5. Theoretical preliminary for inequalities.
by Virgil Nicula, Apr 19, 2010, 2:27 PM
I. Theoretical preliminary for inequalities.
Are well-known (or prove easily) some relations in
w.r.t. the centroid
, the orthocenter
, the Nagel's point
, the circumcircle
, the incircle
,
the
-excircle
,
,
, the Gergonne's point
and the symmedian center
(Lemoine's point). I"ll use the standard notations. For example,
,
,
, semiperimeter
, where
, area
,
- the length of
-median,
- length of
-interior (exterior) bisector ,
- length
of
-altitude,
- length
-symmedian, distance
of the point
to the line
, the power
of the point
w.r.t. the circumcircle
of
a.s.o.
Linear identities.
Let
and its interior point
, where
,
,
. Then
, where
is the cevian trangle of
w.r.t.
, i.e. (Van Aubel's relation)
. Is evidently that
.

there is the relation




and
.
; ![$ \sum a^2(p-b)(p-c)=p\left[abc-4\prod (p-a)\right]=4p^2r(R-r)\ .$](//latex.artofproblemsolving.com/0/e/2/0e2a5d49f2e49ab7b537059e75d6e6359dc2be1a.png)
; 
; 
; 

![$ \bullet\ (p-b)(p-c)(b-c)^2\ +\ p(p-a)(b+c-2a)^2\ =\ 4\cdot\left[\ bcm_a^2\ -\ 2ap(p-a)^2\ \right]\ \Longrightarrow$](//latex.artofproblemsolving.com/a/a/6/aa6f23abd9c5c8fa41e520ad07477fb6a7127a68.png)


Lagrange's identity

Linear-angled identities/inequalities.
. Thus,
, i.e.
.


.

;
; 
Prove easily that
.
and
.
If the triangle
is acute, then there are the inequalities
and
.
Area
of the triangle
(Heron)

;

;
, where
is the semiperimeter of the orthic triangle.

Therefore,
.
For an acute triangle ,
, where
a.s.o.
.
I"ll use the identity
in an acute
. Thus,

(Walker's inequality).

(Goldstone's inequality).
I"ll use the identity
and
the inequality
From the sum of the simple inequalities
a.s.o. obtain that

Incircles and excircles.
and 
If the incircle touches
at
, then
.
;
;
are the roots of the equation
;
.
are the roots of the equation 
are the roots of the equation 
si
the exterior bisector of

is right-angled

; 
and the circumradius of
has the length
.
Remarkable distancies.



; 
and
;
: 
Power
of the point
w.r.t. the circumcircle 

For example, ![$ \boxed {\ \begin{array}{ccc}
M\in [BC] & \Longrightarrow & OM^2+MB\cdot MC=R^2\\\\
M\not\in [BC] & \Longrightarrow & OM^2-MB\cdot MC=R^2\end{array}\ }\ .$](//latex.artofproblemsolving.com/0/4/9/049e3a3aa5ebe9648c7631edad256dbd8527672d.png)

Arrow (dart)
is the length of the arc
which belongs to the interior of the angle
and is 
; 
Characterization of the right angle in 
.

Euler's relation.
is nonobtuse 
Theorem of Sines.
; 
Stewart's relation.

The length of a cevian.
, 


Trigonometrical form of the Ceva's theorem. 

Observe that the first relation can write thus :
Symmetrical fundamental forms.
- the roots of the equations
.
, where
. For example,

and
Show similarly that 

![$ \sum bc\left(b^2+c^2\right)=\sum bc\left[\left(a^2+b^2+c^2\right)-a^2\right]=\sum bc\cdot\sum a^2-\sum a^2bc=$](//latex.artofproblemsolving.com/1/0/e/10e8f0f0ce3b3ba18141eb0943e332b7c653e839.png)

(Schur for
) is equivalently with Hadwiger-Finsler. Indeed, 

Schur for
Indeed,

Here find the Schur's inequality and its Vornicu's extension.
Remark. The Blundon's inequality is in fact a simple consequence of the triangle inequality 

Short proof. I'll use the well-known distances in a triangle
, where
,
and
are the incenter , circumcenter and the Nagel's point
of the triangle . Now, one can easily show that Blundon's inequality reduces to
, which is just the triangle inequality applied in
.
See the remarkable geometrical inequalities (1) and (2).
Are well-known (or prove easily) some relations in






the











![$ S= [ABC]$](http://latex.artofproblemsolving.com/d/c/f/dcfc48a99617713cb1e96f86c4d89f9bcd6444cf.png)





of



























![$\bullet\ \ \ (\forall )\ x_k\in (0,1]\ ,\ k\in \overline{1,n}$](http://latex.artofproblemsolving.com/2/4/9/24906ff7f51fc9bd6dc55bd9af9392bb2c1a0c4b.png)


![$ \bullet\ \left\|\ \begin{array}{c}
\sum a^3=3abc+(a+b+c)\cdot \left[\ \left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\ \right]\\\\
\boxed{\ (a+b+c)^3=a^3+b^3+c^3+3(a+b)(b+c)(c+a)\ }\end{array}\ \right\|$](http://latex.artofproblemsolving.com/6/4/b/64bb53c093e397069c877bf740b29e9054ba33e7.png)









![$ \sum a^2(p-b)(p-c)=p\left[abc-4\prod (p-a)\right]=4p^2r(R-r)\ .$](http://latex.artofproblemsolving.com/0/e/2/0e2a5d49f2e49ab7b537059e75d6e6359dc2be1a.png)






![$ \bullet\ \boxed{\sum bc(s-b)(s-c)=r^2\left[s^2+(4R+r)^2\right]}\ ;\ \sum $](http://latex.artofproblemsolving.com/e/7/6/e7635aae57ba41705d0d1eb6a04b6fe369326be4.png)

![$ \bullet\ (p-b)(p-c)(b-c)^2\ +\ p(p-a)(b+c-2a)^2\ =\ 4\cdot\left[\ bcm_a^2\ -\ 2ap(p-a)^2\ \right]\ \Longrightarrow$](http://latex.artofproblemsolving.com/a/a/6/aa6f23abd9c5c8fa41e520ad07477fb6a7127a68.png)

























![$\implies\boxed{\begin{array}{c}
\sum a\cdot\cos A=2a\sin B\sin C=\frac {2S}{R}\le s\\\\
\sum a^2\cos A=\frac {r\left[3p^2-(2R+r)(4R+r)\right]}{R}\end{array}}$](http://latex.artofproblemsolving.com/a/f/f/aff6d10463779d3e1daa71a73742d907a0832321.png)







Prove easily that































For an acute triangle ,



























the inequality





































![$ \bullet\ [I_aI_bI_c]=2pR\ ,\ I_bI_c=4R\cos\frac A2$](http://latex.artofproblemsolving.com/c/9/2/c92c05fa109851a8a302bd1beed9838425e4569f.png)




















![$ \boxed {\ \begin{array}{ccc}
M\in [BC] & \Longrightarrow & OM^2+MB\cdot MC=R^2\\\\
M\not\in [BC] & \Longrightarrow & OM^2-MB\cdot MC=R^2\end{array}\ }\ .$](http://latex.artofproblemsolving.com/0/4/9/049e3a3aa5ebe9648c7631edad256dbd8527672d.png)














































Observe that the first relation can write thus :








and



![$ \bullet\ \sum a^2(b+c)=\sum bc(b+c)=\sum bc[(a+b+c)-a]=s_1s_2-3s_3$](http://latex.artofproblemsolving.com/c/5/a/c5a3086466b3ff0f873c90bcb71e3f3fefa1bfb8.png)


![$ \sum bc\left(b^2+c^2\right)=\sum bc\left[\left(a^2+b^2+c^2\right)-a^2\right]=\sum bc\cdot\sum a^2-\sum a^2bc=$](http://latex.artofproblemsolving.com/1/0/e/10e8f0f0ce3b3ba18141eb0943e332b7c653e839.png)






















Short proof. I'll use the well-known distances in a triangle




of the triangle . Now, one can easily show that Blundon's inequality reduces to


See the remarkable geometrical inequalities (1) and (2).
This post has been edited 167 times. Last edited by Virgil Nicula, Nov 23, 2017, 9:38 AM