96. Integrals.

by Virgil Nicula, Aug 31, 2010, 10:25 PM

$1.\blacktriangleright$ Ascertain the indefinite integral for the following functions :

$\boxed{\ \begin{array}{ccccccc}
\frac{1}{x^4+ax^2+1}  & \frac{x^2+x}{(e^x+x+1)^2} & \frac{\ln x}{x^2\sqrt {x^2+1}} & \left(\frac{x}{x\sin x+\cos x}\right)^2 & \frac{x\ln x}{(x^2+1)^2} & \frac{x^2}{(x^2-4)\sin x+4x\cos x} &  \frac {1 - \ln x}{x^2 +\ln^2 x}\\\\ 
\frac {1+\sin x}{1+\sin 2x} & \frac {1}{x^3(x+1)^2} & \frac {1}{\left(x^2+a^2\right)\sqrt{x^2+a^2}} & \frac{2x^3+1}{(x^3-1)\sqrt{x^6-2x^3+x^2+1}} & \frac {\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt {\cos x}} & \frac{1}{x\sqrt{x^n+a}} & \left(\frac{\arctan x}{\arctan x-x}\right)^{2}\end{array}\ }$


Proof.

$\blacktriangleleft I_1=\int \frac{1}{x^4+ax^2+1}\ \mathrm{dx}$ and $J=\int \frac{x^2}{x^4+ax^2+1}\ \mathrm{dx}$ . Thus $I_1+J=\int \frac{\left( x-\frac 1x\right) '}{\left( x-\frac 1x\right)^2+2+a}\ \mathrm{dx}$ and

$J-I_1=\int \frac{\left( x+\frac 1x\right) '}{\left( x+\frac 1x\right)^2+a-2}\ \mathrm{dx}$ . Remark. There are five cases: $a<-2\ ;\ a=-2\ ;\ -2<a<2\ ;\ a=2\ ;\ a>2$ .

$\blacktriangleleft I_2=\int \frac{x^2+x}{(e^x+x+1)^2}\ \mathrm{dx}$ . Denote $A=\int\frac {1}{1+x+e^x}\ \mathrm{dx}$ , $B=\int\frac {x}{1+x+e^x}\ \mathrm{dx}$ , $C=\int\frac{x}{(1+x+e^x)^2}\ \mathrm{dx}$ ,

$D=\int\frac{x^2}{(1+x+e^x)^2}\ \mathrm{dx}$ . Thus, $\left\|\begin{array}{c}
B=\int\frac {\left(1+x+e^x\right)-\left(1+e^x\right)}{1+x+e^x}\ \mathrm{dx}=x-\int\frac {\left(1+x+e^x\right)'}{1+x+e^x}\ \mathrm{dx}=x-\ln\left(1+x+e^x\right)+\mathrm C\\\\
C=\int\frac {\left(1+x+e^x\right)-\left(1+e^x\right)}{\left(1+x+e^x\right)^2}\ \mathrm{dx}=\int\frac {1}{1+x+e^x}\ \mathrm{dx}-\int\frac {\left(1+x+e^x\right)'}{\left(1+x+e^x\right)^2}=A+\frac {1}{1+x+e^x}\\\\
D=\int\frac {x\left[\left(1+x+e^x\right)-\left(1+e^x\right)\right]}{\left(1+x+e^x\right)^2}\ \mathrm{dx}=B+\int x\cdot\left(\frac {1}{1+x+e^x}\right)'\ \mathrm{dx}=B+\frac {x}{1+x+e^x}-A\end{array}\right\|$ .

Thus, $I_2=D+C=B-A+\frac {x}{1+x+e^x}+A+\frac {1}{1+x+e^x}$ $\implies$ $\boxed{I_2=x-\ln\left(1+x+e^x\right)+\frac {1+x}{1+x+e^x}+\mathrm C}$ .

$\blacktriangleleft I_3=\int\frac{\ln x}{x^2\sqrt {x^2+1}}\ \mathrm{dx}=$ $-\ln x\cdot \frac {\sqrt{1+x^2}}{x}+\int\frac {\sqrt {1+x^2}}{x^2}\ \mathrm{dx}$ because (integrating by parts) $\left\{\begin{array}{ccc}
u(x)=\ln x & \implies & u'(x)=\frac 1x\\\\
v'(x)=\frac {1}{x^2\sqrt {1+x^2}} & \implies & v(x)=-\frac{\sqrt {1+x^2}}{x}\end{array}\right\|$ .

Yes, $v(x)=\int\frac {1}{x^2\sqrt{1+x^2}}=$ $\int\frac {1+x^2-x^2}{x^2\sqrt{1+x^2}}=$ $\int\frac {\sqrt{1+x^2}}{x^2}\mathrm{dx}-\ln\left(x+\sqrt {1+x^2}\right)$ . By parts

$\left\{\begin{array}{ccc}
f(x)=\sqrt{1+x^2} & \implies & f'(x)=\frac {x}{\sqrt {1+x^2}}\\\\
g'(x)=\frac {1}{x^2} & \implies & g(x)=-\frac 1x\end{array}\right\|$ obtain $\int\frac {\sqrt{1+x^2}}{x^2}\ \mathrm{dx}=$ $-\frac {\sqrt{1+x^2}}{x}+\ln\left(x+\sqrt{1+x^2}\right)$ .

Thus, $v(x)=-\frac {\sqrt{1+x^2}}{x}$ . In conclusion, $\boxed{I_3=-\frac {\ln x\cdot\sqrt{1+x^2}}{x}-\frac {\sqrt{1+x^2}}{x}+\ln\left(x+\sqrt{1+x^2}\right)+\mathrm C}$ .

$\blacktriangleleft I_4=\int\frac{x^2}{(x\sin x+\cos x)^2}\ \mathrm{dx}$ . But $x^2=x\sin x(x\sin x+\cos x)+x\cos x(x\cos x-\sin x)$ . Thus, $I_4=\int\frac{x\sin x}{x\sin x+\cos x}+J$ ,

where $J=\int (x\cos x-\sin x)\cdot\frac {x\cos x}{(x\sin x+\cos x)^2}\ \mathrm{dx}$ . By parts $\left\{\begin{array}{ccc}
u(x)=x\cos x-\sin x & \implies & u'(x)=-x\sin x\\\\
v'(x)=\frac {x\cos x}{(x\sin x+\cos x)^2} & \implies & v(x)=-\frac {1}{x\sin x+\cos x}\end{array}\right\|$

obtain $J=\frac {\sin x-x\cos x}{x\sin x+\cos x}-\int\frac {x\sin x}{x\sin x+\cos x}\ \mathrm{dx}$ . Thus, $\boxed{I_4=\frac {\sin x-x\cos x}{x\sin x+\cos x}+\mathrm C}$ .

$\blacktriangleleft I_5=\frac{x\ln x}{(x^2+1)^2}=$ $-\frac 12\cdot\frac {1}{1+x^2}\cdot\ln x+\frac 12\cdot\int\frac {1}{x(1+x^2)}\ \mathrm {dx}$ because (by parts) $\left\{\begin{array}{ccc}
f(x)=\ln x & \implies & f'(x)=\frac 1x\\\
g'(x)=\frac {x}{\left(1+x^2\right)^2} & \implies & g(x)=-\frac {1}{2\left(1+x^2\right)}\end{array}\right\|$ .

$\frac {1}{x\left(1+x^2\right)}=\frac 1x-\frac {x}{1+x^2}\implies$ $\int\frac {1}{x\left(1+x^2\right)}\ \mathrm{dx}=$ $\ln |x|-\frac 12\cdot \ln\left(1+x^2\right)+C$ .

Thus, $\boxed{I_4=-\frac {\ln x}{2\left(1+x^2\right)}+\frac 12\cdot\ln |x|-\frac 14\cdot\ln\left(1+x^2\right)+C}$ .

$\blacktriangleleft$ Let $x\in (0,\pi )$ and $I=\int {\frac{{x^2 }}{{(x^2  - 4)\sin x + 4x\cos x}}}\mathrm{dx} =$ $\int {\frac{{\frac{{x^2 }}{{(x^2  + 4)}}}}{{\frac{{(x^2  - 4)}}{{(x^2  + 4)}}\sin x + \frac{{4x}}{{(x^2  + 4)}}\cos x}}}\ \mathrm{dx}$ . Use the substitution $\boxed{x = 2\cot\frac t2}$ , i.e.

$t=2\arctan\frac 2x$ . Therefore, $\left\|\begin{array}{c}
\mathrm{dx} =  -\csc ^2 \frac t2\\\\
\frac{{(x^2  - 4)}}{{(x^2  + 4)}} = \cos t\\\\
\frac{{4x}}{{(x^2  + 4)}} = \sin t\end{array}\right\|$ . Thus $I =  - \int \frac{\cos^2\frac t2\cdot \csc ^2 \frac t2}{\cos t \sin x + \sin t\cos x}\ \mathrm{dt}=$ $- \int \frac{\cot^2 \frac t2}{\sin\left( t  + 2\cot\frac t2\right)}\ \mathrm{dt}$ . Use the

substitution $\boxed{y = t + 2\cot\frac t2}$ , where $\mathrm{dy}= - \cot^2 \frac t2\ \mathrm{dt}$ . In conclusion, $ I=- \int \frac{\cot^2 \frac t2}{\sin\left( t + 2\cot\frac t2\right)}\  \mathrm{dt}= \int \csc y\ \mathrm{dy}=$ $\ln\left|\tan\frac y2\right|=$

$\ln\left|\tan\left(\frac t2+\cot\frac t2\right)\right|=$ $\ln\left|\tan\left(\arctan\frac 2x+\frac x2\right)\right|=$ $\ln\left|\frac {\frac 2x+\tan\frac x2}{1-\frac 2x\cdot\tan\frac x2}\right|$ $\implies$ $\boxed {I=\ln\left|\frac {2+x\cdot\tan\frac x2}{x-2\cdot\tan\frac x2}\right|+C}$ .


$\blacktriangleleft\ I_7=\int\frac {1 - \ln x}{x^2 +\ln^2 x}\ \mathrm{dx}=$ $\int\frac {\frac {1-\ln x}{x^2}}{1+\left(\frac {\ln x}{x}\right)^2}\ \mathrm{dx}=$ $\int\frac {\left(\frac {\ln x}{x}\right)'}{1+\left(\frac {\ln x}{x}\right)^2}\ \mathrm{dx}=$ $\arctan\frac {\ln x}{x}+\mathbb C$ .

$\blacktriangleleft\ I_8=\int\frac {1+\sin x}{1+\sin 2x}\ \mathrm{dx}$ . Denote $ W=\int\frac {1}{1+\sin 2x}\ \mathrm {dx}$ , $ U=\int \frac {\sin x}{1+\sin 2x}\ \mathrm{dx}$ , $ V=\int\frac {\cos x}{1+\sin 2x}\ \mathrm {dx}$ . Thus, $ I=W+U$ .

$ W=\int \frac {\sin^2x+\cos^2x}{(\sin x+\cos x)^2}\ \mathrm {dx}=$ $ \int\frac {1+\tan^2x}{(1+\tan x)^2}\ \mathrm{dx}=$ $ \int\frac {(1+\tan x)'}{(1+\tan x)^2}\ \mathrm {dx}=-\frac {1}{1+\tan x}+\mathrm C\implies \boxed {\ W=-\frac {\cos x}{\sin x+\cos x}+\mathrm C\ }$ .

$ V-U=\int\frac {\cos x-\sin x}{1+\sin 2x}\ \mathrm {dx}=$ $ \int\frac {(\sin x+\cos x)'}{(\sin x+\cos x)^2}\ \mathrm {dx}=$ $ -\frac {1}{\sin x+\cos x}+\mathrm C\implies \boxed {\ V-U=-\frac {1}{\sin x+\cos x}+\mathrm C\ }$ .

$ V+U=\int\frac {\sin x+\cos x}{(\sin x+\cos x)^2}\ \mathrm{dx}=\int\frac {1}{\sin x+\cos x}\ \mathrm {dx}=\int\frac {\left(x-\frac {\pi}{4}\right)'}{\sqrt 2\cdot \cos\left(x-\frac {\pi}{4}\right)}\ \mathrm{dx}$ . Since $ \int\frac {1}{\cos t}\ \mathrm{dt}=\frac 12\cdot\ln\left|\frac {1+\sin t}{1-\sin t}\right|+\mathrm C$

obtain $ \boxed {\ V+U=\frac {\sqrt 2}{4}\cdot\ln\left|\frac {1+\sin \left(x-\frac {\pi}{4}\right)}{1-\sin\left(x-\frac {\pi}{4}\right) }\right|+\mathrm C\ }$ a.s.o.

$\blacktriangleleft$ For $\{m,n\}\subset\mathbb N^*$ we have $I_{m,n}\equiv\int\frac {1}{x^m(x+1)^n}\ \mathrm {dx}=\int\frac {(x+1)-x}{x^m(x+1)^n}\ \mathrm {dx}\implies$ $\boxed{I_{m,n}=I_{m,n-1}-I_{m-1,n}}$ .

For $m\ge 2$ we have $I_{m,0}=\int\frac {1}{x^m}\ \mathrm {dx}=-\frac {1}{(m-1)x^{m-1}}+\mathrm C$ and $I_{0,m}=\int\frac {1}{(x+1)^m}\ \mathrm {dx}=-\frac {1}{(m-1)(x+1)^{m-1}}+\mathrm C$ .

In conclusion, $I_{3,2}=I_{3,1}-I_{2,2}=$ $\left[I_{3,0}-I_{2,1}\right]-\left[I_{2,1}-I_{1,2}\right]=I_{3,0}-2\cdot I_{2,1}+I_{1,2}=$

$I_{3,0}-2\cdot \left[I_{2,0}-I_{1,1}\right]+\left[I_{1,1}-I_{0,2}\right]=$ $I_{3,0}-2\cdot I_{2,0}+3\cdot I_{1,1}-I_{0,2}=$ $I_{3,0}-2\cdot I_{2,0}+3\cdot\left[I_{1,0}-I_{0,1}\right]-I_{0,2}$ $\implies$

$I_{3,2}=I_{3,0}-2\cdot I_{2,0}+3\cdot\left[I_{1,0}-I_{0,1}\right]-I_{0,2}$ $\implies$ $\boxed{\ I_{3,2}=-\frac {1}{2x^2}+\frac 2x+3\ln\left|\frac {x}{x+1}\right|+\frac {1}{x+1}+\mathrm C\ }$ .

$\blacktriangleleft\ J=\frac{1}{2}\cdot\int(x^{2}+a^{2})^{-\frac{3}{2}}(x^{2}+a^{2})'\ dx$ $\Longrightarrow$ $\boxed{\ J=-\frac{1}{\sqrt{x^{2}+a^{2}}}+C\ }$ and $I_9=\frac{1}{a^{2}}\int\frac{(x^{2}+a^{2})-x^{2}}{(x^{2}+a^{2})\sqrt{x^{2}+a^{2}}}\ dx=$

$\frac{1}{a^{2}}\left(\ln\left|x+\sqrt{x^{2}+a^{2}}\right|-K\right)\ ,$ where $K=\int\frac{x^{2}}{(x^{2}+a^{2})\sqrt{x^{2}+a^{2}}}\ dx$ . Thus, $\boxed{\ \begin{array}{ccc}f(x)=x & \Longrightarrow & f'(x)=1\\\\ g'(x)=\frac{x}{(x^{2}+a^{2})\sqrt{x^{2}+a^{2}}}& \Longrightarrow & g(x)=J=-\frac{1}{\sqrt{x^{2}+a^{2}}}\end{array}\ }$ $\Longrightarrow$

$K=-\frac{x}{\sqrt{x^{2}+a^{2}}}+\int\frac{1}{\sqrt{x^{2}+a^{2}}}\ dx$ $\Longrightarrow$ $\boxed{\ K=-\frac{1}{\sqrt{x^{2}+a^{2}}}+\ln\left|x+\sqrt{x^{2}+a^{2}}\right|\ }$ and $\boxed{\ I_9=\frac{x}{a^{2}\sqrt{x^{2}+a^{2}}}+C\ }\ .$


$\blacktriangleleft$ Let $x>1$ and $F=\int \frac{2x+\frac{1}{x^2}}{\left(x^2-\frac 1x\right)\sqrt{x^4-2x+1+\frac{1}{x^2}}}\ dx=$ $\int \frac{\left(x^2-\frac 1x\right)'}{\left(x^2-\frac 1x\right)\sqrt{\left( x^2-\frac 1x\right)^2+1}}\ dx=$ $G\left(x^2-\frac 1x\right)+C$ ,

where $G=\int \frac{1}{t\sqrt{1+t^2}}\ dt=-\int \frac{\left(\frac 1t\right)'}{\sqrt{1+\left(\frac 1t\right)^2}}\ dt=$ $-H\left(\frac 1t\right)+C$, where $H=\int \frac{1}{\sqrt{1+y^2}}\ dy=\ln \left(y+\sqrt{1+y^2}\right)+C$ .

Therefore, $G(t)=\ln\left(\sqrt{1+t^2}-1\right)-\ln t+C$ $\Longrightarrow$ $\boxed{F(x)=\ln \frac{\sqrt{x^6-2x^3+x^2+1}-x}{x^3-1}+C}$ .

$\blacktriangleleft\ I_{12}\equiv\int \frac {\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt {\cos x}}\ \mathrm{dx}=$ $\int \frac {\sqrt{\tan x}}{1+\sqrt{\tan x}}\ \mathrm{dx}=$

$\int \frac {\sqrt{\tan x}}{1+\sqrt{\tan x}}\cdot\frac {2\sqrt{\tan x}}{1+\tan^2x}\cdot\left(\sqrt{\tan x}\right)'\ \mathrm{dx}=$ $F(\tan x)$, where $F(y)=\int\frac {2y^2}{(1+y)(1+y^4)}\ \mathrm{dx}$ a.s.o.

$\blacktriangleleft\ I_{13}\equiv \int \frac{1}{x\sqrt{x^n+a}}\ \mathrm{dx},\ n\in N^*,\ a\ne 0$ . Thus, $\boxed {y\equiv \phi (x)=x^n}\ ,\ \phi '(x)=nx^{n-1}$ $\Longrightarrow$

$I_{13}=\frac 1n\int \frac{1}{x^n\sqrt{x^n+a}} (x^n)'\ \mathrm{dx}=$ $\frac 1n Y\ ,\ Y\equiv \int \frac{1}{y\sqrt{y+a}}\ \mathrm{dy}$ and $\boxed {z\equiv \psi (y)=\sqrt{y+a}}\ ,\ \psi '(y)=\frac{1}{2\sqrt{y+a}}$ $\Longrightarrow$

$Y=2\int \frac{1}{\left(\sqrt{y+a}\right)^2-a}\left(\sqrt{y+a}\right)'\ \mathrm{dy}=2Z\ ,\ Z\equiv \int \frac{1}{z^2-a} \ \mathrm{dz}$ . If $a<0$, then $Z=\frac{1}{\sqrt{-a}} \arctan \frac{z}{\sqrt{-a}}+C$ $\Longrightarrow$

$ I_{13}=\frac{2}{n\sqrt{-a}}\arctan \sqrt{\frac{x^n+a}{-a}}+C$ . If $a>0$, then $Z=\frac{1}{2\sqrt a} \ln \left|\frac{z-\sqrt a}{z+\sqrt a}\right| +C$ $\Longrightarrow$ $ I_{13}=\frac{1}{n\sqrt a}\ln \frac{\sqrt{x^n +a}-\sqrt a}{\sqrt{x^n+a}+\sqrt a}+C$ .

$\blacktriangleleft\ I_{14}=\int\left(\frac{\arctan x}{\arctan x-x}\right)^{2}\ \mathrm{dx} =$ $\int\frac{\left(x^2+1\right)\arctan^2x}{x^2}\cdot $ $\frac {x^2}{\left(x^2+1\right)(\arctan x-x)^2}\ \mathrm{dx}$ . Integrate by parts :

$\left\{\begin{array}{ccc}
u(x)=\frac{\left(x^2+1\right)\arctan^2x}{x^2} & \implies & u'(x)=-\frac {2\arctan x(\arctan x-x)}{x^3}\\\\
v'(x)=\frac {x^2}{\left(x^2+1\right)(\arctan x-x)^2} & \implies & v(x)=\frac {1}{\arctan x-x}\end{array}\right\|\implies$ $\boxed{I_{14}=\frac{\left(x^2+1\right)\arctan^2x}{x^2(\arctan -x)}+2J}$ ,

where $J=\int\frac {\arctan x}{x^3}\ \mathrm{dx}$ . Integrate by parts : $\left\{\begin{array}{ccc}
u(x)=\arctan x & \implies & u'(x)=\frac {1}{x^2+1}\\\\
v'(x)=\frac {1}{x^3} & \implies & v(x)=-\frac {1}{2x^2}\end{array}\right\|\implies$ $\boxed{J=-\frac {\arctan x}{2x^2}+\frac 12\cdot K}$ ,

where $K=\int\frac {1}{x^2\left(x^2+1\right)}\ \mathrm{dx}=$ $\int\left(\frac {1}{x^2}-\frac {1}{x^2+1}\right)\ \mathrm{dx}\implies$ $\boxed{K=-\frac 1x-\arctan x+\mathbb C}$ . In conclusion, obtain by return way that

$J=-\frac {\arctan x}{2x^2}-\frac {1}{2x}-\frac 12\cdot\arctan x+\mathbb C\implies$ $\boxed{I_{14}=\frac {\left(x^2+1\right)\arctan^2x}{x^2(\arctan x-x)}-\frac {\arctan x}{x^2}-\frac 1x-\arctan x+\mathbb C}$ .



$2.\blacktriangleright$ Prove that $\int_{0}^{\frac{\pi}{2}}\sin x\sqrt{\sin 2x}\ dx\ =\sqrt 2\int^{\frac{\pi}{4}}_0 \cos x\sqrt{\cos 2x}\ dx=\ \int_{-1}^{1}\sqrt{1-x^2}\ dx$ ;

Proof. Let $I=\int_{0}^{\frac{\pi}{2}}\sin x\sqrt{\sin 2x}\ \mathrm{dx}$ . So $I=\int_{0}^{\frac{\pi}{2}}\cos x\sqrt{\sin 2x}\ \mathrm{dx}$ . Adding we get $2I=\int_{0}^{\frac{\pi}{2}}(\sin x+\cos x)\sqrt{\sin 2x}\ \mathrm{dx}$ .

Now substitute $t=\sin x-\cos x$ , where $\mathrm{dt}= (\cos x+\sin x)\mathrm{dx}$ . When $x=0$ , then $t= -1$ and when $x=\frac{\pi}2$ , then $t=1$ .

Use $\sin 2x=1-(\sin x-\cos x)^2$ . But this will give $2I=\int_{-1}^{1}\sqrt{1-x^2}\ \mathrm{dx}$ , i.e. $I=\frac {\pi}{4}$ .

Otherwise. $A\equiv \int^{\frac{\pi}{2}}_0 \sin x\sqrt{\sin 2x}\ \mathrm{dx}=$ $\int^{\frac{\pi}{2}}_0 \sin \left( \frac{\pi}{2}-x\right)\sqrt{\sin 2\left(\frac{\pi}{2}-x\right)}\ \mathrm{dx}=$ $\int^{\frac{\pi}{2}}_0 \cos x\sqrt{\sin 2x}\ \mathrm{dx}\Longrightarrow$

$2A= \int^{\frac{\pi}{2}}_0 (\cos x+\sin x)\sqrt{\sin 2x}\ \mathrm{dx}=$ $\int^{\frac{\pi}{2}}_0 \sqrt{1-(\sin x-\cos x)^2}\cdot (\sin x-\cos x)'\ \mathrm{dx}=$ $\int^1_{-1} \sqrt{1-x^2}\ \mathrm{dx}=$

$2\int^1_0 \sqrt{1-x^2}\ \mathrm{dx}=$ $\frac{\pi}{2}\Longrightarrow A=\frac{\pi}{4}$ . Thus, $CC\equiv \int^{\frac{\pi}{4}}_0 \cos x\sqrt{\cos 2x}\ \mathrm{dx}=$ $\int^{\frac{\pi}{4}}_0 (1-2\sin^2x)^{\frac 12} (\sin x)'\ \mathrm{dx}=$

$\int^{\frac{\sqrt 2}{2}}_0 \sqrt{1-2x^2}\ \mathrm{dx}=$ $\frac{1}{\sqrt 2}\int^{\frac{\sqrt 2}{2}}_0 \sqrt{1-(x\sqrt 2 )^2}\cdot (x\sqrt 2)'\ \mathrm{dx}=$ $\frac{1}{\sqrt 2}\int^1_0 \sqrt{1-x^2}\ \mathrm{dx}=\frac{\pi \sqrt 2}2\ .$

Remark Ascertain elegantly the following definite integrals : $CC\equiv \int^{\frac{\pi}{4}}_0 \cos x\sqrt{\cos 2x}\ \mathrm{dx}\ ,$ $CS\equiv \int^{\frac{\pi}{4}}_0 \cos x\sqrt{\sin 2x}\ \mathrm{dx}\ ,$

$SS\equiv \int^{\frac{\pi}{4}}_0 \sin x\sqrt{\sin 2x}\ \mathrm{dx}\ ,$ $SC\equiv \int^{\frac{\pi}{4}}_0 \sin x\sqrt{\cos 2x}\ \mathrm{dx}$ . Indication. $CS+SS=\ldots\ ,\ CS-SS=\ \ldots$ a.s.o.



$3.\blacktriangleright$ Let $f\ :\ (0,\infty)\rightarrow R$ be a function, where $ f(\lambda)=\int_{0}^{2\pi}\frac{\sin x}{x+\lambda}\ \mathrm{dx}$ . Prove that $f(\lambda)>0$ , $\lim_{\lambda\rightarrow\infty}f(\lambda)=0$ and $\lim_{\lambda\rightarrow\infty}{\lambda}^2f(\lambda)=2\pi$ .

Proof. Integrate by parts, using $(1-\cos x)$ as the antiderivative of $\sin x\ :\ f(\lambda)=$ $\int_0^{2\pi} \frac{\sin x}{x+\lambda}\ \mathrm{dx}=$ $\left|\frac{1-\cos x}{x+\lambda}\right|_0^{2\pi}+ \int_0^{2\pi} \frac{1-\cos x}{(x+\lambda)^2}\ \mathrm{dx}=$

$\int_0^{2\pi} \frac{1-\cos x}{(x+\lambda)^2}\ \mathrm{dx}$ . Since the integrand in this version is positive on $(0,2\pi),$ it is clear that $f(\lambda)>0$ and $\lambda^2f(\lambda)=$ $\int_0^{2\pi} \frac{1-\cos x}{\left(1+\frac{x}{\lambda}\right)^2}\ \mathrm{dx}$ . As $\lambda\to\infty$

the integrand converges uniformly to $(1-\cos x)$ . Hence $\lim_{\lambda\to\infty}\lambda^2f(\lambda)=\int_0^{2\pi}(1-\cos x)\ \mathrm{dx}=2\pi$ . After the fact, the existence of this limit implies that

$f(\lambda)\to 0$ as $\lambda\to\infty$ although we could have proved that directly in several other ways. It is also clear that $f(\lambda)$ is a decreasing function for $\lambda>0$ and that

$\lim_{\lambda\searrow 0}f(\lambda)$ exists and equals $\int_0^{2\pi}\frac{\sin x}x\ \mathrm{dx}$ which is a finite positive number.

Otherwise. $f(\lambda)=\int^{\pi}_{-\pi}\frac{\sin x}{\pi -x+\lambda}\ \mathrm{dx}=$ $\int^{\pi}_0 \left(\frac{\sin x}{\pi+\lambda -x}-\frac{\sin x}{\pi+\lambda +x}\right)\ \mathrm{dx}=$ $\int^{\pi}_0 \frac{2x\sin x}{(\pi +\lambda )^2-x^2}\ \mathrm{dx}$ .

$\left(\forall\right)x\in [0,\pi ],\frac{2x\sin x}{(\pi +\lambda )^2}\le \frac{2x\sin x}{(\pi +\lambda )^2-x^2}\le \frac{2x\sin x}{(\pi +\lambda )^2-\pi ^2}$ and $\int^{\pi}_0 x\sin x\ \mathrm{dx}=\pi\Longrightarrow$

$\left(\forall\right) \lambda >0,\frac{2\pi}{(\pi +\lambda )^2}\le f(\lambda )\le \frac{2\pi}{(\pi +\lambda )^2-\pi ^2}\Longrightarrow$ $f(\lambda )>0,\lim_{\lambda\to \infty }f(\lambda ) =0,\lim_{\lambda\to \infty} \lambda ^2 f(\lambda )=2\pi$ .



$4.\blacktriangleright$ Consider the function $f\ : \ [0,1]\rightarrow [0,\infty ),\ f\in C^{(1)};\ a_n=\int^1_0 \frac{f(x)}{1+x^n}\ \mathrm{dx},\ n\in N^*$ . Prove that

the sequence $a_n,\ n\in N^*$ is convergently, i.e. $a_n\rightarrow l\in R$ and $\lim_{n\to \infty} n(l-a_n)=f(1)\ln 2$ .


Remark See here and at the publishing house my book Probleme de analiza matematica (clasa a XII - a), Editura ALL, Bucuresti, 2002.

Proof. $\left(\forall\right)n\in N^*,0\le \int^1_0 f(x)\ \mathrm{dx}-\int^1_0\frac{f(x)}{x^n+1}\ \mathrm{dx}=\int^1_0\frac{x^n}{x^n+1}f(x)\ \mathrm{dx}$ $\le A\int^1_0 x^n\ \mathrm{dx}=\frac{A}{n+1}$ , where $\left(A=\sup_{0\le x\le 1} f(x)\right)\Longrightarrow$

$\lim_{n\to \infty} \int^1_0 \frac{f(x)}{x^n+1}\ \mathrm{dx}=\int^1_0 f(x)\ \mathrm{dx}\equiv l$ . Therefore, $n\left( l-a_n\right) =\int^1_0 \frac{nx^{n-1}}{x^n+1}\cdot xf(x)\ \mathrm{dx}=f(1)\ln 2-b_n$ , where

$b_n=\int^1_0 [f(x)+xf'(x)]\ln \left(x^n+1\right)\ \mathrm{dx}\le \int^1_0 [f(x)+xf'(x)]x^n\ \mathrm{dx}\le$ $A\int^1_0 x^n dx+B\int^1_0 x^{n+1}\ \mathrm{dx}=\frac{A}{n+1}+\frac{B}{n+2}\rightarrow 0$,

where $B=\sup_{0\le x\le 1} f'(x)$ . Therefore, $b_n\rightarrow 0$ and $\lim_{n\to \infty} n\left(l-a_n\right)=f(1)\ln 2$ .



$5.\blacktriangleright$ Some usual formulas.

$\blacksquare\ 1^{\circ}.\ \int^{b}_{a}f(x) dx =\int^{b}_{a}f(a+b-x) dx$ .

$ \blacksquare\ 2^{\circ}.\ \int^{b}_{a}f(x) dx =\int^{\frac{b-a}{2}}_{-\frac{b-a}{2}}f\left(\frac{a+b}{2}-x\right) dx$ .

$ \blacksquare\ 3^{\circ}.\ \int^{b}_{a}f(x)dx =\int^{\frac{b-a}{2}}_{0}\left[ f\left(\frac{a+b}{2}-x\right)+f\left(\frac{a+b}{2}+x\right)\right] dx$ .

$ \blacksquare\ 4^{\circ}.\ a > 0,\ f:\left[\frac{1}{a},a\right]\rightarrow R\Longrightarrow\int^{a}_{\frac{1}{a}}f(x)dx =\int^{a}_{\frac{1}{a}}\frac{1}{x^{2}}f\left (\frac{1}{x}\right) dx$ .

$ \blacksquare\ 5^{\circ}\ .$ $T > 0\ ,\ (\forall )\ x\in R$ , $f(x+T)=f(x)$ $\iff$ $ \int^{a+nT}_{a}f(x) \mathrm{dx} =$ $ n\int^{T}_{0}f(x+a) dx=n\int^{a+T}_{a}f(x) dx$ .

$ \blacksquare\ 6^{\circ}.\ F,f: R\rightarrow R,\ F' = f\Longrightarrow\lim_{x\to\infty}\frac{1}{x}F(x) =\frac{1}{T}\int^{T}_{0}f(x)dx$ .

$ \blacksquare\ 7^{\circ}$ If the function $f:[0,1]\rightarrow \mathbb R$ is integrablely, then $\lim_{n\to\infty}\ \frac 1n\cdot\sum_{k=1}^nf\left(\frac kn\right)=\int_0^1f(x)\ \mathrm {dx}$ .
Generally, if the function $f:[a,b]\rightarrow \mathbb R$ is integrablely, then for any $\lambda\in [0,1]$ , $\lim_{n\to\infty}\ \frac 1n\cdot\sum_{k=1}^nf\left[a+\frac {(k-\lambda )(b-a)}{n}\right]=\int_a^bf(x)\ \mathrm{dx}$ .

$ \blacksquare\ 8^{\circ}$ If $f:[0,1]\rightarrow \mathbb R$ is derivably and $f''$ is integrably , then $\lim_{n\to\infty}\ n\left[\frac 1n\cdot\sum_{k=1}^nf\left(\frac kn\right)-\int_0^1f(x)\ \mathrm{dx}\right]=\frac 12\cdot [f(1)-f(0)]$ .

Generally, if $f:[a,b]\rightarrow \mathbb R$ is derivably and $f'$ is integrably, then for any $\lambda\in [0,1]$ ,
$\lim_{n\to\infty}\ n\cdot \left\{\frac {b-a}{n}\cdot \sum_{k=1}^nf\left[a+\frac {(b-a)(k-\lambda )}{n}\right]-\int_a^bf(x)\ \mathrm{dx}\right\}=$ $\left(\frac 12-\lambda \right)(b-a)[f(b)-f(a)]$ .

$ \blacksquare\ 9^{\circ}$ If $f:[0,1]\rightarrow \mathbb R$ is $2$-derivably and $f''$ is integrably , then $\lim_{n\to\infty}\ n^2\left[\int_0^1 f(x)\ \mathrm{dx}-\frac 1n\cdot\sum_{k=1}^n f\left(\frac {2k-1}{2n}\right)\right]=$ $\frac {1}{24}\cdot [f'(1)-f'(0)]$ .

Generally, if $f:[a,b]\rightarrow \mathbb R$ is $2$-derivablely and $f''$ is integrably, then $\lim_{n\to\infty}\ n^2\cdot \left\{ \int_a^b f(x)\ \mathrm {dx}- \frac {b-a}{n}\cdot\sum_{k=1}^n f\left[a+\frac {b-a}{n}\cdot\left(k-\frac 12\right)\right]\right\}=\frac {(b-a)^2}{24}\cdot \left[f'(b)-f'(a)\right]$ .

$ \blacksquare\ 10^{\circ}$ If the function $f:[a,b]\rightarrow [c,d]$ is continue and bijective, then $\int_a^bf(x)\ \mathrm{dx}+\int_c^df^{-1}(x)\ \mathrm{dx}=bd-ac$ .

$ \blacksquare\ 11^{\circ}$ (Young's inequality) If the function $f:[0,\infty )\rightarrow\mathbb R$ is continue , strict increasing and $f(0)=0$ , then for any $a>0$ , $c>0$ , $f(c)=b$ exists the relation $\int_0^af(x)\ \mathrm{dx}+\int_0^bf^{-1}(x)\ \mathrm{dx}\ge ab$ with equality if and only if $f(a)=b$ , i.e. $c=a$ .
Remark. An equivalent enunciation : $(\forall ) a>0\ ,\ c>0$ exists inequality $(a-c)f(c)\le \int_a^acf(x)\ \mathrm{dx}$ ..
Particular case.
If $f(x)=x^{p-1}$ , $p>1$ , then obtain Holder's inequality - $\frac 1p+\frac 1q=1\implies \frac {a^p}{p}+\frac {b^q}{q}\ge ab$ .

$ \blacksquare\ 12^{\circ}$ If the function $f:\mathbb R\rightarrow\mathbb R$ is continue and the functions $\alpha\ ,\  \beta$ belong to $\mathrm {C^1(R)}$ , then the function

$F(x)=\int_{\alpha (x)}^{\beta (x)}f(t)\ \mathrm{dt}$ is integrably and $F'(x)=f(\beta (x))\cdot\beta '(x)-f(\alpha (x))\cdot\alpha '(x)$ .


$****************************************$ $**********************************$


$6.\blacktriangleright$ Applications.


$\blacksquare\ 1^{\circ}.\ \boxed{I=\int^1_0 \frac{\ln (x+1)}{x^2+1}\ \mathrm{dx}=\frac {\pi\ln2}{8}}$ . Indeed, $I\equiv\int^1_0 \frac{\ln (x+1)}{x^2+1} \ \mathrm{dx}=$ $\int^1_0 \ln(1+x)(\arctan x)'\ \mathrm{dx}=$

$\int^{\frac{\pi}{4}}_0 \ln (1+\tan x)\ dx=$ $\int^{\frac{\pi}{4}}_0 \ln \left[1+\tan \left(\frac{\pi}{4} -x\right)\right] \ \mathrm{dx}=$ $\int^{\frac{\pi}{4}}_0\ln \frac{2}{1+\tan x}\ \mathrm{dx}=$ $\frac{\pi}{4}\ln 2 -I$ $\Longrightarrow I=\frac{\pi\ln 2}{8}$ .


$\blacksquare\ 2^{\circ}.\ \boxed{\lim_{n\to \infty}\ \int^1_0 \frac{1}{x^n-x+1}\ \mathrm{dx} =\infty}$ . Indeed, $\int^1_0\frac{1}{x^n-x+1}\ dx\ge \int^{\frac{1}{\sqrt [n] n}}_0 \frac{1}{x^n-x+1}\ dx\ge \int^{\frac{1}{\sqrt [n] n}}_0\frac{1}{\frac 1n -x+1}\ dx=$

$\ln \frac{1+\frac 1n}{1+\frac 1n -\frac{1}{\sqrt [n] n}}\rightarrow \infty$ . The open question : What is the set of the numbers $t\in [0,1)$ for which the sequence $a_n=\int^1_t\frac{1}{x^n-x+1}\ \mathrm{dx}$ is convergently ?


$\blacksquare\ 3^{\circ}.\ \boxed{\int^{\pi}_0 x\sin (\cos^2 x)\cos (\sin ^2x)\ \mathrm{dx}=\frac{{\pi}^2}{4}\sin 1}$ . Indeed, $I\equiv \int^{\pi}_0 x\sin (\cos^2x)\cos(\sin^2 x)\ \mathrm{dx}=$

$\int^{\pi}_0 (\pi -x)\sin (\cos^2x)\cos(\sin^2x)\ \mathrm{dx}=\pi J-I$ , where $J\equiv\int^{\pi}_0 \sin (\cos^2x)\cos (\sin^2 x)\ \mathrm{dx}$ . Thus, $\boxed{I=\frac{\pi}{2}\cdot J}$ and

$J=\frac 12\int^{\pi}_0 [\sin (\cos^2x+\sin^2x)+$ $\sin (\cos^2x-\sin^2x)]\ \mathrm{dx}=$ $\frac 12\int^{\pi}_0[\sin 1+\sin(\cos 2x)]\ \mathrm{dx}$ , i.e. $\boxed{J=\frac{\pi}{2}\sin 1+\frac 12\cdot K}$ , where

$K\equiv\int^{\pi}_0 \sin(\cos 2x)\ \mathrm{dx}=$ $\int^{\frac{\pi}{2}}_{-\frac{\pi}{2}} \sin\left[ \cos 2\left(\frac{\pi}{2}-x\right)\right]\ \mathrm{dx}=$ $-\int^{\frac{\pi}{2}}_{-\frac{\pi}{2}} \sin (\cos 2x)\ \mathrm{dx}=-2L$ , i.e. $\boxed{K=-2L}$ , where $L\equiv\int^{\frac{\pi}{2}}_0 \sin (\cos 2x)\ \mathrm{dx}=$

$\int^{\frac{\pi}{2}}_0 \sin \left[ \cos 2\left( \frac{\pi}{2}-x\right ) \right]\ \mathrm{dx}=$ $\int^{\frac{\pi}{2}}_0\sin (-\cos 2x)\ \mathrm{dx}=-L$ , i.e. $\overline {\underline {\left| \ L=-L\ \right| }}$ . Therefore, $L=0\Longrightarrow $ $K=0\Longrightarrow $ $J=\frac{\pi}{2}\sin 1\Longrightarrow $ $I=\frac{\pi^2}{4}\sin 1$ .


$\blacksquare\ 4^{\circ}.\ \boxed{\int^{\pi}_0 x\left[ \sin^2(\sin x)+\cos^2 (\cos x)\right]\ \mathrm{dx}=\frac{{\pi}^2}{2}}$ . Indeed, $I\equiv \int^{\pi}_0 x[\sin^2(\sin x)+\cos^2(\cos x)]\ \mathrm{dx}dx=$

$\int^{\pi}_0 (\pi -x)\{\sin^2[\sin(\pi -x)]+\cos^2[\cos (\pi -x)]\}\ \mathrm{dx}=$ $\int^{\pi}_0 (\pi -x)[\sin^2(\sin x)+\cos^2(\cos x)]\ \mathrm{dx}=\pi J-I$ . Thus $\overline {\underline {\left|\ I=\frac{\pi}{2} J\ \right| }}$, where

$J\equiv \int^{\pi}_0 [\sin^2(\sin x)+\cos^2(\cos x)]\ \mathrm{dx}=$ $\frac 12\int^{\pi}_0 [1-\cos(2\sin x)+1+\cos (2\cos x)]\ \mathrm{dx}=$ $\pi +\frac 12 K$ . Thus $\overline {\underline {\left| \ J=\pi+\frac 12K\ \right| }}$ , where

$K\equiv\int^{\pi}_0[\cos (2\cos x)-\cos (2\sin x)]\ \mathrm{dx}=$ $\int^{\frac{\pi}{2}}_{-\frac{\pi}{2}}\left\{\cos \left[ 2\cos\left(\frac{\pi}{2}-x\right)\right] -\cos \left[ 2\sin \left(\frac{\pi}{2}-x\right)\right]\right\}\ \mathrm{dx}=$ $\int^{\frac{\pi}{2}}_{-\frac{\pi}{2}} [\cos(2\sin x)-\cos (2\cos x)]\ \mathrm{dx}=$

$2\int^{\frac{\pi}{2}}_0[\cos (2\sin x)-\cos (2\cos x)]\ \mathrm{dx}=$ $2\left\{ \int^{\frac{\pi}{2}}_0 \cos \left[ 2\sin \left( \frac{\pi}{2} -x\right)\right]\ \mathrm{dx} -\int^{\frac{\pi}{2}}_0 \cos (2\cos x)\ \mathrm{dx}\right\}=0$.

Therefore, $K=0\Longrightarrow J=\pi\Longrightarrow I=\frac{\pi^2}{2}$ .


$\blacksquare\ 5^{\circ}.\ \boxed{\lim_{n\to \infty} \left( \frac{1^1\cdot 2^2\cdot 3^3\cdot \ldots \cdot n^n}{n^{1+2+3+\ldots +n}}\right)^{\frac{1}{n^2}}=e^{-\frac 14}}$ . For $a_n=\left[ \prod\limits_{k=1}^n\left(\frac kn\right)^{\frac kn} \right]^\frac 1n$ have $\ln\left(\lim_{n\to\infty} a_n\right)=\lim_{n\to\infty}\ln a_n=\lim_{n\to\infty}\frac 1n\sum\limits_{k=1}^n \frac kn\ln\frac kn=$

$\int^1_0x\ln x\ \mathrm{dx}=$ $\lim_{t\searrow 0} \int^1_t x\ln x\ \mathrm{dx}=$ $\lim_{t\searrow 0} \left|\left( \frac{x^2\ln x}{2}-\frac{x^2}{4}\right)\right|^1_t=$ $\lim_{t\searrow 0} \left(\frac{t^2}{4} -\frac 14 -\frac{t^2\ln t}{2}\right)=$ $-\frac 14$ $\Longrightarrow $ $\lim_{n\to \infty} a_n=$ $e^{-\frac 14}=\frac{1}{\sqrt [4] e}$ .


$\blacksquare\ 6^{\circ}.\ \boxed{\int^1_0 \frac{\arcsin \sqrt x}{x^2-x+1}\ \mathrm{dx}=\frac{\pi ^2\sqrt 3}{18}}$ . Indeed, $I\equiv\int^1_0 \frac{\arcsin \sqrt x}{x^2-x+1}\ \mathrm{dx}=$ $\int^1_0 \frac{\arcsin \sqrt{1-x}}{(1-x)^2-(1-x)+1}\ \mathrm{dx}=$

$\int^1_0 \frac{\arcsin \sqrt{1-x}}{x^2-x+1}\ \mathrm{dx}$ $\Longrightarrow$ $I=\frac 12\int^1_0 \frac{\arcsin \sqrt x+\arcsin \sqrt{1-x}}{x^2-x+1}\ \mathrm{dx}=$ $\frac{\pi}{4}\int^1_0 \frac{1}{x^2-x+1}\ \mathrm{dx}=$ $\frac{\pi}{4}\int^1_0 \frac{\left(x-\frac 12\right)'}{\left(x-\frac 12\right)^2+\frac 34}\ \mathrm{dx}=$

$\frac{\pi}{4}\int^{\frac 12}_{-\frac 12} \frac{1}{x^2+\frac 34}\ \mathrm{dx}=$ $\frac{\pi}{2}\int^{\frac 12}_0 \frac{1}{x^2+\frac 34}\ \mathrm{dx}=$ $\left(\frac{\pi}{2}\cdot \frac{2}{\sqrt 3}\cdot \arctan \frac{2x}{\sqrt 3}\right)^{\frac 12}_0=$ $\frac{\pi}{\sqrt 3}\cdot \frac{\pi}{6}=$ $\frac{\pi ^2\sqrt 3}{18}$ .


$\blacksquare\ 7^{\circ}.\ \boxed{\int^{\sqrt 3}_{\frac{1}{\sqrt 3}} \frac{\arctan\ x}{x}\ \mathrm{dx}=\frac{\pi}{4} \ln 3}$ . Indeed, $J\equiv\int^{\sqrt 3}_{\frac{1}{\sqrt 3}} \frac{\arctan x}{x}\ \mathrm{dx}=$ $\int^{\sqrt 3}_{\frac{1}{\sqrt 3}} \frac{\frac{\pi}{2}-\arctan \frac 1x}{-\frac 1x}\ \left (\frac 1x\right )^{'}\ \mathrm{dx}=$

$\int^{\sqrt 3}_{\frac{1}{\sqrt 3}} \frac{\frac{\pi}{2}-\arctan x}{x}\ \mathrm{dx}$ $\Longrightarrow$ $J=\frac{\pi}{4}\int^{\sqrt 3}_{\frac{1}{\sqrt 3}} \frac 1x\ \mathrm{dx}=$ $\left(\frac{\pi}{4}\ln x\right)^{\sqrt 3}_{\frac{1}{\sqrt 3}}=\frac{\pi\ln 3}{4}$ .


$\blacksquare\ 8^{\circ}.\ \boxed{\int^2_{\frac 12} \frac{x^n -1}{x^{n+2}+1}\ \mathrm{dx}=0}\ ,\ n\in N^*$ . Indeed, $J\equiv\int^2_{\frac 12} \frac{1-x^n}{1+x^{n+2}}\ \mathrm{dx}=$ $\int^2_{\frac 12}\frac{1-x^n}{1+x^{n+2}}(-x^2)\left(\frac 1x\right)^{'}\ \mathrm{dx}=$

$\int^2_{\frac 12} \frac{1-\frac{1}{x^n}}{1+\frac{1}{x^{n+2}}}\left(\frac 1x\right)^{'} \ \mathrm{dx}=$ $\int^2_{\frac 12} \frac{x^n-1}{x^{n+2}+1}\ \mathrm{dx}=-J\Longrightarrow J=0$ .


$\blacksquare\ 9^{\circ}.\ \left(\forall\right)k\in \overline {1,n}$ the functions $f_k\ : \ [a,b]\rightarrow (0,\infty )$ are increasing $\Longrightarrow$ $\boxed{\prod\limits_{k=1}^n \int^b_a f_k(x)\ dx\le (b-a)^{n-1}\cdot \int^b_a\prod\limits_{k=1}^nf_k(x)\ \mathrm{dx}}$ (Chebyshev's inequality).

Indeed, denote $X.s.s.Y$ $\Longleftrightarrow$ $XY>0\ \vee\ X=Y=0$, i.e. $X,Y$ have the same sign. Let $\{ m,n\}\subset N^*$ so that $\left( \forall \right) i\in \overline {1,m}$, $\left(\forall\right)j\in \overline {1,n}$

we have $a_{ij}>0$ and $\left(\forall\right) \{i,l\}\subset \overline {1,m}$ and $\left(\forall\right) \{j,k\}\subset \overline {1,n},\ (a_{ij}-a_{ik}).s.s.(a_{lj}-a_{lk})$ . Then $\prod\limits_{i=1}^m\sum\limits_{j=1}^na_{ij}\le \sum\limits_{j=1}^n\prod\limits_{i=1}^m a_{ij}$

(the Cebasev's generalized inequality). Apply this inequality to the Riemann's sums.


$\blacksquare\ 10^{\circ}.\ \boxed{\lim_{x\to \infty}\ \frac{1}{x^3}\int^x_{-x} \left| t^2-t-2\right|\ \mathrm{dt}=\frac 23}$ . Indeed, denote $F(x)=\int^{x}_{-x} |t^2-t-2|\ \mathrm{dt}\Longrightarrow$

$ \left(\forall\right) x\in R,\ F(-x)=-F(x)$ and $F(x)\equiv\left \{ \begin{array}{cc} -\frac 23 x^3+4x & 0\le x\le 1\ .\\\\ x^2+\frac 73 & 1<x<2\ .\\\\ \frac 23 x^3-4x+9 & 2\le x\ . \end{array}\right.\ \Longrightarrow \lim_{x\to \infty} \frac{F(x)}{x^3}=\frac 23$ .


$\blacksquare\ 11^{\circ}.\ \boxed{\min_{x\in R}\ \int^1_0\left| t^2+x\right|\ \mathrm{dt}=\frac 14}$ . Indeed, observe that $F(x)\equiv\int^1_0 \left|t^2+x\right|\ dt=$ $\left \{ \begin{array}{cc}
 -x-\frac 13 & x\le -1\ .\\\\ 
\frac 13\left(1+3x-4x\sqrt{-x}\right) & -1<x<0\ .\\\\ 
x+\frac 13 & 0\le x\ .\end{array}\right\|$

$\min_{x\le-1} F(x)=F(-1)=\frac 23\ ;\ \min_{-1<x<0}$ $F(x)=F\left(-\frac 14\right)=\frac 14\ ;\ \min_{0\le x} F(x)=F(0)=\frac 13$ . Therefore, $\min_{x\in R} F(x)=\frac 14=F\left(-\frac 14\right)$ .



$\blacksquare\ 12^{\circ}.$ PP1. Find the values of $ k\in (0,1)$ such that the areas of the three parts bounded by the graph of $ y=-x^4+2x^2$ and the line $ y=k$ are all equal.

Proof. Let: $A(a,k)\ ;\ B(b,k)\ ;\ C(-b,k)\ ;\ D(-a,k)$ . We need $\int_{a}^{b}(-x^4+2x^2-k)\ dx =$ $\int_{b}^{-b}(x^4-2x^2+k)\ dx =$ $\int_{-b}^{-a}(-x^4+2x^2-k)\ dx$ .

Let: $x=-t \Rightarrow$ $\int_{a}^{b}(-x^4+2x^2-k)\ dx =$ $\int_{-b}^{-a}(-x^4+2x^2-k)\ dx\ (1)$ . We find $k$ satisfied $\int_{a}^{b}(-x^4+2x^2-k)\ dx =$ $\int_{b}^{-b}(x^4-2x^2+k)\ dx $

$\iff$ $ \int_{a}^{b}(-x^4+2x^2-k)\ dx -\int_{b}^{-b}(x^4-2x^2+k)\ dx =0 $ $\iff$ $\int_{a}^{-b}\left(x^4-2x^2+k\right)\ dx=0$ $\iff$ $\left(\frac{x^5}{5}-2\frac{x^3}{3}+kx\right)_{a}^{-b}=0$ $ \implies k$ .



$\blacksquare\ 13^{\circ}.$ PP2. Let $f(x)=\left\{ \begin{array}{ccc}
 1 & \mathrm{if} & x=0\\\\ 
\frac 1x\cdot \min\limits_{n\in N} |n-x| & \mathrm{if} & x>0\end{array}\right\|$ and $a_n=\int^n_0 f(x)\ \mathrm{dx}$ , where $n\in N^*$ . Prove that $\lim_{n\to \infty} a_n=\infty ,\ \lim_{n\to \infty} \frac{a_n}{\ln n}=\frac 14$ .


$\blacksquare\ 14^{\circ}.$PP3. Calculate very short and simply $\int_{0}^{\pi}\left|\sin x+\cos x\right|\ \mathrm{dx}$ .

Proof. Denote $I=\int_{0}^{\pi}\left|\sin x-\cos x\right|\ \mathrm{dx}$ and observe that $I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left|\sin x-\cos x\right|\ \mathrm{dx}=$ $\int_{0}^{\frac{\pi}{2}}\left| \sin x-\cos x\right|\ \mathrm{dx}+$

$\int_{0}^{\frac{\pi}{2}}\left|\sin x+\cos x\right|\ \mathrm{dx}=$ $2+\int_{0}^{\frac{\pi}{2}}\left|\sin x-\cos x\right|\ \mathrm{dx}=$ $2+\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\left|\frac{\sqrt 2}{2}(\cos x-\sin x)-\frac{\sqrt 2}{2}(\cos x+\sin x)\right|\ \mathrm{dx}=$

$2+\sqrt 2\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\left|\sin x\right|\ \mathrm{dx}=$ $2+2\sqrt 2\int_{0}^{\frac{\pi}4}\sin x\ \mathrm{dx}=$ $2+2\sqrt 2\left|\cos x\right|_{\frac {\pi}{4}}^0=$ $2+2\sqrt 2\cdot\left(1-\frac{\sqrt 2}{2}\right)=2\sqrt 2$ .



$\blacksquare\ 15^{\circ}.$PP4. Ascertain $\lim_{n\to\infty} \frac{\int_{\frac{1}{n+1}}^{\frac 1n} \arctan nx\ dx}{\int_ {\frac{1}{n+1}}^{\frac 1n} \arcsin nx\ dx}=\frac 12$ without the calculation of the two definite integrals.


Proof. $\lim_{n\to\infty} \frac{\int_{\frac{1}{n+1}}^{\frac 1n} \arctan nx\ \mathrm{dx}}{\int_ {\frac{1}{n+1}}^{\frac 1n} \arcsin nx\ \mathrm{dx}}= \lim_{n\to\infty} \frac{\arctan n\xi_n}{\arcsin n\zeta_n}= \frac{\frac{\pi}{4}}{\frac{\pi}{2}} = \frac{1}{2}$ , where $\xi_n,\zeta_n \in \left[\frac{1}{n+1},\frac{1}{n}\right]\ \implies\ n\xi_n \to 1\ \ \wedge\ \ n\zeta_n \to\ 1$ .


$\blacksquare\ 16^{\circ}.$PP5. Prove that if $f: [0,1]\rightarrow R$ is a continue and monotonous function, then $\left(\forall\right)a\in R\ ,\ \int_0^1 |f(x)-a|\ \mathrm{dx}\ge \int_0^1\left|f(x)-f\left(\frac 12\right)\right|\ \mathrm{dx}\ .$


Proof. Let $f$ increasing and $a<f\left(\frac 12\right)$ . In other cases the prove is the same. If $f(0)\le a<f\left(\frac 12\right)$ , then $a=f(b)$ and

$\int_0^1 |f(x)-a|\ \mathrm{dx} - \int_0^1\left|f(x)-f\left(\frac 12\right)\right|\ \mathrm{dx} =$ $ \int_0^b |f(x)-a|\ \mathrm{dx} + \int_b^{\frac 12} |f(x)-a|\ \mathrm{dx}$ $ +\int_{\frac 12}^1 |f(x)-a|\ \mathrm{dx} - $

$\int_0^b\left|f(x)-f\left(\frac 12\right)\right|\ \mathrm{dx}$ $-\int_b^{\frac 12}\left|f(x)-f\left(\frac 12\right)\right|\ \mathrm{dx}$ $-\int_{\frac 12}^1\left|f(x)-f\left(\frac 12\right)\right|\ \mathrm{dx} =$ $ -b\left[f\left(\frac 12\right) - a\right] + \frac{1}{2}\cdot \left(\frac 12-a\right)$

$-\int_b^{\frac 12} \left|f(x)-f\left(\frac 12\right)\right|\ \mathrm{dx} + $ $\int_b^{\frac 12} |f(x)-a|\ \mathrm{dx} \ge -b\left[f\left(\frac 12\right) - a\right] + $ $\frac{1}{2}\cdot \left (\frac 12-a\right) -$ $\int_b^{\frac 12} \left|f(x)-f\left(\frac 12\right)\right|\ \mathrm{dx} \ge$

$ -b\left[f\left(\frac 12\right) - a\right] + \frac 12\cdot \left(\frac 12-a\right)$ $-\int_b^{\frac 12} \left|a-f\left(\frac 12\right)\right|\ \mathrm{dx} = 0$ . If $a\le f(0)$ , then

$\int_0^1 |f(x)-a|\ \mathrm{dx} \ge $ $\int_0^1 |f(x)-f(0)|\ \mathrm{dx} \ge $ $\int_0^1 \left|f(x)-f\left(\frac 12\right)\right|\ \mathrm{dx}$ since above.



$\blacksquare\ 17^{\circ}.$PP6. Find the value of $a$ for which $\int_{0}^{\frac{\pi}{2}}|a\sin x-\cos x|\ dx\ (a>0)$ is minimized.

Proof. Define $x\ .s.s.\ y\Longleftrightarrow xy>0\ \vee \ x=y=0\ .$(same sign). If $a\le 0$, then $F(a)=\int_{0}^{\pi}{2}(\cos x-a\sin x)\ dx=1-a$ and

$\boxed{\ \min_{a\le 0}F(a)=F(0)=1\ }$ . If $a>0$ , then $a\sin x-\cos x\ .s.s.\ \tan x-\frac{1}{a}=\tan x-\tan\left(\arctan\frac{1}{a}\right)\ .s.s.\ x-\arctan\frac{1}{a}$ and in this

case $F(a)=\int_{0}^\frac{\pi}{2}\left|a\sin x-\cos x\right|\ dx=$ $\int_{0}^{\arctan\frac{1}{a}}(\cos x-a\sin x)\ dx+$ $\int_{\arctan\frac{1}{a}}^\frac{\pi}{2}(a\sin x-\cos x)\ dx=$ $-1-a+2\sqrt{a^{2}+1}$ .

But $F'(a)=-1+\frac{2a}{\sqrt{a^{2}+1}}\ .s.s.\ 2a-\sqrt{a^{2}+1}\ .s.s.\ 4a^{2}-(a^{2}+1)=$ $3a^{2}-1\ .s.s.\ a-\frac{\sqrt 3}{3}$ , i.e. $a_{\mathrm{min}}=\frac{\sqrt3}{3}$ . Thus,

$\boxed{\ \min_{a>0}F(a)=F\left(\frac{\sqrt 3}{3}\right)=\sqrt 3-1\ }$ . In conclusion, $\min_{a\in R}F(a)=F\left(\frac{\sqrt 3}{3}\right)=\sqrt 3-1$ .



$\blacksquare\ 18^{\circ}.$PP7. Find the value of $a\in R$ for which $F(a)\equiv\int_{0}^{1}|xe^{x}-a|\ dx$ is minimized.

Proof. Denote the functions $f: [0,1]\rightarrow R\ ,\ f(x)=xe^{x}$ and $g: [0,1]\rightarrow R\ ,\ g(x)=a$. Then $F(a)=\int_{0}^{1}|f(x)-g(x)|\ dx=$ $[\Gamma_{f,g}]$ - the area

of the surface $\Gamma_{f,g}$ comprised between the graphs of the above functions. The function $f$ is strict increasing, convex and for any $x\in [0,1]$, $0\le f(x)\le e\ .$

Observe that $P(x)=(x-1)e^{x}-ax\in \int \left(xe^{x}-a\right)\ dx$ and $P(0)=-1$ , $P(1)=-a\ .$ Distinguish the cases :

$1.\blacktriangleright\ a\le 0\Longrightarrow$ $g(x)\le f(x)\ ,\ 0\le x\le 1$ $\Longrightarrow$ $F(a)=P(1)-P(0)=1-a\ge 1\ .$

$2.\blacktriangleright\ a\ge e$ $\Longrightarrow$ $f(x)\le g(x)\ ,\ 0\le x\le 1$ $\Longrightarrow$ $F(a)=P(0)-P(1)=a-1\ge e-1\ .$

$3.\blacktriangleright\ a\in (0,e)\Longrightarrow$ Exists uniquely $c=c(a)\in (0,1)$ so that $f(c)=a$, i.e. $ce^{c}=a\Longrightarrow$

$F(a)=P(0)-2P(c)+P(1)=-1-a-2\left[(c-1)e^{c}-ac\right]=2e^{c}+2ac-3a-1\ .$

Remark. It is well-known the relation $\boxed{\ (\forall )a\in R\ ,\ \int_{0}^{1}|h(x)-a|\ dx\ge \int_{0}^{1}\left|h(x)-h\left(\frac{1}{2}\right)\right|\ dx\ }$, where

$h: [0,1]\rightarrow R$ is continue and monotonous. For $h(x)=xe^{x}$ obtain Kunny's problem. See
here the my topic.

Proof. Suppose w.l.o.g. that $h$ is increasing. Then $(\forall ) x\in \left[0,\frac{1}{2}\right]$ , $ \left|h\left(x+\frac 12\right)-h(x)\right|\le\left| h\left(x+\frac 12\right)-a\right|+|h(x)-a|$ $\Longrightarrow$

$\int_{0}^{\frac{1}{2}}\left[h\left(x+\frac{1}{2}\right)-h(x)\right]\ \mathrm{dx}\le$ $\int_{0}^{\frac{1}{2}}\left|h\left(x+\frac{1}{2}\right)-a\right|\ \mathrm{dx}+$ $\int_{0}^{\frac{1}{2}}|h(x)-a|\ \mathrm{dx}$ $\Longrightarrow$ $\int_{\frac{1}{2}}^{1}h(x)\ \mathrm{dx}-$ $\int_{0}^{\frac{1}{2}}h(x)\ \mathrm{dx}\le $

$\int_{\frac{1}{2}}^{1}|h(x)-a|\ \mathrm{dx}+$ $\int_{0}^{\frac{1}{2}}|h(x)-a|\ \mathrm{dx}$ $\Longrightarrow$ $\int_{0}^{1}|h(x)-a|\ \mathrm{dx}\ge$ $\int_{\frac{1}{2}}^{1}\left[h(x)-h\left(\frac{1}{2}\right)\right]\ \mathrm{dx}+$ $\int_{0}^{\frac{1}{2}}\left[h\left(\frac{1}{2}\right)-h(x)\right]\ \mathrm{dx}=$

$\int_{0}^{1}\left|h(x)-h\left(\frac{1}{2}\right)\right]\ \mathrm{dx}$ . In conclusion, $\int_{0}^{1}|h(x)-a|\ \mathrm{dx}\ge$ $ \int_{0}^{1}\left|h(x)-h\left(\frac{1}{2}\right)\right|\ \mathrm{dx}$ . Answer : $\boxed{\ a=h\left(\frac{1}{2}\right)=\frac{\sqrt e}{2}\ }$ .



See here, here and XXII - message
This post has been edited 306 times. Last edited by Virgil Nicula, Jul 17, 2017, 7:24 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a