185. The Durrande's relation.

by Virgil Nicula, Dec 8, 2010, 2:36 PM

Quote:
Let $ABCD$ be a convex quadrilateral with the circumcircle $w=C(O,R)$ and the incircle $C(I,r)$ . Denote

$\left\|\begin{array}{c}
AB=b\ ,\ BC=b\ ,\ CD=c\\\
DA=d\ ,\ AC=e\ ,\ BD=f\end{array}\right\|$ and $a+b+c+d=s\ ,\ S=[ABCD]$ (area). Prove that :

$1.\blacktriangleright\ \ S=sr=\sqrt {abcd}\ ,\ ef=2r\left(r+\sqrt {4R^2+r^2}\right)$ .

$2.\blacktriangleright\ \boxed{\ OI^2=R^2+r^2-r\sqrt {4R^2+r^2}\ }$ (Durrande's relation).

$3.\blacktriangleright$ If $M\ ,\ N$ are the midpoints of $[AC]\ ,\ [BD]$ respectively, then $I\in MN\ ,\ \frac {IM}{IN}=\frac ef$ and $\frac 1e+\frac 1f=\frac {s}{4Rr}$ .

Proof. Denote $P\in AC\cap BD$ . I"ll use the well-known relations $a+c=b+d$ (Pithot's relation), $ac+bd=ef$ (Ptolemy's relation) and

$\frac {PA}{da}=\frac {PB}{ab}=$ $\frac {PC}{bc}=\frac {PD}{cd}=$ $\frac {e}{ad+bc}=\frac {f}{ab+cd}=$ $\frac {e+f}{s^2}=\sqrt {\frac {ef}{(ad+bc)(ab+cd)}}=$ $\sqrt {\frac {-p_w(P)}{abcd}}$ , where $p_w(P)=PO^2-R^2$ (power).

Obtain easily that $S=sr=\sqrt {abcd}\ ,\ 4RS=\sqrt {(ab+cd)(ac+bd)(ad+bc)}$ and $4Rr(e+f)=sef$ , i.e. $\frac 1e+\frac 1f=\frac {s}{4Rr}$ . It is well-known

or prove easily that $I\in MN$ . Therefore, $IM\cdot [NBC]+IN\cdot [MBC]=MN\cdot [IBC]$ $\implies$ $IM\cdot [BCD]+IN\cdot [ABC]=MN\cdot br$ $\implies$

$IM\cdot bc\cdot \sin C+IN\cdot ab\cdot\sin B=2\cdot MN\cdot br$ $\implies$ $IM\cdot c\cdot\sin C+IN\cdot a\cdot\sin B=2\cdot MN\cdot r$ $\implies$

$IM\cdot c\cdot \frac {2S}{ad+bc}+IN\cdot a\cdot\frac {2S}{ab+cd}=2\cdot MN\cdot \frac Ss$ $\implies$ $IM\cdot \frac {c}{ad+bc}+IN\cdot\frac {a}{ab+cd}=MN\cdot\frac 1s$ $\implies$

$IM\cdot \left(\frac {c}{ad+bc}-\frac 1s\right)=IN\cdot\left(\frac 1s-\frac {a}{ab+cd}\right)$ $\implies$ $IM\cdot (ab+cd)=IN\cdot (ad+bc)$ $\implies$ $\boxed {\ \frac {IM}{IN}=\frac ef\ }$ , i.e. $\frac {IM}{e}=\frac {IN}{f}=\frac {MN}{e+f}$ .

$\blacktriangleright$ Apply the Stewart's relation in $\triangle MON$ for the cevian $IO\ :\ OM^2\cdot IN+ON^2\cdot IM=OI^2\cdot MN+IM\cdot IN\cdot MN$ . Using the relations

$OM^2=R^2-\frac 14\cdot e^2$ and $ON^2=R^2-\frac 14\cdot f^2$ obtain that $\left(R^2-\frac 14\cdot e^2\right)\cdot\frac {f}{e+f}+\left(R^2-\frac 14\cdot f^2\right)\cdot \frac {e}{e+f}=OI^2+IM\cdot IN$ $\implies$ $R^2-\frac 14\cdot ef=OI^2+IM\cdot IN$ $\implies$

$4\cdot \left(R^2-OI^2\right)=ef+4ef\cdot \left(\frac {MN}{e+f}\right)^2$ . Using the Euler's relation $4\cdot MN^2=a^2+b^2+c^2+d^2-e^2-f^2$ obtain that $4\cdot MN^2=(a+c)^2+(b+d)^2-(e+f)^2$ $\implies$

$4\cdot MN^2=2s^2-(e+f)^2$ . In conclusion, $4\left(R^2-OI^2\right)=ef+2s^2\cdot\frac {ef}{(e+f)^2}-ef$ , i.e. $R^2-OI^2=\frac {s^2ef}{2(e+f)^2}$ . Thus, the power $\rho_w(I)=\frac {s^2ef}{2(e+f)^2}$ But

$e+f=2R\cdot (\sin A+\sin B)=2R\left(\frac {2S}{ad+bc}+\frac {2S}{ab+cd}\right)=$ $\frac {4RSs^2(e+f)^2}{s^4ef}=$ $\frac {4Rr(e+f)^2}{sef}$ . So $e+f=\frac {sef}{4Rr}$ , i.e. $\frac 1e+\frac 1f=\frac {s}{4Rr}$ . Thus, $R^2-OI^2=\frac {s^2ef}{2(e+f)^2}=$

$\frac {8R^2r^2s^2ef}{s^2e^2f^2}=$ $\frac {8R^2r^2}{ef}$ . From relation $\frac {ef}{2r}=\sqrt {4R^2+r^2}+r$ obtain $R^2-OI^2=\frac {4R^2r}{r+\sqrt {4R^2+r^2}}=$ $r\left(\sqrt {4R^2+r^2}-r\right)$ . Thus, $OI^2=R^2+r^2-r\sqrt {4R^2+r^2}$ .
This post has been edited 29 times. Last edited by Virgil Nicula, Nov 26, 2015, 6:43 PM

Comment

1 Comment

The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
What does "I'll come back soon" mean? Will you be busy these days, taking a vacation from the blog for the holidays? No more math blog posts for a period of time? :(

by Thomas_, Dec 8, 2010, 6:44 PM

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog