89. Similarity (parallel/antiparallel).

by Virgil Nicula, Aug 25, 2010, 12:58 AM

Let $P$ be an interior point for $\triangle ABC$ . Draw through $P$ the lines $DE$ , $FG$ , $HI$ which are $(1)$-parallel / antiparallel-$(2)$ to sidelines $BC$ , $CA$ , $AB$ respectively

so that $DE=$ $FG=$ $HI=x$ , where $\left\{\begin{array}{c}
\{I,F\}\subset (BC)\\\\
\{E,H\}\subset (CA)\\\\
\{G,D\}\subset (AB)\end{array}\right\|$ . Find $x$ in terms of $a$ , $b$ , $c$ . Answer : $\left\{\begin{array}{ccc}
(1) & \implies & x=\frac {2abc}{ab+bc+ca}\\\\
(2) & \implies & x=\frac {2abc}{a^2+b^2+c^2}\end{array}\right\|$ .
See (1) and (2).

Proof (metric). Denote the distancies $d_a$ , $d_b$ , $d_c$ of $P$ to $BC$ , $CA$ , $AB$ respectively. Observe that $\sum\frac {d_a}{h_a}=\sum\frac {ad_a}{ah_a}=\sum \frac {[BPC]}{[ABC]}$ $\implies$ $\boxed {\frac {d_a}{h_a}+\frac {d_b}{h_b}+\frac {d_c}{h_c}=1}\ (*)$ .

$(1)\blacktriangleright\ \frac xa=\frac {h_a-d_a}{h_a}$ a.s.o. $\implies$ $\frac xa+\frac {d_a}{h_a}=1$ a.s.o. $\stackrel{(*)}{\implies}$ $\boxed{\frac 2x=\frac 1a+\frac 1b+\frac 1c}$ , i.e. $x=\frac 23\cdot \mathrm H(a,b,c)$ . For $x=\frac {2abc}{ab+bc+ca}$

obtain $\frac {d_a}{h_a}=\frac {ab+ac-bc}{ab+bc+ca}$ a.s.o., i.e. $P$ has barycentric coordinates $\left(\frac {ab+ac-bc}{ab+bc+ca}, \frac {bc+ba-ca}{ab+bc+ca},\frac {ca+cb-ab}{ab+bc+ca}\right)$ w.r.t. $\triangle ABC$ .

$(2)\blacktriangleright$ $\left|\begin{array}{ccccc}
\triangle ADE\sim \triangle ACB & \implies & \frac {AD}{b}=\frac xa=\frac {AE}{c} & \implies & \left|\begin{array}{c}
AD=\frac {bx}{a}\\\
AE=\frac {cx}{a}\end{array}\right|\\\\
\triangle BFG\sim \triangle BAC & \implies & \frac {BF}{c}=\frac xb=\frac {BG}{a} & \implies & \left|\begin{array}{c}
BF=\frac {cx}{b}\\\\
BG=\frac {ax}{b}\end{array}\right|\\\\
\triangle CHI\sim \triangle CBA & \implies & \frac {CH}{a}=\frac xc=\frac {IC}{b} & \implies & \left|\begin{array}{c}
CH=\frac {ax}{c}\\\\
IC=\frac {bx}{c}\end{array}\right|\end{array}\right|$ $\implies$ $\left\|\begin{array}{ccc}
\triangle IPF & \implies & m(\widehat{PIF})=m(\widehat{PFI})=A\\\\
\triangle EPH & \implies & m(\widehat{PEH})=m(\widehat{PHE})=B\\\\
\triangle GPD & \implies & m(\widehat{PGD})=m(\widehat{PDG})=C\end{array}\right\|$ .

$\left|\begin{array}{ccc}
\left|\begin{array}{c}
BI=BC-IC=a-\frac {bx}{c}\\\\
CF=BC-BF=a-\frac {cx}{b}\end{array}\right| & \implies & IF=BC-BI-CF=\frac {x\left(b^2+c^2\right)-abc}{bc}\\\\
\left|\begin{array}{c}
CE=CA-EA=b-\frac {cx}{a}\\\\
AH=CA-CH=b-\frac {ax}{c}\end{array}\right| & \implies & EH=CA-CE-AH=\frac {x\left(c^2+a^2\right)-abc}{ca}\\\\
\left|\begin{array}{c}
AG=AB-GB=c-\frac {ax}{b}\\\\
BD=AB-DA=c-\frac {bx}{a}\end{array}\right| & \implies & GD=AB-AG-BD=\frac {x\left(a^2+b^2\right)-abc}{ab}\end{array}\right|$

Observe that $\left\|\begin{array}{ccc}
\frac {AG}{AH}=\frac {c-\frac {ax}{b}}{b-\frac {ax}{c}}=\frac cb=\frac {AB}{AC} & \implies & GH\parallel BC\\\\
\frac {BI}{BD}=\frac {a-\frac {bx}{c}}{c-\frac {bx}{a}}=\frac ac=\frac {BC}{BA} & \implies & ID\parallel CA\\\\
\frac {CE}{CF}=\frac {b-\frac {cx}{a}}{a-\frac {cx}{b}}=\frac ba=\frac {CA}{CB} & \implies & EF\parallel AB\end{array}\right\|$ $\implies$ the quadrilaterals $IGHF$ , $EIDH$ , $GEFD$ are isosceles trapezoids.

Denote midpoints $L$ , $M$ , $N$ of $[IF]$ , $[EH]$ , $[GD]$ respectively $\implies$ $\left\|\begin{array}{ccc}
d_a=\frac 12\cdot IF\cdot\tan A & \implies & d_a=\frac {x(b^2+c^2)-abc}{2bc}\cdot \tan A\\\\
 d_b=\frac 12\cdot EH\cdot\tan B & \implies & d_b=\frac {x(c^2+a^2)-abc}{2ca}\cdot \tan B\\\\ 
d_c=\frac 12\cdot GD\cdot\tan C & \implies & d_c=\frac {x(a^2+b^2)-abc}{2ab}\cdot \tan C\end{array}\right\|$ .

But $2ah_a=4S=\left(b^2+c^2-a^2\right)\cdot \tan A$ $\implies$ $\frac {\tan A}{h_a}=\frac {2a}{b^2+c^2-a^2}$ a.s.o. Thus, $\left\|\begin{array}{c}
\frac {d_a}{h_a}=\frac {a\left[x(b^2+c^2)-abc\right]}{bc(b^2+c^2-a^2)}\\\\
 \frac {d_b}{h_b}=\frac {b\left[x(c^2+a^2)-abc\right]}{ca(c^2+a^2-b^2)}\\\\
\frac {d_c}{h_c}=\frac {c\left[x(a^2+b^2)-abc\right]}{ab(a^2+b^2-c^2)}\end{array}\right\|\ \bigoplus\stackrel{(*)}{\implies}$

$1=x\cdot\sum\frac {a(b^2+c^2)}{bc(b^2+c^2-a^2)}-\sum\frac {a^2}{b^2+c^2-a^2}$ $\implies$ $x=abc\cdot \frac {1+\sum\frac {a^2}{b^2+c^2-a^2}}{\sum\frac {a^2(b^2+c^2)}{b^2+c^2-a^2}}$ $\implies$ $\boxed {x=\frac {2abc}{a^2+b^2+c^2}\ }$ because for $\left\{\begin{array}{c}
x^2=u\\\
y^2=v\\\
z^2=w\end{array}\right\|$ have

$\frac {1+\sum\frac {u}{v+w-u}}{\sum\frac {u(v+w)}{v+w-u}}=\frac {2}{\sum u}$ $\iff$ $\sum u+\sum \frac {u(u+v+w)}{v+w-u}=2\cdot \sum\frac {u(v+w)}{v+w-u}$ $\iff$ $\sum\left[u+\frac {u(u+v+w)}{v+w-u}\right]=\sum\frac {2u(v+w)}{v+w-u}$ , what is truly.

For $x=\frac {2abc}{a^2+b^2+c^2}$ obtain $\frac {d_a}{h_a}=\frac {a^2}{a^2+b^2+c^2}$ a.s.o., i.e. $P\left(\frac {a^2}{a^2+b^2+c^2},\frac {b^2}{a^2+b^2+c^2},\frac {c^2}{a^2+b^2+c^2}\right)$ is Lemoine's point of $\triangle ABC$ .


Proof (synthetic - luisgeometria's). Assume that $FG$ , $HI$ are equal and antiparallel to $AC$ , $AB$ respectively and $P \in FG \cap IH$ . Observe that $GHFI$ is an isosceles trapezoid with $GH \parallel IF$ and from $\angle PGH =\angle PHG=\angle BAC$ obtain that $AP$ is identical to the $A$-symmedian of $\triangle ABC$. Thus, point $P$ of ''equal antiparallels'' is symmedian point $K$ of $\triangle ABC$, i.e. $DEFGHI$ is concyclic on a circle with center $K$. Let $S$ be the foot of the $A$-symmedian and $M$ be the midpoint of $BC$ $\Longrightarrow$ $AK$ , $AM$ are homologous medians of the similar triangles $\triangle ADE \sim \triangle ACB$. Consequently, we have the following well-known expressions $\frac{DE}{BC}=\frac{AK}{AM} \ , \ \frac{AK}{AS}=\frac{b^2+c^2}{a^2+b^2+c^2} \ , \ \frac{AS}{AM}=\frac{2bc}{b^2+c^2}$ $\Longrightarrow \ DE=FG=HI=\frac{2abc}{b^2+c^2} \cdot \frac{b^2+c^2}{a^2+b^2+c^2}=\frac{2abc}{a^2+b^2+c^2}$ .
This post has been edited 55 times. Last edited by Virgil Nicula, Nov 23, 2015, 2:13 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a