330. A triangle and an its transversal through a point.

by Virgil Nicula, Nov 30, 2011, 5:44 PM

An example. For a line $p$ which passes through the centroid $G$ of $\triangle ABC$ define the intersections

$X\in BC\cap p$ , $Y\in CA\cap p$ and $Z\in AB\cap p$ . Prove that $\frac{1}{\overline {GX}}+\frac{1}{\overline {GY}}+\frac{1}{\overline{GZ}}=0$ .


Proof. Denote the midpoint $M$ of $[BC]$ and $T\in p$ so that $AT\parallel BC$ . Apply the Menelaus' theorem to the transversal $AGM$ in the mentioned triangles :

$\left\{\begin{array}{cccc}
\triangle XYC\ : & \frac {\overline{AY}}{\overline {AC}}\cdot \frac {\overline {MC}}{\overline{MX}}\cdot\frac {\overline {GX}}{\overline{GY}}=1 & \implies & \frac {\overline{GX}}{\overline{GY}}=\frac {\overline {AC}}{\overline{AY}}\cdot\frac {\overline {MX}}{\overline{MC}}\\\\
\triangle XBZ\ : & \frac {\overline{AZ}}{\overline {AB}}\cdot \frac {\overline {MB}}{\overline{MX}}\cdot\frac {\overline {GX}}{\overline{GZ}}=1 & \implies & \frac {\overline{GX}}{\overline{GZ}}=\frac {\overline {AB}}{\overline{AZ}}\cdot\frac {\overline {MX}}{\overline{MB}}\end{array}\right|$ $\bigoplus$ $\stackrel{\left(\overline{MB}+\overline {MC}=0\right)}{\implies}\ \frac {\overline{GX}}{\overline{GY}}+$ $\frac {\overline{GX}}{\overline{GZ}}=$ $2\cdot \frac {\overline{MX}}{\overline{BC}}\cdot\left(\frac {\overline {AC}}{\overline {AY}}-\frac {\overline {AB}}{\overline{AZ}}\right)=$

$2\cdot \frac {\overline{MX}}{\overline{BC}}\cdot\left(\frac {\overline {AY}+\overline{YC}}{\overline {AY}}-\frac {\overline {AZ}+\overline{ZB}}{\overline{AZ}}\right)=$ $2\cdot \frac {\overline{MX}}{\overline{BC}}\cdot\left(\frac {\overline {YC}}{\overline {AY}}-\frac {\overline {ZB}}{\overline{AZ}}\right)=$ $2\cdot \frac {\overline{MX}}{\overline{BC}}\cdot\left(\frac {\overline {XC}}{\overline {AT}}-\frac {\overline {XB}}{\overline{AT}}\right)=$ $2\cdot\frac {\overline{MX}}{\overline{BC}}\cdot\frac {\overline{BC}}{\overline {AT}}=$

$2\cdot\frac {\overline{MX}}{\overline{AT}}=$ $2\cdot\frac {\overline{GM}}{\overline{GA}}=-1\implies$ $\boxed{\ \frac{1}{\overline {GX}}+\frac{1}{\overline {GY}}+\frac{1}{\overline{GZ}}=0\ }$ .


Proposed problem. For a line $p$ which passes through the incircle $I$ of $\triangle ABC$ define the intersections

$X\in BC\cap p$ , $Y\in CA\cap p$ and $Z\in AB\cap p$ . Prove that $\frac{a}{\overline {IX}}+\frac{b}{\overline {IY}}+\frac{c}{\overline{IZ}}=0$ .



An easy extension. For a line $p$ which passes through the given point $P(x,y,z)$ , where $(x,y,z)$ are the barycentrical coordinates

w.r.t. $\triangle ABC$ define the intersections $X\in BC\cap p$ , $Y\in CA\cap p$ and $Z\in AB\cap p$ . Prove that $\frac{x}{\overline{PX}}+\frac{y}{\overline {PY}}+\frac{z}{\overline {PZ}}=0$ .


Proof. Denote $M\in AP\cap BC$ and $T\in p$ so that $AT\parallel BC$ . Apply the Menelaus' theorem to the transversal $APM$ in the mentioned triangles :

$\left\{\begin{array}{cccc}
\triangle XYC\ : & \frac {\overline{AY}}{\overline {AC}}\cdot \frac {\overline {MC}}{\overline{MX}}\cdot\frac {\overline {PX}}{\overline{PY}}=1 & \implies & \frac {\overline{PX}}{\overline{PY}}=\frac {\overline {AC}}{\overline{AY}}\cdot\frac {\overline {MX}}{\overline{MC}}\\\\
\triangle XBZ\ : & \frac {\overline{AZ}}{\overline {AB}}\cdot \frac {\overline {MB}}{\overline{MX}}\cdot\frac {\overline {PX}}{\overline{PZ}}=1 & \implies & \frac {\overline{PX}}{\overline{PZ}}=\frac {\overline {AB}}{\overline{AZ}}\cdot\frac {\overline {MX}}{\overline{MB}}\end{array}\right|$ $\bigoplus$ $\implies\ \overline {MC}\cdot\frac {\overline{PX}}{\overline{PY}}-$ $\overline{MB}\cdot \frac {\overline{PX}}{\overline{PZ}}=$ $\overline{MX}\cdot\left(\frac {\overline {AC}}{\overline {AY}}-\frac {\overline {AB}}{\overline{AZ}}\right)=$

$\overline{MX}\cdot\left(\frac {\overline {AY}+\overline{YC}}{\overline {AY}}-\frac {\overline {AZ}+\overline{ZB}}{\overline{AZ}}\right)=$ $\overline{MX}\cdot\left(\frac {\overline {YC}}{\overline {AY}}-\frac {\overline {ZB}}{\overline{AZ}}\right)=$ $\overline{MX}\cdot\left(\frac {\overline {XC}}{\overline {AT}}-\frac {\overline {XB}}{\overline{AT}}\right)=$ $\overline{MX}\cdot\frac {\overline{BC}}{\overline {AT}}=$ $\overline{BC}\cdot\frac {\overline{MX}}{\overline{AT}}=$ $\overline{BC}\cdot\frac {\overline{PM}}{\overline{PA}}\implies$

$\overline {MC}\cdot\frac {\overline{PX}}{\overline{PY}}+$ $\overline{BM}\cdot \frac {\overline{PX}}{\overline{PZ}}+\overline{BC}\cdot\frac {\overline{PM}}{\overline{AP}}=0\implies$ $\boxed{\ \frac {\overline {PM}}{\overline{AP}}\cdot \frac{1}{\overline{PX}}+\frac {\overline {MC}}{\overline{BC}}\cdot \frac{1}{\overline {PY}}+\frac {\overline{BM}}{\overline{BC}}\cdot \frac{1}{\overline {PZ}}=0\ }\  (*)$ .

Suppose that $P$ has the barycentrical coordinates $(x,y,z)$ w.r.t. the triangle $ABC$ and denote $\left\{\begin{array}{c}
U\in BP\cap CA\\\
V\in CP\cap AB\end{array}\right\|$ . Apply the Menelaus' theorem :
$\left\{\begin{array}{cccc}
\overline{BPU}/\triangle AMC\ : & \frac{\overline {BM}}{\overline {BC}}\cdot\frac {\overline {UC}}{\overline {UA}}\cdot\frac {\overline {PA}}{\overline {PM}}=1 & \implies & \frac {\overline {BM}}{\overline {BC}}=\frac zx\cdot\frac {\overline{PM}}{\overline{AP}}\\\\
\overline{CPV}/\triangle AMB\ : & \frac{\overline {CM}}{\overline {CB}}\cdot\frac {\overline {VB}}{\overline {VA}}\cdot\frac {\overline {PA}}{\overline {PM}}=1 & \implies & \frac {\overline {MC}}{\overline {BC}}=\frac yx\cdot\frac {\overline{PM}}{\overline{AP}}\end{array}\right\|$ . Thus, the relation $(*)$ becomes $\frac {x}{\overline {PX}}+\frac {y}{\overline {PY}}+\frac {z}{\overline {PZ}}=0$ . See and
here.
This post has been edited 34 times. Last edited by Virgil Nicula, Nov 19, 2015, 4:13 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404398
  • Total comments: 37
Search Blog
a