199. Some properties of symmedian. Two extensions.

by Virgil Nicula, Dec 27, 2010, 9:23 AM

Let $ABC$ be a triangle with circumcircle $w$ . Denote $T\in BB\cap CC$ . Prove that the ray $[AT$ is the $A$-symmedian of $\triangle ABC$ .

Proof 1 (metrical). Denote $\{A,R\}=AT\cap w$ and $S\in AT\cap BC$ . Thus, $\left\{\begin{array}{ccc}
\triangle ABR\ : & \frac {TR}{TA}=\left(\frac {BR}{BA}\right)^2\\\\
\triangle ACR\ : & \frac {TR}{TA}=\left(\frac {CR}{CA}\right)^2\end{array}\right\|\implies$

$\frac {RB}{RC}=\frac cb$ . Since $\frac {SB}{SC}=\frac {BA\cdot BR}{CA\cdot CR}$ obtain that $\frac {SB}{SC}=\left(\frac cb\right)^2$ , i.e. the ray $[AT$ is the $A$-symmedian of $\triangle ABC$ .

Remark. Since $\frac {RB}{RC}=\frac {AB}{AC}$ , i.e. $RB\cdot AC=RC\cdot AB$ obtain that the cyclical quadrilateral $ABRC$ is harmonically.

Proof 2 (synthetical). Denote $X\in AA\cap BB$ , $Y\in AA\cap CC$ , $U\in AB$ so that $TU\parallel AA$ and $V\in AC$ so that $TV\parallel AA$ . Prove easily that

$TU=TV=TB=TC$ , i.e. $BCVU$ is cyclically. Thus, $BC$ is antiparallel to $UV$ in $\triangle AUV$ . In conclusion, the ray $[AT$ is $A$-symmedian in $\triangle ABC$ .



Let $AS$ be the $A$-symmedian in the triangle $ABC$ , where $S\in (BC)$ . Denote the midpoints $M$ , $N$ of $[AC]$ , $[AB]$ respectively and

$D\in BM\cap AS$ , $E\in CN\cap AS$ . Prove that $ m\left(\widehat{ACD}\right)=m\left(\widehat{ABE}\right)=\phi$ , where $\tan\phi=\frac {4S}{a^2+b^2+c^2}$ and $\phi\le 30^{\circ}$ .
See here.

Generalization 1. Let $AS$ be the $A$-cevian in $\triangle ABC$ , where $S\in (BC)$ . Denote the midpoints $M$ , $N$ of $[AC]$ , $[AB]$ respectively and $D\in BM\cap AS$ ,

$E\in CN\cap AS$ . Prove that $ m\left(\widehat{ACD}\right)=m\left(\widehat{ABE}\right)$ $\iff$ the cevian $AS$ is the $A$-symmedian and in this case $\tan\phi=\frac {4S}{a^2+b^2+c^2}$ , where $\phi\le 30^{\circ}$ .


Proof. Let $\begin{array}{c}
G\in AB\cap CD\\\
F\in AC\cap BE\end{array}$ . Since $ D$ , $ E$ belong to the medians $ BM$ , $ CN$ respectively obtain that $SG\parallel AC$ and $SF\parallel AB$ , i.e. $AGSF$ is a parallelogram.

$\boxed {\Longleftarrow}$ Suppose that $S$ is the foot of the $A$-symmedian. Using the point $(1)$ from the lower lemma obtain $GF$ is antiparallel to $BC$ $\implies$ $GBFC$ is cyclically $\implies$

$\widehat{GBF}\equiv\widehat{GCF}$ $\implies$ $ \widehat{ABE}\equiv\widehat{ACD}=\phi$ . Observe that $\frac {c^2}{b^2}=$ $\frac {SB}{SC}=$ $\frac {FA}{FC}=$ $\frac {BA}{BC}\cdot\frac {\sin \widehat {FBA}}{\sin\widehat{FBC}}=$ $\frac {c\cdot \sin\phi}{a\cdot \sin (B-\phi )}$ $\implies$ $ac\cdot \sin (B-\phi )=b^2\cdot\sin\phi$ $\implies$

$ac\cdot\sin B-ac\cdot\cos B\tan\phi =$ $b^2\cdot\tan\phi$ $\implies$ $\tan\phi=\frac {ac\cdot \sin B}{ac\cdot\cos B+b^2}$ $\implies$ $\boxed{\tan\phi =\frac {4S}{a^2+b^2+c^2}}$ .

Using the remarkable inequality $a^2+b^2+c^2\ge 4S\sqrt 3$ obtain that and $\phi\le 30^{\circ}$ .

$\boxed{\Longleftrightarrow}$ Denote $m(\widehat{ABE})=\phi$ , $m(\widehat{ACD})=\psi$ and $\frac {SB}{SC}=m$ . Observe that $\left\|\begin{array}{ccc}
m=\frac {FA}{FC}=\frac ca\cdot \frac{\sin \phi}{\sin(B-\phi )} & \implies & \tan\phi =\frac {ma\sin B}{c+ma\cos B}\\\\
m=\frac {GB}{GA}=\frac ab\cdot \frac{\sin (C-\psi )}{\sin\psi} & \implies & \tan\psi =\frac {a\sin C}{mb+a\cos C}\end{array}\right\|$ .

Therefore, $\phi =\psi$ $\iff$ $\tan\phi =\tan\psi$ $\iff$ $b\sin B\cdot \underline m^2+a\sin (B-C)\cdot \underline m-c\sin C=0$ . Observe that $(-1)$ verifies

the previous equation in $m$ because $b\sin B+a\sin (B-C)-c\sin C=0$ $\iff$ $\sin^2B-\sin^2C=\sin A\sin (B-C)$ ,

what is truly. In conclusion, $m=\frac {c\sin C}{b\sin B}$ , i.e. $m=\frac {c^2}{b^2}$ $\iff$ the point $S$ is the foot of the $A$-symmedian.


$\blacktriangleright$ Lemma (well-known). Consider in $\triangle ABC$ the points $M\in (BC)$ , $N\in (CA)$ and $P\in (AB)$ . Find the point $M$ for which :

$(1).\ MN\parallel AB\ ,\ MP\parallel AC\ \implies\ NP$ is antiparallel to $BC$ .
Answer : $M$ is the foot of $A$-symmedian.

$(2).\ MN$ is antiparallel to $AB\ ,\ MP$ is antiparallel to $AC\ \implies\ NP\parallel BC$ . Answer : $M$ is the foot of $A$-symmedian.

$(3).\ MN$ is antiparallel to $AB\ ,\ MP$ is antiparallel to $AC\ \implies\ NP$ is antiparallel to $BC$ . Answer : $M$ is the foot of $A$-altitude.

Note. Say that in $\triangle ABC$ the line $MN$ is antiparallel to $AB$ $\iff$ $M\in CA$ , $N\in CB$ and $AMNB$ is cyclically.


Generalization 2. Consider the points $S\in (BC)$ and $M\in (CA)$ , $N\in (AB)$ so that $\frac {MA}{MC}\cdot\frac {NA}{NC}=1$ . Denote

$D\in BM\cap AS$ , $E\in CN\cap AS$ . Prove that $ m\left(\widehat{ACD}\right)=m\left(\widehat{ABE}\right)$ $\iff$ $\frac {SB}{SC}=\left(\frac {AB}{AC}\right)^2\cdot \frac {MA}{MC}$ .


Proof. Denote $\frac {SB}{SC}=s\ ,\ \frac {MA}{MC}=m\ ,\ \frac {NA}{NB}=n$ , where $mn=1$ and $F\in AC\cap BE\ ,\ G\in AB\cap CD$ . Apply the Ceva's theorem

to the points $D\ ,\ E$ in the $\triangle ABC$ and obtain that $\frac {FA}{FC}=ns\ ,\ \frac {GA}{GB}=\frac ms$ . Denote $m(\widehat{ABE})=\phi\ ,\ m(\widehat{ACD})=\psi$ . Thus,

$\left|\begin{array}{ccc}
ns=\frac {FA}{FC}=\frac ca\cdot\frac {\sin\phi}{\sin (B-\phi )} & \implies & \tan\phi =\frac {ans\sin B}{c+ans\cos B}\\\\
\frac ms=\frac {GA}{GB}=\frac ba\cdot \frac {\sin\psi}{\sin (C-\psi )} & \implies & \tan\psi =\frac {am\sin C}{bs+am\cos C}\end{array}\right|$ . Therefore, $\phi =\psi$ $\iff$ $\tan\phi =\tan\psi$ $\iff$ $\frac {ns\sin B}{c+ans\cos B}=\frac {m\sin C}{bs+am\cos C}$ $\iff$

$\boxed {\ bn\sin B\cdot\underline s^2+a\sin (B-C)\cdot \underline s-cm\sin C=0\ }$ . Using $mn=1$ prove easily that $\Delta =4R^2\left(\sin ^2B+\sin^2C\right)^2$ and obtain that

$s=\frac {-2R\sin (B+C)\sin (B-C)+2R\left(\sin^2B+\sin^2C\right)}{4nR\sin^2B}=$ $\frac {-\left(\sin^2B-\sin^2C\right)+\left(\sin^2B+\sin^2C\right)}{2n\sin^2B}$ , i.e. $s=m\cdot\left(\frac cb\right)^2$ because $mn=1$ and

$\frac {\sin C}{\sin B}=\frac cb$ . In conclusion, $\boxed{\phi =\psi\ \iff\ s=m\cdot\left(\frac cb\right)^2}$ . Prove easily that in this case $\tan\phi =\tan\psi =\frac {4S}{a^2+b^2+c^2}$ (constant) and $\phi\le\frac {\pi}{6}$ .
This post has been edited 22 times. Last edited by Virgil Nicula, Nov 22, 2015, 5:27 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a