5. Theoretical preliminary for inequalities.

by Virgil Nicula, Apr 19, 2010, 2:27 PM

I. Theoretical preliminary for inequalities.

Are well-known (or prove easily) some relations in $\triangle ABC$ w.r.t. the centroid $ G$ , the orthocenter $ H$ , the Nagel's point $ N$ , the circumcircle $w=C(O,R)$ , the incircle $ C(I,r)$ ,

the $A$-excircle $ C(I_a,r_a)$ , $ C(I_b,r_b)$ , $ C(I_c,r_c)$ , the Gergonne's point $ \Gamma$ and the symmedian center $ L$ (Lemoine's point). I"ll use the standard notations. For example, $ BC=a$ ,

$ CA=b$ , $ AB=c$, semiperimeter $ p$ , where $ a+b+c=2p$ , area $ S= [ABC]$ , $ m_a$ - the length of $ A$-median, $ l_a\ \left(l'_a\right)$ - length of $ A$-interior (exterior) bisector , $ h_a$ - length

of $ A$-altitude, $ s_a$ - length $ A$-symmedian, distance $ \delta_{d}(X)$ of the point $ X$ to the line $ d$ , the power $ p_w(P)=OP^2-R^2$ of the point $ P$ w.r.t. the circumcircle $ w$ of $\triangle ABC$ a.s.o.


$ \odot$ Linear identities.

$\bullet$ Let $\triangle ABC$ and its interior point $P$ , where $D\in AP\cap BC$ , $E\in BP\cap CA$ , $ F\in CP\cap AB$ . Then $\prod\frac {PA}{PD}=2+\sum\frac {PA}{PD}$ , where $\triangle DEF$ is the cevian trangle of $P$ w.r.t.

$\triangle ABC$ , i.e. (Van Aubel's relation) $\prod\frac {b+c}a=2+\sum\frac {b+c}a\iff$ $\prod (b+c)=2abc+\sum bc(b+c)$ . Is evidently that $\sum bc(b+c)=\sum a^2(b+c)=\sum a\left(b^2+c^2\right)$ .

$\bullet\ \ \ abc\ne 0\ \implies\ \left(a-\frac 1b\right)$ $\left(b-\frac 1c\right)\left(c-\frac 1a\right)=$ $abc-\frac 1{abc}-(a+b+c)+\left(\frac 1a+\frac 1b+\frac 1c\right)\ ;$

$\bullet\ \ \ (\forall )\ x_k\in (0,1]\ ,\ k\in \overline{1,n}$ there is the relation $\frac 1{x_1x_2\ \ldots\ x_n}-x_1x_2\ \ldots\ x_n\ge$ $\sum_{k=1}^n\left(\frac 1{x_k}-x_k\right)\ .$

$ \bullet\ \left\|\ \begin{array}{c}
 \sum a^3=3abc+(a+b+c)\cdot \left[\ \left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\ \right]\\\\
 \boxed{\ (a+b+c)^3=a^3+b^3+c^3+3(a+b)(b+c)(c+a)\ }\end{array}\ \right\|$ $ \Longrightarrow\ \left\|\ \begin{array}{c}
 a^3+b^3+c^3\ \ge\ 3abc\\\\
 (a+b+c)^3\ \ge\ a^3+b^3+c^3+24abc\\\\
\sum a\cdot\sum bc\ \ge\ 9abc\end{array}\ \right\|$

$ \bullet\ (b+c)^2(p-b)(p-c)+(b-c)^2p(p-a)=a^2bc$ $ \Longrightarrow\ \sum (b+c)^2(p-b)(p-c)\ \le\ abc(a+b+c)\ .$

$ \bullet\ \sum a(a-b)(a-c)+8(p-a)(p-b)(p-c)=abc$ $ \Longrightarrow$ $ \boxed{\ \sum a(a-b)(a-c)\ge 0\Longleftrightarrow abc\ge\prod (b+c-a)}\ .$

$ \bullet\ IA^2-(a-b)(a-c)=IB^2-a(a-b)=IC^2-a(a-c)=4Rr\cos A$ and $a(a-b)(a-c)+b(b-a)(b-c)+c(c-a)(c-b)=4S(R-2r)\ \ge\ 0$ .

$ \bullet\ \sum a^2(p-a)=abc+4\prod (p-a)=4rs(R+r)$ ; $ \sum a^2(p-b)(p-c)=p\left[abc-4\prod (p-a)\right]=4p^2r(R-r)\ .$

$ \bullet\ \sum a(p-a)+2p^2=2\sum bc$ ; $ \sum (p-b)(p-c)+p^2=\sum bc\ ;\ \sum (b+c)(p-a)=\sum a^2\ .$

$ \bullet\ abc+\prod (b+c)=(a+b+c)(ab+bc+ca)$ ; $ \sum a(p-a)^2=\sum a(p-b)(p-c)=abc-2\cdot\prod (p-a)=2pr(2R-r)\ .$

$ \bullet\ \sum a(b+c)(p-a)=3abc$ ; $ \sum a(b+c)(p-b)(p-c)=abcp\ ;\ \sum a(p-a)=2\cdot\sum (p-b)(p-c)=2r(4R+r)\ .$

$ \bullet\ \boxed{\sum bc(s-b)(s-c)=r^2\left[s^2+(4R+r)^2\right]}\ ;\ \sum $ $\frac {(b+c)^2}{b+c-a}=8p+\sum\frac {(b+c)(2a-b-c)}{b+c-a}=8p+\frac {R-2r}{r}\cdot (a+b+c)\ .$

$ \bullet\ (p-b)(p-c)(b-c)^2\ +\ p(p-a)(b+c-2a)^2\ =\ 4\cdot\left[\ bcm_a^2\ -\ 2ap(p-a)^2\ \right]\ \Longrightarrow$

$ 2ap(p-a)^2\ \le\ bc\cdot m^2_a\Longrightarrow$ $ 2a^2p(p-a)^2\ \le\ 4Rpr\cdot m_a^2\Longrightarrow a(p-a)\ \le\ m_a\cdot\sqrt {2Rr}\Longrightarrow$

$ 2r(4R+r)\ \le\ \sum m_a\cdot \sqrt {2Rr}\ \Longrightarrow$ $ (4R+r)\cdot\sqrt {\frac {2r}{R}}\ \le\ \sum m_a$ $ \Longrightarrow\ \boxed {\ \sqrt {\frac {2r}{R}}\ \le \frac {m_a+m_b+m_c}{4R+r}\ \le 1\ }\ .$

$ \bullet$ Lagrange's identity $:\ \sum_{k=1}^nx_k^2\cdot\sum_{k=1}^ny_k^2=\left(\sum_{k=1}^nx_ky_k\right)^2+\sum_{1\le k<j\le n}\left(x_ky_j-x_jy_k\right)^2$ $\implies$ $\sum_{k=1}^nx_k^2\cdot\sum_{k=1}^ny_k^2\ge\left(\sum_{k=1}^nx_ky_k\right)^2\ .$


$ \odot$ Linear-angled identities/inequalities.

$ \bullet\ \sum\sin A\sin (B+\phi )\sin (C-\phi )=(1+2\cos 2\phi )\prod\sin A$ . Thus, $\phi:=\frac {\pi}2$ $\implies \sum \sin A\cos B\cos C=\prod \sin A$ , i.e. $\boxed{\sum a\cos B\cos C=2R\prod\sin A=\frac SR}$ .

$ \bullet\ \left\|\ \begin{array}{ccccc}
 p(p-a) & + & (p-b)(p-c) & = & bc\\\\
 p(p-a) & - & (p-b)(p-c) & =& bc\cdot\cos A\end{array}\ \right\|\ \left\|\ \begin{array}{c}
 \oplus{}\\\\
 \ominus{}\end{array}\ \right\|$ $ \Longrightarrow$ $ \left\|\ \begin{array}{c}
 p(p-a)=\frac 12\cdot bc(1+\cos A)=bc\cos^2\frac A2\\\\
 (p-b)(p-c)=\frac 12\cdot bc(1-\cos A)=bc\sin^2\frac A2\end{array}\ \right\|$ $ \Longrightarrow$ $ \boxed {\ \begin{array}{ccc}
 \sin\frac A2 & = & \sqrt {\frac {(p-b)(p-c)}{bc}}\\\\
 \cos\frac A2 & = & \sqrt {\frac {p(p-a)}{bc}}\\\\
  \tan\frac A2 & = & \sqrt {\frac {(p-b)(p-c)}{p(p-a)}}\end{array}\ }\ .$

$\bullet\ \left\{\begin{array}{ccc}
 a=b\cdot\cos C+c\cdot\cos B & \ \odot & (-a)\\\\
 b=c\cdot\cos A+a\cdot\cos C & \ \odot & b\\\\
 c=a\cdot\cos B+b\cdot\cos A & \ \odot & c\end{array}\right\|\ \bigoplus$ $ \Longrightarrow$ $ \boxed { \begin {array}{ccc}
b^2+c^2-2bc\cdot\cos A & = & a^2\\\\
b^2+c^2+2bc\cdot\cos A & = & 4m^2_a\end{array}\ }\ .$

$ \bullet\ \sum\tan A=\prod\tan A\ \Longleftrightarrow$ $ \sum\cot B\cot C=1\iff$ $\sum\tan\frac B2\tan\frac C2=1$ $\implies\boxed{\begin{array}{c}
\sum a\cdot\cos A=2a\sin B\sin C=\frac {2S}{R}\le s\\\\
\sum a^2\cos A=\frac {r\left[3p^2-(2R+r)(4R+r)\right]}{R}\end{array}}$ .

$ \bullet\ \frac 1r\cdot\prod\sin\frac A2=\frac 1p\cdot\prod\cos\frac A2=\frac {1}{4R}\ \ ;\ \ \sum\sin A$ $=4\cdot\prod\cos\frac A2\ \ ;\ \  1+\prod\cos A=$ $\frac {a^2+b^2+c^2}{8R^2}\ \ ;\ \ \sum a\cdot$ $\tan\frac A2=2(2R-r)\ .$

$ \bullet\ \sum\cos A=1+4\cdot\prod\sin\frac A2=1+\frac rR$ ; $ \sum \sin 2A=4\cdot\prod\sin A$ ; $ \sum\cos 2A=-1-4\cdot\prod\cos A=3-\frac {a^2+b^2+c^2}{2R^2}\ .$

Prove easily that $\sqrt {\tan^2A+\tan^2B+\tan^2C}\ge\frac {s}{(R-r)\sqrt 3}$ .

$\bullet\ \boxed{\sum\cos^2A+2\prod\cos A=1}$ and $\boxed{\, 4R\cdot\sum\, \sin\frac A2+r\cdot\sum\, \frac 1{\sin\frac A2}=s\cdot\sum\, \frac 1{\cos\frac A2}\, }\ ;\ \sum a$ $\cos B\cos C=2R\prod\sin A=\frac SR$ .

$\bullet$ If the triangle $ABC$ is acute, then there are the inequalities $\boxed{\tan A+\tan B+\tan C\ge \frac pr}\ge 3\sqrt 3$ and $\boxed{\cot A+\cot B+\cot C\ge\frac {(R+r)^2}{S}}\ge \sqrt 3$ .


$ \odot$ Area $S$ of the triangle $ABC\ :\ S=\sqrt {p(p-a)(p-b)(p-c)}$ (Heron) $\iff$ $16S^2=(a+b+c)(b+c-a)(c+a-b)(a+b-c)\ .$

$ \bullet\ S=\left\{\begin{array}{c}
\frac {ah_a}{2}=\frac {bc\sin A}{2}=\frac {abc}{4R}=pr=(p-a)r_a\\\\
p(p-a)\tan\frac A2=(p-b)(p-c)\cot\frac A2\end{array}\right\|$ $;\ \frac {abc}{a+b+c}=2Rr$ ; $h_a^2+\left(\frac {b^2-a^2}{2a}\right)^2=m_a^2\iff$ $\boxed{16S^2+\left(b^2-c^2\right)^2=\left(2am_a\right)^2}\ .$

$ \bullet\ bc=2Rh_a\ ;\ \boxed{4S\cdot\cot A=b^2+c^2-a^2}$ ; $S=2R^2\cdot\prod\sin A\ ;\ \sum a^2\cot A=$ $4S\ ;\ \boxed{\ S=Rs'\ }$ , where $s'$ is the semiperimeter of the orthic triangle.

$ \bullet\ 16\cdot S^2=2\left(b^2c^2+c^2a^2+a^2b^2\right)-$ $ \left(a^4+b^4+c^4\right)=\sum \left(a^2+b^2-c^2\right)\left(a^2+c^2-b^2\right)=2abc\cdot\sum a\cdot\cos A=$ $\sum a^2\left(b^2+c^2-a^2\right)\le$

$\frac 13\cdot \sum a^2\sum\left(b^2+c^2-a^2\right)=$ $\frac 13\cdot\left(\sum a^2\right)^2$ $\implies$ $16S^2\le \frac 13\cdot\left(\sum a^2\right)^2$ $\implies$ $\boxed{4S\sqrt 3\le a^2+b^2+c^2}\ .$ Therefore, $\boxed{\sum a\cos A=\frac {2S}R\ \ ;\ \ \sum a\cdot\cos B\cdot\cos C=\frac SR}$ .

For an acute triangle , $2S=\sum a\cdot HD=\sum a\cdot 2R\cos B\cos C$ , where $D\in BC\ ,\ HD\perp BC$ a.s.o. $\sum a^4=8S^2\left(1+\sum\cot^2A\right)\ ;\ S\left(\sum \sin A\right)^2=2p^2\prod\sin A$ .

$ \bullet$ I"ll use the identity $4S=\left(b^2+c^2-a^2\right)\tan A\ (*)$ in an acute $\triangle ABC$ . Thus, $\sum a^2=\sum \left(b^2+c^2-a^2\right)\stackrel{(*)}{=}4S\cdot \sum \cot A=$ $4S\cdot \sum\frac {\cos^2A}{\sin A\cos A}=$

$8S\cdot \sum \frac {\cos^2A}{\sin 2A}\ge$ $8S\cdot \frac {\left(\sum \cos A\right)^2}{\sum\sin 2A}=$ $8S\cdot \frac {\left(1+\frac rR\right)^2}{4\prod\sin A}=$ $8S\cdot \frac {\left(1+\frac rR\right)^2}{\frac {2S}{R^2}}=4(R+r)^2\implies$ $a^2+b^2+c^2\ge 4(R+r)^2$ (Walker's inequality).

$ \bullet$ $\left\{\begin{array}{c}
4(s-a)(s-b)\le c^2\\\\
4(s-a)(s-c)\le b^2\end{array}\right|\bigodot\implies$ $16(s-a)sr^2\le b^2c^2\iff$ $4(s-a)rabc\le b^2c^2R\iff$ $\frac {bc}{a}\ge \frac {4r(s-a)}{R}\implies$ $\sum \frac {bc}{a}\ge \frac {4rs}{R}\implies$ $\boxed{\frac 1{a^2}+\frac 1{b^2}+\frac 1{c^2}\ge\frac 1{R^2}}\ .$

$ \bullet\ \frac 1{a^2}\le \frac 1{4(s-b)(s-c)}\implies$ $\sum\frac 1{a^2}\le \sum\frac 1{4(s-b)(s-c)}=\frac {(s-a)+(s-b)+(s-c)}{4(s-a)(s-b)(s-c)}=\frac {\cancel s}{4\cancel sr^2}=\frac 1{4r^2} \implies\boxed {\ \frac 1{R^2}\le\frac 1{a^2}+\frac 1{b^2}+\frac 1{c^2}\le\frac 1{4r^2}\ }$ (Goldstone's inequality).

$ \bullet$ $\left\{\begin{array}{c}
4(s-a)(s-b)\le c^2\\\\
4(s-a)(s-c)\le b^2\end{array}\right|\bigoplus\implies$ $4a(s-a)\le b^2+c^2\iff$ $2(b+c-a)\le \frac{b^2+c^2}a\implies\boxed{2(a+b+c)\le \sum\frac {b^2+c^2}a}\ .$ I"ll use the identity $\sum (p-b)(p-c)=r(4R+r)$ and

the inequality $p\sqrt 3\le 4R+r\ .$ From the sum of the simple inequalities $a^2\ge 4(p-b)(p-c)$ a.s.o. obtain that $a^2+b^2+c^2\ge  4r(4R+r)\ge$ $4rp\sqrt 3=4S\sqrt 3\implies$ $\boxed{a^2+b^2+c^2\ge 4S\sqrt 3}\ .$


$ \odot$ Incircles and excircles. $\left\{\begin{array}{ccc}
-1+\cos A+\cos B+\cos C & = & \frac rR\\\\
1-\cos A+\cos B+\cos C & = & \frac {r_a}{R}\\\\
1+\cos A-\cos B+\cos C & = & \frac {r_b}{R}\\\\
1+\cos A+\cos B-\cos C & = & \frac {r_c}{R}\end{array}\right|$ and $\left\{\begin{array}{ccc}
\sin\frac A2\sin\frac B2\sin\frac C2 & = & \frac {r}{4R}\\\\
\sin\frac A2\cos\frac B2\cos\frac C2 & = & \frac {r_a}{4R}\\\\
\cos\frac A2\sin\frac B2\cos\frac C2 & = & \frac {r_b}{4R}\\\\
\cos\frac A2\cos\frac B2\sin\frac C2 & = & \frac {r_c}{4R}\end{array}\right|$

$ \bullet$ If the incircle touches $BC$ at $D$ , then $a\cdot AD^2=4pr^2+a(p-a)^2=ap(p-a)-(p-a)(b-c)^2\le ap(p-a)\implies $ $AD^2\le p(p-a)\le l_a^2\le m_a^2$ .

$ \bullet\  r_a+r_b+r_c=4R+r$ ; $ r_ar_b+r_br_c+r_cr_a=p^2$ ; $ r_ar_br_c=p^2r\ \Longrightarrow\ \sum\frac {1}{r_a}=\frac 1r\ ;\ ar_a=p\left(r_a-r\right)\ ;\ \left\{r_a\ ,\ r_b\ ,\ r_c\right\}$ are the roots of the equation

$ x^3-(4R+r)x^2+p^2x-p^2r=0\ ;\ \sum ar_a=2p(2R-r)$ ; $ \sum\frac {a}{p-a}=\frac {2(2R-r)}{r}\ ;\ \sum\frac a{r_a}=$ $\frac {2(4R+r)}p\ge\frac {2p}{2R-r}\implies $ $p^2\le (2R-r)(4R+r)$ .

$ \bullet\ \tan\frac A2=\frac {r}{p-a}=\frac {r_a}{p}$ $ \Longrightarrow$ $ \left\{\tan\frac A2\ ,\ \tan\frac B2\ ,\ \tan\frac C2\ \right\}$ are the roots of the equation $ px^3-(4R+r)x^2+px-r=0\ ;$

$\boxed { \begin{array}{c}
\sum (p-b)(p-c)=r(4R+r)\\\\
(p-a)(p-b)(p-c)=pr^2\end{array}\ }$ $ \Longrightarrow$ $ \{p-a\ ,\ p-b\ ,\ p-c\}$ are the roots of the equation $ x^3-px^2+r(4R+r)x-p^2r=0\ .$

$ \bullet\ D\in BC\cap AI$ si $ D'\in BC\ \cap$ the exterior bisector of $ \widehat {BAC}\ \Longrightarrow$ $ \begin{array}{ccccccc}
 \nearrow & DA^2=bc-DB\cdot DC & = & \frac {2bc}{b+c}\cdot\cos\frac A2 & = & \frac {2\sqrt {bcp(p-a)}}{b+c} & \searrow\\\\
 \searrow & D^{\prime}A^2=D^{\prime}B\cdot D^{\prime}C-bc & = & \frac {2bc}{|b-c|}\cdot\sin\frac A2 & = & \frac {2\sqrt {bc(p-b)(p-c)}}{|b-c|} & \nearrow\end{array}\ .$

$ \bullet\ \triangle ABC$ is right-angled $ \Longleftrightarrow$ $ p=2R+r\ \Longleftrightarrow\ a^2+b^2+c^2=8R^2\ .$

$ \bullet\ \underline {\overline {\left\|\ ab+bc+ca=p^2+r^2+4Rr\ \right\|}}$ ; $ 3\cdot\sum bc\ \le\ \left(\sum a\right)^2\ \Longrightarrow\ \underline {\overline {\left\|\ 3r(4R+r)\le p^2\ \right\|}}\ .$

$ \bullet\ [I_aI_bI_c]=2pR\ ,\ I_bI_c=4R\cos\frac A2$ and the circumradius of $\triangle I_aI_bI_c$ has the length $2R$ .


$ \odot$ Remarkable distancies.

$ \bullet\ \left\|\ \begin{array}{c}
\boxed {\ 3\cdot\left(XA^2+XB^2+XC^2\right)=9\cdot XG^2+ \left(a^2+b^2+c^2\right)\ }\\\\
X: =A\ \implies\ 2\left(b^2+c^2\right)=9\cdot AG^2+a^2\ \implies\ \boxed {\ 4m_a^2+a^2=2\left(b^2+c^2\right)\ }\\\\
X: =G\ \implies\ 3\cdot\sum GA^2=a^2+b^2+c^2\ \implies\ 4\cdot\sum m_a^2=3\cdot\sum a^2\\\\
X: =O\ \implies\ OH^2=9\cdot OG^2=9R^2-\left(a^2+b^2+c^2\right)\ \implies\ \boxed {\ OG^2=R^2-\frac {a^2+b^2+c^2}{9}\ }\\\\
X: =I\ \implies\ 3\cdot\sum IA^2=9\cdot IG^2+\left(a^2+b^2+c^2\right)\ \implies\ \boxed {IN^2=9IG^2=p^2+5r^2-16Rr\ \ge\ 0}\end{array}\ \right\|$

$ \bullet\ \left\|\ \begin{array}{c}
\boxed {\ a\cdot XA^2+b\cdot XB^2+c\cdot XC^2=(a+b+c)\cdot XI^2+abc\ }\\\\
X: =A\ \implies\ \boxed {\ IA^2=\frac {bc(p-a)}{p}=bc-4Rr\ }\ \implies \ \sum IA^2=p^2+r^2-8Rr\\\\ 
X: =I\ \implies\ a\cdot IA^2+b\cdot IB^2+c\cdot IC^2=abc\\\\
X: =O\ \implies\ \boxed {\ OI^2=R^2-2Rr\ }\ -\ \underline {\mathrm {Euler's\ relation}}\end{array}\ \right\|$

$ \bullet\ \left\|\ \begin{array}{c}
\boxed {\ abc+b\cdot XB^2+c\cdot XC^2=a\cdot XA^2+(b+c-a)\cdot XI_a^2\ }\\\\
X: =A\ \implies\ \boxed {\ I_aA^2=\frac {bcp}{p-a}=bc+4Rr_a\ }\ \implies\ \sum I_aA^2=p^2+r^2+8R(R+2r)\\\\
X: =I_a\ \implies\ abc+b\cdot I_aB^2+c\cdot I_aC^2=a\cdot I_aA^2\\\\
X: =O\ \implies\ \boxed {\ OI_a^2=R^2+2Rr_a\ }\end{array}\ \right\|$

$ \bullet\ HA=2\delta_{BC}(O)=2R\cdot |\cos A|$ ; $ HA^2+a^2=4R^2\ ;\ \sum a\cdot HA=4S\ .$

$ \bullet\ G\in HO\ \cap\ NI$ and $ \boxed { \begin{array}{c}
\overline {HO}=3\cdot \overline {GO}\\\\
\overline {NI}=3\cdot \overline {GI}\end{array}\ }$ ; $ \boxed {\ ON=R-2r\ }$ : $ \boxed {\ IH^2=4R^2+4Rr+3r^2-p^2\ }\ .$


$\odot$ Power $p_w(P)$ of the point $ P$ w.r.t. the circumcircle $ w\ .$

$ \bullet\ P\in XY\ \wedge\ \{X,Y\}\subset w\ \Longrightarrow\  p_w(P)=\overline {PX}\cdot\overline {PY}=PO^2-R^2$ $ \Longleftrightarrow$ $ \boxed {\ PO^2=R^2+\overline {PX}\cdot\overline {PY}\ }\ .$

$ \bullet$ For example, $ \boxed {\ \begin{array}{ccc}
 M\in [BC] & \Longrightarrow & OM^2+MB\cdot MC=R^2\\\\
 M\not\in [BC] & \Longrightarrow & OM^2-MB\cdot MC=R^2\end{array}\ }\ .$

$ \bullet\ \boxed {\ \begin{array}{ccc}
 p_w(I) & = & -2Rr\\\\
 p_w\left(I_a\right) & = & 2Rr_a\\\\
 p(N) & = & -4r(R-r)\end{array}\ \ \ \ \ ;\ \ \ \ \ \begin{array}{ccc}
 p_w(G) & = & -\frac 19\cdot\left(a^2+b^2+c^2\right)\\\\
 p_w(H) & = & 8R^2\cdot\prod\cos A\end{array}\ \ \ \ \ ;\ \ \ \ \ \begin{array}{ccc}
 p_w\left(\Gamma\right) & = & -r(R+r)\cdot\left(\frac {2p}{4R+r}\right)^2\\\\
 p_w(L) & = & -3\cdot\left(\frac {abc}{a^2+b^2+c^2}\right)^2\end{array}\ }\ .$


$ \odot$ Arrow (dart) $\mathrm {sg}_a$ is the length of the arc $\overarc{BC}\subset C(O,R)$ which belongs to the interior of the angle $ \widehat {BAC}$ and is $ \mathrm {sg}_a=\frac {r_a-r}{2}\ .$

$ \bullet\ \sum\mathrm {sg}_a=\frac {2R-r}{2}$ ; $ \left\{\ A\ ,\ A'\ \right\}=AI\ \cap\ w\ \Longrightarrow\ A'B=A'I=A'C=A'I_a\ .$


$ \odot$ Characterization of the right angle in $\triangle ABC\ .$

$ \bullet\ A=90^{\circ}\ \Longleftrightarrow\ \left\|\ \begin{array}{ccc}
 a^2 & = & b^2+c^2\\\\
 2m_a & = & a\\\\
 2R & = & a\end{array}\ \right\|\ \Longleftrightarrow$ $ \left\|\ \begin{array}{ccc}
 r & = & p-a\\\\
 r_a & = & p\\\\\
 r_b & = & p-c\\\\
 r_c & = & p-b\end{array}\ \right\|$ $ \Longleftrightarrow\ \left\|\ \begin{array}{ccc}
  S & = & p(p-a)\\\\
 S & = & (p-b)(p-c)\\\\
 2S & = & bc\end{array}\ \right\|$ $\iff \left\|\begin{array}{ccc}
IA^2 & = & (a-b)(a-c)\\\\
IB^2 & = & a(a-b)\\\\
IC^2 & = & a(a-c)\end{array}\right\|$ .

$ \bullet\ \odot\ A\ \le\ 90^{\circ}\ \Longleftrightarrow\ b^2+c^2\ge a^2$ $ \Longleftrightarrow\ 2m_a\ge a\ \Longleftrightarrow$ $ (p-b)(p-c)\le p(p-a)$ $ \Longleftrightarrow$ $ \boxed {\ (a-b)(a-c)\le 2(p-a)^2\ }\ .$


$ \odot$ Euler's relation. $ ABC$ is nonobtuse $ \Longrightarrow\ \sum\delta_{BC}(O)=R+r\ .$


$ \odot$ Theorem of Sines. $ \boxed { \frac {a}{\sin A}=\frac {b}{\sin B}=\frac {c}{\sin C}=2R\ }$ ; $ \boxed { M\in BC\ \Longrightarrow\  \frac {MB}{MC}=\frac {AB\cdot\sin \widehat {MAB}}{AC\cdot\sin\widehat {MAC}}\ }\ .$


$ \odot$ Stewart's relation. $ M\in (BC)\ \wedge\ X\not\in BC$ $ \Longrightarrow$ $ \boxed { XB^2\cdot MC+XC^2\cdot MB=XM^2\cdot BC+MB\cdot MC\cdot BC\ }\ .$


$ \odot$ The length of a cevian. $M\in BC\ \wedge\ \overline {MB}=k\cdot\overline {MC}$ , $ k\ne 1\ \Longrightarrow\ (1-k)^2\cdot AM^2=(1-k)\cdot \left(c^2-kb^2\right)+ka^2\ .$

$ \bullet\ k: =-1\ \Longrightarrow\ 4m_a^2$ $=2\left(b^2+c^2\right)-a^2\ ;\ \ \bullet\ \  k:$ $=-\frac cb$ $ \Longrightarrow$ $ l_a=\frac {2\sqrt {bcp(p-a)}}{b+c}=\frac {2bc}{b+c}\cdot\cos\frac A2\ .$

$ \bullet\ k: =\frac cb\ \Longrightarrow\ l'_a=\frac {2\sqrt {bc(p-b)(p-c)}}{|b-c|}$ $=\frac {2bc}{|b-c|}$ $\cdot\sin\frac A2\ ;\ \ \bullet\ \  k$ $:\ =-\frac {a^2-b^2+c^2}{a^2+b^2-c^2}$ $ \Longrightarrow\ s_a=\frac {bc\sqrt {2\left(b^2+c^2\right)-a^2}}{b^2+c^2}=\frac {2bcm_a}{b^2+c^2}\ .$


$ \odot$ Trigonometrical form of the Ceva's theorem. $ \overline {\underline {\left\|\ \sin\widehat {PAB}\cdot\sin\widehat {PBC}\cdot\sin\widehat {PCA}=\sin\widehat {PAC}\cdot\sin\widehat {PCB}\cdot\sin\widehat {PBA}\ \right\|}}\ .$

$ \bullet\ \left\|\ \begin{array}{ccc}
 D\in (BC) & ; & M\in (AB)\\\\
 N\in (AC) & ; & P\in AD\cap MN\end{array}\ \right\|\ \Longrightarrow$ $ \frac {MB}{MA}\cdot DC+\frac {NC}{NA}\cdot BD=\frac {PD}{PA}\cdot BC\ \ \wedge\ \ 
 \frac {PM}{PN}=\frac {DB}{DC}\cdot\frac {AM}{AN}\cdot\frac {AC}{AB}\ .$

Observe that the first relation can write thus : $ \frac {AB}{AM}\cdot DC+\frac {AC}{AN}\cdot BD=\frac {AD}{AP}\cdot BC\ .$



$ \odot$ Symmetrical fundamental forms. $ \{a\ ,\ b\ ,\ c\}$ - the roots of the equations $ x^3-s_1x^2+s_2x-s_3=0\ \Longleftrightarrow\ \boxed {\ \begin{array}{ccccc}
 s_1 & = & a+b+c & = & 2s\\\\
 s_2 & = & ab+bc+ca & = & s^2+r^2+4Rr\\\\
 s_3 & = & abc & = & 4Rrs\end{array}\ }$ .

$ \bullet\ S_n=a^n+b^n+c^n$ , where $ N\ \Longrightarrow\ S_{n+3}=s_1\cdot S_{n+2}-s_2\cdot S_{n+1}+s_3\cdot S_n$ . For example, $\left\|\ \begin{array}{ccc}
 S_0=3 & \odot & s_3\\\\
 S_1=s_1 & \odot & -s_2\\\\
 S_2=s_1^2-2s_2 & \odot & s_1\end{array}\ \right\|\ \bigoplus\ \Longrightarrow$ $ \boxed {\ S_3=s_1^3-3s_1s_2+3s_3\ }$

and $\left\|\ \begin{array}{ccc}
 S_1=s_1 & \odot & s_3\\\\
 S_2=s_1^2-2s_2 & \odot & -s_2\\\\
 S_3=s_1^3-3s_1s_2+3s_3 & \odot & s_1\end{array}\ \right\|\ \bigoplus\ \Longrightarrow$ $ \underline {S_4=s_1^4-4s_1^2s_2+4s_1s_3+2s_2^2}\ .$ Show similarly that $ \underline {S_5=s_1^5-5s_1^3s_2+5s_1^2s_3+5s_1s_2^2-5s_2s_3}\ .$

$ \bullet\ \sum a^2(b+c)=\sum bc(b+c)=\sum bc[(a+b+c)-a]=s_1s_2-3s_3$ $ \Longrightarrow\sum a^2(b+c)=s_1s_2-3s_3\ .$

$ \bullet\ \sum a^3(b+c)=\sum a\left(b^3+c^3\right)=$ $ \sum bc\left(b^2+c^2\right)=\sum bc\left[\left(a^2+b^2+c^2\right)-a^2\right]=\sum bc\cdot\sum a^2-\sum a^2bc=$

$ \ s_2S_2-s_1s_3=s_2\left(s_1^2-2s_2\right)-s_1s_3$ $ \Longrightarrow$ $ \sum a^3(b+c)=s_1^2s_2-2s_2^2-s_1s_3\ .$

$ \bullet\ \sum b^2c^2=\left(\sum bc\right)^2-2abc\cdot\sum a=s_2^2-2s_1s_3$ $ \Longrightarrow$ $ \sum b^2c^2=s_2^2-2s_1s_3\ .$


$ \bullet\ \boxed {\ \sum a^2(a-b)(a-c)\ge 0\ }$ (Schur for $ r=2$ ) is equivalently with Hadwiger-Finsler. Indeed, $:$

$\left\{\begin{array}{c}
\underline {\mathrm {SCHUR\ inequality\ (r=2)}}\\\\
\boxed {\sum a^2(a-b)(a-c)\ge 0}\ \iff\ \sum a^4-\sum a^3(b+c)+\sum a^2bc\ge 0\\\\
\left(s_1^4-4s_1^2s_2+4s_1s_3+2s_2^2\right)-\left(s_1^2s_2-2s_2^2-s_1s_3 \right)+s_1s_3\ge 0\\\\
s_1^4-5s_1^2s_2+6s_1s_3+4s_2^2\ge 0\end{array}\right\|\ \iff\ \left\{\begin{array}{c}
\underline {\mathrm {HADWIGER\ -\ FINSLER\ inequality}}\\\\
\boxed {\sum a^2\ge \sum (b-c)^2+4S\sqrt 3}\ \iff\ 2\sum bc\ge \sum a^2+4S\sqrt 3\\\\
 2s_2-\left(s_1^2-2s_2\right)\ge 4S\sqrt 3\ \iff\ \left(4s_2-s_1^2\right)^2\ge 3\cdot\left(2\cdot\sum b^2c^2-\sum a^4\ \right)\\\\
 \left(s_1^2-4s_2\right)^2\ge 6\left(s_2^2-2s_1s_3\right)-3\left(s_1^4-4s_1^2s_2+4s_1s_3+2s_2^2\ \right)\\\\
 s_1^4-5s_1^2s_2+6s_1s_3+4s_2^2\ge 0\end{array}\right\|$

$ \bullet\ \boxed { \sum a(a-b)(a-c)\ge 0\ }\ ($Schur for $ r=1\ )\ \iff\  R\ \ge 2r\ .$ Indeed, $ \ \sum a(a-b)(a-c)\ge 0\ \Longleftrightarrow$ $ \sum a^3+3abc\ge\sum a^2(b+c)$ $ \Longleftrightarrow$ $ \left(s_1^3-3s_1s_2+3s_3\right)-$

$\left(s_1s_2-3s_3\right)+3s_3\ \ge\ 0\ \Longleftrightarrow$ $ \ s_1^3-4s_1s_2+9s_3\ \ge\ 0\ \Longleftrightarrow$ $ -2\left(r^2+4Rr\right)+9Rr\ \ge\ 0\ \Longleftrightarrow\ R\ \ge\ 2r\ .$
Here find the Schur's inequality and its Vornicu's extension.

$\blacktriangleright$ Remark. The Blundon's inequality is in fact a simple consequence of the triangle inequality $:$

$\boxed{\ \triangle\ ABC\ \implies\ 2R^2+10Rr-r^2-2(R-2r)\sqrt{R(R-2r)}\ \le\ s^2\ \le\ 2R^2+10Rr-r^2+2(R-2r)\sqrt{R(R-2r)}\ }$


Short proof. I'll use the well-known distances in a triangle $\boxed{\begin{array}{cccc}
IN^2=s^2+5r^2-16Rr \\ \\ 
IO=\sqrt{R(R-2r)}\ \ ;\ \ ON=R-2r\end{array}}$ , where $I$ , $O$ and $N$ are the incenter , circumcenter and the Nagel's point

of the triangle . Now, one can easily show that Blundon's inequality reduces to $\boxed{\ OI-ON\ \le\ IN\ \le\ OI+ON\ }$ , which is just the triangle inequality applied in $\triangle\ NIO$ .


See the remarkable geometrical inequalities (1) and (2).
This post has been edited 167 times. Last edited by Virgil Nicula, Nov 23, 2017, 9:38 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a