusion, $\sum\frac{A_1A_2}{A_1A}\le \sum\frac {a^2}{4s(s-a)}=\frac {1}{a+b+c}\cdot\sum\frac {a^2}{b+c-a}$ . We have the equality $\iff P\equiv I$ - the incenter of $\triangle ABC$ .



PP14. Prove that in an acute $\triangle ABC$ exists the inequality $\cot A+k\cot B+(k+1)\cot C \ge 2\sqrt{k}$ , where $k>0$ .

Proof. $\cot A+k\cot B+(k+1)\cot C \ge 2\sqrt{k}\iff$ $\cot A+k\cot B-(k+1)\cot (A+B)\ge 2\sqrt{k}\iff$ $\cot A+k\cot B+\frac {(k+1)(1-\cot A\cot B)}{\cot A+\cot B}\ge 2\sqrt{k}\iff$

$\cot^2A+k\cot^2B+(k+1)\ge 2\sqrt k(\cot A+\cot B)\iff$ $\left(\cot A-\sqrt k\right)^2+\left(\sqrt k\cot B-1\right)^2\ge 0$ , what is truly.



PP15. Prove that in an acute $\triangle ABC$ there is the inequality $\tan\left(A-\frac{\pi}{4}\right)+\tan\left(B-\frac{\pi}{4}\right)+\tan\left(C-\frac{\pi}{4}\right)\ge 3\left(2-\sqrt{3}\right)$ .

Proof (arqady). $\sum\tan\left(A-\frac{\pi}{4}\right)=$ $\frac{\sin\left(A+B-\frac{\pi}{2}\right)}{\cos\left(A-\frac{\pi}{4}\right)\cos\left(B-\frac{\pi}{4}\right)}+$ $\tan\left(C-\frac{\pi}{4}\right)=$ $\frac{2\cos C}{\sin C+\cos (A-B)}+$ $\tan\left(C-\frac{\pi}{4}\right)\geq$ $\frac{2\cos C}{\sin C+1}+$ $\tan\left(C-\frac{\pi}{4}\right)=$

$2\tan\left(\frac{\pi}{4}-\frac{C}{2}\right)+$ $\tan\left(C-\frac{\pi}{4}\right)\geq3(2-\sqrt3)$ , where the last inequality is equivalent to $\left(\sqrt3\tan\frac{C}{2}-1 \right)^2\left[\left(3-\sqrt3\right)\tan\frac{C}{2}+\left(3\sqrt3-5\right)\right]\ge 0$, which is obvious.

Remark. Nice proof ! This inequality is equivalent to $\frac{1}{1+\tan A}+\frac{1}{1+\tan B}+\frac{1}{1+\tan C}\le \frac{3(\sqrt{3}-1)}{2}\ .$
This post has been edited 184 times. Last edited by Virgil Nicula, Nov 19, 2015, 11:54 AM

Comment

1 Comment

The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
this page hurts my head

by TechSavvy, Nov 22, 2020, 6:55 PM

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a