458. Working page IV.

by Virgil Nicula, Aug 27, 2017, 10:47 AM

$1.\blacktriangleright\ \boxed{f(x)=\frac {1-\cos^3x}{\sin^2x}}=$ $\frac{\cancel{(1-\cos x)}\left(1+\cos x+\cos^2x\right)}{\cancel{(1-\cos x)}(1+\cos x)}=$ $\frac {1+\cos x+\cos^2x}{1+\cos x}\implies$ $\lim_{x\to 0}f(x)=$ $\lim_{x\to  0}\frac {1+\cos x+\cos^2x}{1+\cos x}=\frac 32\implies \boxed{\lim_{x\to 0}f(x)=\frac 32}\ .$

$2.\blacktriangleright\ \boxed{f(x)=\frac {\sin (x-1)}{x^{\alpha}-1}\ ,\ \alpha \ne 0}=$ $\frac {\sin (x-1)}{x-1}\cdot\frac {x-1}{x^{\alpha}-1}$ $\implies$ $\lim_{x\to 1}f(x)=$ $\lim_{x\to 1}\frac {\sin (x-1)}{x-1}\cdot\lim_{x\to 1}\frac {x-1} {x^{\alpha}-1}\ \stackrel{t:=x-1}{=}$ $\lim_{t\to 0}\frac {\sin t}t\cdot \frac 1{\alpha}=$ $1\cdot\frac 1{\alpha}=$ $\frac 1{\alpha}$ $\implies $ $\boxed{\lim_{x\to 1}f(x)=\frac 1{\alpha}}\ .$

You can use the following remarkable limits $:\ \lim_{x\to  0}\frac {\sin x}x=1\ ;\ \lim_{x\to  0}\frac {1-\cos x}{x^2}=\frac 12\ ;\ \lim_{x\to  0}\frac {x^{\alpha}-1}{x-1}=\alpha\ ,\ \alpha\ne 0$ a.s.o. Here is some interesting limits (<= click).

P1. Denote $\left\{\begin{array}{ccc}
a+b+c & = & s_1\\\\
ab+bc+ca & = & s_2\\\\
abc & = & s_3\end{array}\right\|$ and $(\forall )\ k\in\mathbb N^*\ ,\ S_k=a^k+b^k+c^k\ ,$ where $S_1=s_1\ .$ Prove that $(\forall )\ k\in\mathbb N^*\ ,\ S_{k+3}=s_1S_{k+2}-s_2S_{k+1}+s_3S_{k}\ .$

Calculate $\left\{\begin{array}{cccc}
S_2 & = & s_1^2-2s_2\\\\
S_3 & = & s_1^3-3s_1s_2+3s_3\end{array}\right\|\ \mathrm{and}\ \left\{\begin{array}{cccc}
S_4 & = & s_1^4-4s_1^2s_2+4s_1s_3+2s_2^2\\\\
S_5 & = & s_1^5-5s_1^3s_2+5s_1s_2^2+5s_1^2s_3-5s_2s_3\end{array}\right\|\ .$ Prove that $(\forall )\ \{a,b,c\}\subset\mathbb C$ exist the following

$\boxed{\ \underline{\underline{\mathrm{Identities}}}\ :\ \left\{\begin{array}{cccccccccc}
\sum\limits_{\mathrm{cyc}}a^2(b+c) & = & \sum\limits_{\mathrm{cyc}}bc(b+c) & = & \sum\limits_{\mathrm{cyc}}a\left(b^2+c^2\right) & \implies & s_1S_2-S_3=s_1s_2-3s_3 & \implies & \boxed{\ s_1\left(S_2-s_2\right)=S_3-3s_3\ } & (1)\\\\
\sum\limits_{\mathrm{cyc}}a^3(b+c) & = & \sum\limits_{\mathrm{cyc}}a\left(b^3+c^3\right) & = & \sum\limits_{\mathrm{cyc}}bc\left(b^2+c^2\right) & \implies & s_1S_3-S_4=s_2S_2-s_1s_3 & \implies & \boxed{\ s_1\left(S_3+s_3\right)=S_4+s_2S_2\ } & (2)\end{array}\right\|\ }$

Proof. The equation $x^3-s_1x^2+s_2x-s_3=0\begin{array}{ccc}
\nearrow & x_1=a & \searrow\\\\
\rightarrow & x_2=b &\rightarrow\\\\
\searrow & x_3=c & \nearrow\end{array}\odot\implies$ $(\forall )\ k\in\mathbb N^*$ and $(\forall )\ i\in\{1,2,3\}\ ,\ \left\|x_i^{k+3}=s_1x_i^{k+2}-s_2x_i^{k+1}+s_3x_i^{k}\right\|\ \sum\limits_{i=1}^3$ $\implies$

$(\forall )\ k\in\mathbb N^*\ ,\ \sum\limits_{i=1}^3x_i^{k+3}=s_1\sum\limits_{i=1}^3x_i^{k+2}-s_2\sum\limits_{i=1}^3x_i^{k+1}+s_3\sum\limits_{i=1}^3x_i^{k}$ $\implies$ $(\forall )\ k\in\mathbb N^*\ ,\ S_{k+3}=s_1S_{k+2}-s_2S_{k+1}+s_3S_{k}$ a.s.o.

$\blacktriangleright\ \left\{\begin{array}{ccccc}
\sum\limits_{\mathrm{cyc}}a^2(b+c) & = & \sum\limits_{\mathrm{cyc}}a^2[(a+b+c)-a] & = & s_1S_2-S_3\\\\
\sum\limits_{\mathrm{cyc}}bc(b+c) & = & \sum\limits_{\mathrm{cyc}}bc[(a+b+c)-a] & = & s_1s_2-3s_3\\\\
\sum\limits_{\mathrm{cyc}}a\left(b^2+c^2\right) & = & \sum\limits_{\mathrm{cyc}}a\left[\left(b^2+c^2+a^2\right)-a^2\right] & = & s_1S_2-S_3\end{array}\right\|\
 \mathrm{\underline{{and}}}\ \left\{\begin{array}{ccccc}
\sum\limits_{\mathrm{cyc}}a^3(b+c) & = & \sum\limits_{\mathrm{cyc}}a^3[(a+b+c)-a] & = & s_1S_3-S_4\\\\
\sum\limits_{\mathrm{cyc}}a\left(b^3+c^3\right) & = & \sum\limits_{\mathrm{cyc}}a[(a^3+b^3+c^3)-a^3] & = & s_1S_3-S_4\\\\
\sum\limits_{\mathrm{cyc}}bc\left(b^2+c^2\right) & = & \sum\limits_{\mathrm{cyc}}bc\left[\left(b^2+c^2+a^2\right)-a^2\right] & = & s_2S_2-s_1s_3\end{array}\right\|\ .$

Examples.

$\sum\limits_{\mathrm{cyc}}a^3(b+c)=$ $\sum\limits_{\mathrm{cyc}}a^2[(ab+ac+bc)-bc]=$ $s_2S_2-s_1s_3\ ;\ \sum\limits_{\mathrm{cyc}}a^2(b+c)=$ $\sum\limits_{\mathrm{cyc}}a[(ab+ac+bc)-bc]=$ $s_1s_2-3s_3\ ;\ \boxed{\sum\limits_{\mathrm{cyc}}a^3\left(b^2+c^2\right)=\sum\limits_{\mathrm{cyc}}a^2\left(b^3+c^3\right)=S_2S_3-S_5}\ .$

$\sum\limits_{\mathrm{cyc}}a^4(b+c)= $ $\sum\limits_{\mathrm{cyc}}a\left(b^4+c^4\right)=s_1S_4-S_5\
 ;\ \sum\limits_{\mathrm{cyc}}a^4(b+c)=\sum\limits_{\mathrm{cyc}}a^3[(ab+ac+bc)-bc]=$ $s_2S_3-s_3S_2\implies$ $s_1S_4-S_5=s_2S_3-s_3S_2\implies$ $\boxed{s_1S_4+s_3S_2=S_5+s_2S_3\ }\ .$



Problema propusa 7 (<= click).

Proof. Notam $L$-nr. ladite si $K$-nr. kg. fructe $\implies L=\frac {K-4}3=\frac {K+9\cdot 4}4=\frac {(K+36)-(K-4)}{4-3}=40\ \odot\begin{array}{ccccc}
\nearrow & L & = & 40\ & \searrow\\\\
\searrow & K & = & 124 & \nearrow\end{array}\odot$ Altfel: $3L+4=K=4L-4\cdot 9$ etc.


Cartile lui Ken ROBINSON ar trebui sa fie lecturi obligatorii pentru profesori. Vedeti aici (<= click). Ce inseamna a fi creator?! Sa-l intrebam ("citim") pe Ken ROBINSON, autorul cartii "O lume iesita din minti". Un raspuns imediat se cuvine a veni de la sine: "a reproduce integralul din partial" - prima lege a creatiei. Vom ilustra prima lege a creatiei prin cateva exemple intalnite in matematica $:$

1. Intr-o problema de geometrie: o constructie auxiliara care sa "intregeasca" o figura cunoscuta ale carei proprietati le stim si le putem folosi bine, poate reduce substantial demonstratia problemei. Uneori elevii chiar intreaba "cum v-a venit ideea, dle profesor?!".

2. Sa presupunem ca cerem cu anticipatie elevilor de clasa a VII - a (care nu au invatat inca ecuatia de gradul doi) sa gaseasca doua numere reale x & y pentru care stim suma 10 si produsul 18. Un "act creator" ar fi acela cand elevul ar "intregi" sistemul dat la unul de gradul intai cu doua necunoscute. De exemplu sa afle, daca se poate, diferenta intre x & y. Deoarece stim suma lor si cateva identitati algebrice, atunci incercam sa aflam (x-y)^2=(x+y)^2-4xy, adica (x-y)^2=100-72=28. Asadar |x-y|=2sqrt7. Putem presupune fara a restrange generalitatea ca x este cel putin egal lui y. Asadar sistemul x+y=10 & x-y=2sqrt7 este agreabil si are solutia {x,y}={5±sqrt7}.

3. In analiza matematica de clasa a XI - a: la limite de siruri/functii se foloseste foarte frecvent aceasta "lege". De exemplu vrem sa aflam limita cand x tinde la 0 pentru functia f(x)=sinxsin2x/(1-cos x). Stim ca sinx/x->1 & (1-cosx)/(x^2)->1/2. Vom "intregi" cele doua limite cunoscute in functia f astfel: f(x)=[(sinx)/x]•[(sin2x)/(2x)]•[(2x^2)/(1-cosx)] si prin trecere la limita se obtine 1•1•2•2=4.

4. In analiza matematica de clasa a XII - a: la capitolul "primitive" se foloseste "metoda integrarii prin parti" care nu este altceva decat "intregirea" derivatei unui produs: (fg)'=f'g+fg' etc. Voi continua sa ilustrez "actul de creatie" si in alte domenii de cercetare/proiectare care sa atenueze unele situatii cu dificultate ridicata.



P2 (Leo GIUGIUC). Three parallel lines are drawn through the vertices of an equilateral $\triangle ABC$. The line perpendicular to the three through $B$

intersects the remaining two at $E$ and $F$ so that $B\in (EF)\ .$ If $BE=m\ ,\ BF=n\ ,$ prove that $m^2+mn+n^2$ is constant for a given triangle.


Proof 1. Denote $AC=a$ and the projection $P$ of $B$ on $AC$ $\implies$ $APBE$ and $CPBF$ are cyclic with the diameters $[AB]$ and $[BC]\ .$ Hence $m\left(\widehat{PEB}\right)= m\left(\widehat{PAB}\right)=60^{\circ}\ ,$ $m\left(\widehat{PCB}\right)=$

$m\left(\widehat{PFB}\right)=60^{\circ}\implies$ $m\left(\widehat{PEB}\right)=$ $m\left(\widehat{PFB}\right)=$ $60^{\circ}\ ,$ i.e. $\triangle PEF$ is equilateral $:\ PE=PF=EF=m+n\ .$ Apply generalized Pythagoras' theorem in $\triangle BPF$ with $m\left(\widehat{BFP}\right)=$

$60^{\circ}\ :\  BP^2=FB^2+FP^2-FB\cdot FP=$ $n^2+(m+n)^2-n(m+n)=$ $ n^2+m^2+ n^2+2mn-mn-n^2=$ $m^2+n^2+mn\implies$ $m^2+n^2+mn= BP^2=\frac{ 3a^2}4$ (constant).


Proof 2. Suppose w.l.o.g. $AC=1$ and denote $m\left(\widehat{ABE}\right)=x\
 ,$ $m\left(\widehat{CBF}\right)=y\ ,$ where $x+y=120^{\circ}\ .$ Thus, $m=\cos x\ ,$ $n=\cos y$ and

$2\left(m^2+mn+n^2\right)=$ $2\left(\cos^2x+\cos x\cos y+\cos^2y\right)=$ $1+\cos 2x+\cos (x+y)+\cos (x-y)+1+\cos 2y=$ $2+\cos 2x+\cos 2y-$

$-\frac 12+\cos (x-y)=$ $\frac 32+2\cos (x+y)\cos (x-y)+\cos (x-y)=$ $\frac 32-\cos (x-y)+\cos (x-y)=\frac 32\implies$ $\boxed{\ m^2+n^2+mn=\frac 34\ }\ .$



P3 (Miguel Ochoa Sanchez). Let $\triangle ABC$ with the incircle $\mathbb C(I,r)$ what touches given triangle at $D\in BC\ ,$ $E\in CA$ and $F\in AB\ .$ Denote $P\in EF\ ,$ $DP\perp EF\
 .$ Prove that $\boxed{\ PD=h_a\sin\frac A2\ }\ .$

Proof. Suppose w.l.o.g. $b>c$ and denote $L\in AI\cap BC$ and $T\in EF\cap BC\ .$ Apply the Menelaus' theorem to the collinear points $\overline{EFT}/\triangle ABC\ :\ \frac {TB}{TC}\cdot \frac {EC}{EA}\cdot\frac {FA}{FB}=1\iff$

$\frac {TD}{TC}\cdot \frac {s-c}{\cancel{s-a}}\cdot\frac {\cancel{s-a}}{s-b}=1\iff$ $\frac {TB}{TC}=\frac {s-b}{s-c}\iff$ $\frac {TB}{s-b}=\frac {TC}{s-c}=\frac a{b-c}$ $\implies$ $TB=\frac {a(s-b)}{b-c}\implies\ TD=TB+BD=$ $\frac {a(s-b)}{b-c}+(s-b)=$ $\frac {2(s-b)(s-c)}{b-c}=$

$\frac {2bc\sin^2\frac A2}{b-c}\implies$ $\boxed{TD=\frac {2bc\sin^2\frac A2}{b-c}}\ (1)\ .$ Observe that $PD\parallel AL\implies$ $\widehat{TDP}\equiv\widehat{TLA}\equiv\widehat{BLA}\implies$ $m\left(\widehat{TDP}\right)=m\left(\widehat{BLA}\right)=\frac A2+C=90^{\circ}-\left(\frac B2-\frac C2\right)\implies$

$\boxed{\ \cos \widehat{TDP}=\sin\frac {B-C}2\ }\ (2)\ .$ Prove easily that $\boxed{\ bc=2Rh_a\ }\ (3)\ .$ Therefore, $DP\perp TE\implies DP\parallel AL\implies$ $PD=TD\cdot\cos\widehat{TDP}\ \stackrel{(1\wedge 2)}{=}\
 \frac {2bc\sin^2\frac A2\sin\frac {B-C}2}{b-c}=$

$\frac {2bc\sin \frac A2\cos\frac {B+C}2\sin\frac {B-C}2}{b-c}=\frac {bc\sin\frac A2(\sin B-\sin C)}{b-c}=\frac {bc\sin\frac A2}{2R}\ \stackrel{(3)}{=}\ h_a\sin\frac A2\ .$ In conclusion, $PD=h_a\sin\frac A2\ .$

Remark. Denote $K\in BC\ ,$ $AK\perp BC$ and the diameter $[AS]$ of the circumcircle $\Omega=\mathbb C(O,R)\ .$ Observe that $\triangle ABK\sim\triangle ASC\iff$ $\frac {AB}{AS}=\frac {AK}{AC}\iff$ $\frac c{2R}=\frac {h_a}b\implies bc=2Rh_a\ .$



P4 (Miguel Ochoa Sanchez). Let an $A$-isosceles $\triangle AFE$ and $\left\|\begin{array}{c}
B\in (AF)\\\
C\in (AE)\end{array}\right\|$ so that $FB+EC=BC\ .$ Let $D\in (BC)$ so that $\left\{\begin{array}{c}
DB=BF\\\
DC=CE\end{array}\right\|\ .$ Prove that $\frac 1{[FBE]}+\frac 1{[FCE]}=\frac 2{[FDE]}\ .$

Proof. Let the projections $(U,P,V,W)$ of $(B,A,D,C)$ on $EF$ and denote $AF=AE=l\ ,$ $FB=BD=m\ ,$ $EC=CD=n\ ,$ $BU=x\ ,$ $AP=h\ ,$ $DV=z$ and $CW=y\ .$

Thus, $\frac xm=\frac hl=\frac yn\ .$ The relation $\boxed{\ z(m+n)=nx+my\ }\ (*)$ is well known in the trapezoid $BCWU\ .$ Since $(m,n)$ are proportional with $(x,y)$ then the relation $(*)$

becomes $z(x+y)=yx+xy\ ,$ i.e. $\frac 1x+\frac 1y=\frac 2z\ (2)\ .$ But $(x,y,z)$ are proportional with $\left([FBE],[FCE],[FDE]\right)$ $\implies$ $\frac 1{[FBE]}+\frac 1{[FCE]}=\frac 2{[FDE]}\ .$

Remark Suppose w.l.o.g. that $x>z>y$ and let $M\in BU\ ,$ $N\in DV$ so that $\overline{MNC}\perp BU\ .$ Thus, $\frac {BM}{CB}=\frac {DN}{CD}\iff$ $\frac {x-y}{m+n}=\frac {z-y}n=\frac {x-z}m\iff$ $m(z-y)=n(x-z)\iff$ $(*)\ .$



P5 (Miguel Ochoa Sanchez). Let $ABCD$ be a convex quadrilateral where $AB=a\
 ,$ $BC=b\ ,$ $BD=x$ and $m\left(\widehat{CAD}\right)=\alpha\ ,$

$m\left(\widehat{ACD}\right)=\beta\ ,$ $m\left(\widehat{ABC}\right)=\phi$ so that $\alpha +\beta \in \left\{\phi\pm90^{\circ}\right\}\ .$ Prove that $\boxed{\ a^2\sin^2\alpha +b^2\sin^2\beta =x^2\cos^2\phi\ }\ .$


Proof. Let $\left\{\begin{array}{c}
DA=y\\\
DC=z\end{array}\right\|\implies\boxed{\ \frac y{\sin\beta}=\frac z{\sin\alpha}\ }\ (*)\ .$ Observe that $B+D=\phi +\left[180^{\circ}-\left(\alpha +\beta\right)\right]=$ $\phi +180^{\circ}-\left(\phi \pm 90^{\circ}\right)\in \left\{90^{\circ},270^{\circ}\right\}$ and $AC=y\cos\alpha +z\cos\beta .$ Apply the

generalized Ptolemy's theorem $:\
 (AB\cdot CD)^2+(BC\cdot AD)^2=(AC\cdot BD)^2\ ,$ i.e. $\boxed{(az)^2+(by)^2=x^2(y\cos \alpha +z\cos\beta  
)^2}\ (1)\ .$ Thus, $(y,z)$ are proportional with $(\sin\beta ,\sin\alpha )\implies$

the relation $(1)$ becomes $(a\sin\alpha )^2+(b\sin\beta )^2=x^2(\sin \beta\cos\alpha +\sin\alpha\cos\beta )^2\iff$ $a^2\sin^2\alpha +b^2\sin^2\beta=x^2\sin^2(\alpha +\beta )\iff$ $b^2\sin^2\beta +c^2\sin^2\alpha =x^2\cos^2\phi\ .$ Nice problem!



P6 (Soji NAKAJIMA). Prove that $(\forall )\ \triangle ABC$ there is the inequality $\boxed{\ a^2+b^2+c^2\le 8R^2+\frac {4S}{3\sqrt 3}\ }\ (*)\ .$

Proof 1. The relations $\boxed{\sum a^2=2\left(s^2-r^2-4Rr\right)}$ and $\boxed{s^2\le 4R^2+4Rr+3r^2}$ are well-known. Hence $\sum a^2\le 2\left[\left(4R^2+\cancel{4Rr}+3r^2\right)-r^2-\cancel{4Rr}\right]=$ $4\left(2R^2+r^2\right)\ .$

Observe that $4\left(\cancel{2R^2}+r^2\right)\le \cancel{8R^2}+\frac {4S}{3\sqrt 3}\iff$ $\cancel 4r^2\le \frac {\cancel 4S}{3\sqrt 3}\iff$ $3r\cancel{^2}\sqrt 3\le s\cancel r\iff$ $3r\sqrt 3\le s\ ,$ what is true. In conclusion and the required inequality $(*)$ is true.

Proof 2 (trigonometric). $\underline{\underline{a^2+b^2+c^2\le 8R^2+\frac {4}{3\sqrt 3}\cdot  S}}\iff$ $2\cancel{R^2}\cdot\sum 2\sin^2A\le 8\cancel{R^2}+\frac 4{3\sqrt 3}\cdot 2\cancel{R^2}\prod\sin A\iff$ $2\cdot\sum \left(1-\cos 2A\right)\le 8+\frac {8}{3\sqrt 3}\cdot \prod\sin A\iff$

$3-\sum\cos 2A\le 4+\frac 4{3\sqrt 3}\cdot\prod\sin A\iff$ $\left(1+\sum\cos 2A\right)+\frac 4{3\sqrt 3}\cdot \prod\sin A\ge 0\iff$ $-\cancel 4\prod\cos A+\frac {\cancel 4}{3\sqrt 3}\cdot\prod\sin A\ge 0\iff$ $3\sqrt 3\cdot \prod\cos A\le \prod\sin A\ \stackrel{\mathrm{acute}\ \triangle\ ABC}{\iff}$

$\prod\tan A\ge 3\sqrt 3\iff$ $\underline{\underline{\sum\tan A\ge 3\sqrt 3}}\ ,$ what is true only on the first quadrant because the function $\tan$ is convex: $\tan\left(\frac {A+B+C}3\right)\le\frac {\tan A+\tan B+\tan C}3\ .$



P7 (Miguel Ochoa Sanchez). Let a rhombus $ABCD$ with $AB=r\ ,$ $A\le 120^{\circ}$ and the circle $\mathrm w(C,r)\ .$ Prove that $(\forall )\ P\in w$ there is the relation $\boxed{\ PB^2+PD^2=PA^2+PC^2(1-2\cos A)\ }\ (*)\ .$

Proof. Denote $M\in AC\cap BD$ and $PA=x\ ,$ $PB=y$ and $PD=z\ .$ Observe that $AM=r\cos\frac A2$ and $BM=r\sin\frac A2\ .$ Apply the theorem of median in the triangles $:$

$\left\{\begin{array}{cccc}
PM/\triangle APC\ : & 4\cdot PM^2=2\left(PA^2+PC^2\right)-AC^2 & \iff & 4\cdot PM^2=2\left(x^2+r^2\right)-4r^2\cos^2\frac A2\\\\
PM/\triangle BPD\ : & 4\cdot PM^2=2\left(PB^2+PD^2\right)-BD^2 & \iff & 4\cdot PM^2=2\left(y^2+z^2\right)-4r^2\sin^2\frac A2\end{array}\right\|$ $\implies$ $x^2+r^2-r^2(\cancel 1+\cos A)=y^2+z^2-r^2(\cancel 1-\cos A)\iff$

$y^2+z^2=x^2+r^2(1-2\cos A)\ ,$ i.e. the required relation $PB^2+PD^2=PA^2+PC^2(1-2\cos A)\ .$ Particular cases $:\ \left\{\begin{array}{ccc}
\underline{\underline{A=60}}^{\circ} & \implies & \underline{\underline{PB^2+PD^2=PA^2}}\\\\
\underline{\underline{A=90}}^{\circ} & \implies & \underline{\underline{PB^2+PD^2=PA^2+PC^2}}\\\\
\underline{\underline{A=120}}^{\circ} & \implies & \underline{\underline{PB^2+PD^2=PA^2+2\cdot PC^2}}\end{array}\right\| .$



P8 (Miguel Ochoa Sanchez). (<= click).

Proof. I"ll use only the theorem of Sines. Denote $\left\{\begin{array}{c}
m\left(\widehat{ADP}\right)=x\implies m\left(\widehat{PAB}\right)=60^{\circ}-x\\\\
m\left(\widehat{ADQ}\right)=y\implies m\left(\widehat{QAC}\right)=60^{\circ}-y\end{array}\right\|\ .$ Hence $\underline{\underline{\frac {AP}{MD}+\frac {AQ}{ND}}}=$ $\frac {AP}{AM}\cdot\frac {AM}{MD}+\frac {AQ}{AN}\cdot\frac {AN}{ND}=$

$\cos\widehat{PAM}\cdot\frac {\sin\widehat{MDA}}{\sin\widehat{MAD}}+\cos \widehat{QAN}\cdot\frac {\sin\widehat{NDA}}{\sin\widehat{NAD}}=$ $\cos \left(60^{\circ}-x\right)\cdot \frac {\sin x}{\sin 30^{\circ}}+$ $\cos \left(60^{\circ}-y\right)\cdot \frac {\sin y}{\sin 30^{\circ}}=$ $2\cos\left(60^{\circ}-x\right)\sin x+$ $2\cos \left(60^{\circ}-y\right)\sin y=$

$\sin 60^{\circ}-\sin\left(60^{\circ}-2x\right)+\sin 60^{\circ}-\sin \left(60^{\circ}-2y\right)=$ $\sqrt 3-\left[\sin(60^{\circ}-2x)+\sin (60^{\circ}-2y)\right]=$ $\sqrt 3-2\sin\left[60^{\circ}-(x+y)\right]\cos(x-y)\ \stackrel{x+y=60^{\circ}}{=}\ \underline{\underline{\sqrt 3}}\ .$



P9 (Old Greek Mathematical Journal). Prove that $(\forall )\ \triangle\ ABC$ there is the following identity $:\ \left(1+\tan\frac A4\right)\cdot\left(1+\tan\frac B4\right)\cdot \left(1+\tan\frac C4\right)=2\cdot\left(1+\tan\frac A4\tan\frac B4\tan\frac C4\right)\ .$

Proof. Let $f(t)=t^3-s_1t^2+s_2t-s_3=0$ $\begin{array}{ccccc}
\nearrow & x & = & \tan \frac A4 & \searrow\\\\
\rightarrow & y & = & \tan \frac B4 & \rightarrow\\\\
\searrow & z & = & \tan \frac C4 & \nearrow\end{array}\odot$ where $\odot\begin{array}{ccccc}
\nearrow & s_1 & = & x+y+z & \searrow\\\\
\rightarrow & s_2 & = & xy+yz+zx & \rightarrow\\\\
\searrow & s_3 & = & xyz & \nearrow\end{array}\odot$ Thus, $\sum\frac {\pi+A}4=\frac {\sum\pi +\sum A}4=\frac {3\pi +\pi}4=\pi\implies$

$\boxed{\sum\left(\frac {\pi}4+\frac A4\right)=\pi}\ (*)\ .$ Hence in this case $\sum\tan\left(\frac {\pi}4+\frac A4\right)=\prod\tan\left(\frac {\pi}4+\frac A4\right)\iff$ $\sum\frac {1+x}{1-x}=\prod\frac {1+x}{1-x}\iff$ $\sum [(1+x)(1-y)(1-z)]=\prod (1+x)\iff$

$\sum[1-y-\cancel z+\cancel {yz}+x(\cancel 1-\cancel y-z+yz)]=\prod (1+x)\iff$ $\sum[1-y+x(-z+yz)]=\prod (1+x)\iff$ $3-s_1-s_2+3s_3=1+s_1+s_2+s_3\iff$ $\boxed{\ s_1+s_2=1+s_3\ }\ (1)\ .$

Otherwise. $\frac A4+\frac B4=\frac {\pi}4-\frac C4\implies$ $\tan\left(\frac A4+\frac B4\right)=\tan\left(\frac {\pi}4-\frac C4\right)\implies$ $\frac {x+y}{1-xy}=\frac {1-z}{1+z}\iff$ $(x+y)(1+z)=(1-xy)(1-z)\iff$ $\sum x+\sum yz=1+xyz$ $\iff$

$s_1+s_2=1+s_3\ .$ Hence $\prod\left(1+\tan\frac A4\right)=$ $2\left(1+\prod\tan\frac A4\right)\iff$ $\boxed{\prod (1+x)=2(1+xyz)}$ $\iff$ $1+s_1+s_2+s_3=2+2s_3\iff$ $s_1+s_2=1+s_3\ ,$ what is the true relation $(1)\ .$



P10 (Fleetwood). Sa se determine toate numerele naturale in baza $10$ de forma $N=\overline{xyz}$ stiind ca $\overline{xy}+\overline{yz}+\overline{zx}=66\ .$ Frumoasa problema pentru clasa a IV - a !

Proof. $\overline{xy}+\overline{yz}+\overline{zx}=66\iff$ $(10\underline{x}+\underline{\underline {y}})+(10\underline{\underline{y}}+\underline{\underline{\underline{z}}})+(10 \underline{\underline{\underline{z}}}+\underline x)=66\iff$ $11(x+y+z)=66\iff \boxed{x+y+z=6}\ .$ Cifra $x\ge 1\ ,$ ca prima cifra de la stanga a lui $N\ .$ Apar cazurile $:$

$$\blacktriangleright\ x=1\ \implies\ y+z=5\ \implies\ \left\{\begin{array}{cccccccc}
x & : & 1 & 1 & 1 & 1 & 1 & 1\\\
y & : & 0 & 1 & 2 & 3 & 4 & 5\\\
z & : & 5 & 4 & 3 & 2 & 1 & 0 \end{array}\right\|\ (6-2=4)\ ;$$
$$\blacktriangleright\ x=2\ \implies\ y+z=4\ \implies\ \left\{\begin{array}{cccccccc}
x & : & 2 & 2 & 2 & 2 & 2\\\
y & : & 0 & 1 & 2 & 3 & 4\\\
z & : & 4 & 3 & 2 & 1 & 0\end{array}\right\|\ (5-2=3)\ ;$$
$$\blacktriangleright\ x=3\ \implies\ y+z=3\ \implies\ \left\{\begin{array}{cccccccc}
x & : & 3 & 3 & 3 & 3\\\
y & : & 0 & 1 & 2 & 3\\\
z & : & 3 & 2 & 1 & 0\end{array}\right\|\ (4-2=2)\ ;$$
$$\blacktriangleright\ x=4\ \implies\ y+z=2\ \implies\ \left\{\begin{array}{cccccccc}
x & : & 4 & 4 & 4\\\
y & : & 0 & 1 & 2\\\
z & : & 2 & 1 & 0\end{array}\right\|\ (3-2=1)\ ;$$
$$\blacktriangleright\ x=5\ \implies\ y+z=1\ \implies\ \left\{\begin{array}{cccccccc}
x & : & 5 & 5\\\
y & : & 0 & 1\\\
z & : & 1 & 0\end{array}\right\|\ (2-2=0)\ ;$$
$$\blacktriangleright\ x=6\ \implies\ y+z=0\ \implies\ \left\{\begin{array}{cccccccc}
x & : & 6\\\
y & : & 0\\\
z & : & 0\end{array}\right\|\ (1-1=0)\ .$$
Numerele naturale $xy\ ,$ $yz$ si $zx$ fiind de doua cifre trebuie ca $0\not\in \{x,y,z\}\ .$ Asadar, solutia $S$ are cel mult $\sum_{k=1}^6k=\frac {6\cdot 7}2=21$ de numere naturale $($scrise de sus

in jos $\downarrow )\ ,$ mai putin cele $5\cdot 2+1=11$ numere care au cel putin o cifra egala cu zero. In concluzie, $S=\{411,321,312,231,222,213,141,132,123,114\}\ .$



P11 (Old Greek Mathematical Journal). Prove that $(\forall )\ w\not\in\left\{\frac{k\pi}6\ ,\ k\in \mathbb Z\right\}\ ,$ $\frac {\cot 3w}{\cot w}\not\in \left(\frac 13,3\right)\ .$

Proof. $\tan 2w=\frac {2\tan w}{1-\tan^2w}\implies$ $\tan 3w=\tan (w+2w)=\frac {\tan w+\tan 2w}{1-\tan w\tan 2w}=\frac {\tan w+\frac {2\tan w}{1-\tan^2w}}{1-\tan w\cdot\frac {2\tan w}{1-\tan^2w}}=$ $\frac {\tan w\left(3-\tan^2w\right)}{1-3\tan^2w}\implies$ $\boxed{\frac {\cot 3w}{\cot w}=\frac {\tan w}{\tan 3w}=\frac {1-3\tan^2w}{3-\tan^2w}}\ (*)\ .$

Let $\boxed{\ \tan w=t\in \mathbb R\ }\ (1)\ .$ Suppose against all reason $\frac {\cot 3w}{\cot w}\in \left(\frac 13,3\right)\ ,$ i.e. $\frac {1-3t^2}{3-t^2}\in \left(\frac 13,3\right)\iff$ $ \left(\frac {1-3t^2}{3-t^2}-\frac 13\right)\left(\frac {1-3t^2}{3-t^2}-3\right)<0\iff$ $\left(-8t^2\right)\cdot (-8)<0\ ,$ what is false.



P12. Let $ax^2+bx+c=0\begin{array}{cc}
\nearrow & x_1\\\\
\searrow & x_2\end{array}$ be the quadratic equation for what $x_1=2x_2 \ \vee\ x_2=2x_1\ .$ Find the value of $\frac {b^2}{ac}\ .$

Proof. Are well-known the notations $:\ \left\{\begin{array}{ccccc}
S & = & x_1+x^2 & = & -\frac ba\\\\
P & = & x_1x_2 & = & \frac ca\end{array}\right\|\ .$ Therefore, $x_1=2x_2\ \stackrel{\mathrm {or}}{\vee}\ x_2=2x_1\ \iff\ \left(x_1-2x_2\right)\left(x_2-2x_1\right)=0\iff$

$2\left(x_1^2+x_2^2\right)=5x_1x_2\iff$ $2\left(S^2-2P\right)=5P\iff$ $2S^2=9P\iff$ $2\left(-\frac ba\right)^2=9\cdot\frac ca\iff$ $\frac {2b^2}{a\cancel{^2}}=\frac {9c}{\cancel a}\iff$ $2b^2=9ac\iff$ $\boxed{\frac {b^2}{ac}=\frac 92}\ .$



P13 (Israel DIAZ). Let $f:D\rightarrow\mathbb R\ ,$ where $D=(4,5)$ and $f(x)=\frac {5x-11}{x-3}\ .$ Find the image $f(D)\ ,$ i.e. $\mathrm{Im}(f)\ .$

Proof. Denote the image $y=\frac {5x-11}{x-3}$ of $x\in (4,5)\ .$ Observe that $xy-3y=5x-11\iff$ $\boxed{x=\frac {3y-11}{y-5}}\ ,\ \underline{y\ne 5}\ .$ Therefore, $x\in (4,5)\iff$ $\frac {3y-11}{y-5}\in (4,5)\iff$

$\left(\frac {3y-11}{y-5}-4\right)\left(\frac {3y-11}{y-5}-5\right)<0\iff$ $\frac {(-y+9)(-2y+14)}{(y-5)^2}<0\iff$ $(y-9)(y-7)<0\iff$ $\underline{y\in (7,9)}\ .$ In conclusion, $\boxed{\ \mathrm{Im}(f)=(7,9)\ }\ .$

Remark. $\lim_{x\searrow 3}f(x)=\infty\ ,\ \lim_{x\nearrow 3}f(x)=-\infty$ and $\lim_{x\rightarrow\pm \infty}f(x)=5\ ,\ \lim_{x\searrow 4}f(x)=9$ and $\lim_{x\nearrow 5}f(x)=7\ .$


P14 (Leo GIUGIUC). Let $A$-right $\triangle ABC$ with $H\in (BC)$ so that $AH\perp BC\ ,\ F\in (AB)$ so that $CF$ is the $C$-bisector of $\widehat{ACB}\ ,\ E\in AH\cap CF\ ,\ D\in BE\cap FH\ .$ Prove $[AEDF]=[BDH]$

Proof. Denote $S=[ABC]$ and apply the Menelaus' theorem to the transversal $\overline {AEH}/\triangle BCF\ :\ \frac {AF}{AB}\cdot\frac {HB}{HC}\cdot\frac {EC}{EF}=1\iff$ $\frac {\cancel b}{a+b}\cdot\frac {c^2}{b\cancel{^2}}\cdot\frac {EC}{EF}=1\iff$ $\frac {EC}{b(a+b)}=\frac {EF}{c^2}=\frac {CF}{a(a+b)}\implies$

$\frac {[AEB]}{[ACB]}=\frac {FE}{FC}=\frac {c^2}{a(a+b)}=\frac {a-b}a\implies$ $\boxed{\ [AEB]=\frac {a-b}a\cdot S\ }\ (1)\ .$ Observe that $\frac {[BFH]}{[ABC]}=\frac {BF}{BA}\cdot \frac {BH}{BC}=\frac {\cancel a}{a+b}\cdot \frac {c^2}{a\cancel{^2}}=\frac {c^2}{a(a+b)}=\frac {a-b}a\implies$ $\boxed{\ [BFH]=\frac {a-b}a\cdot S\ }\ (2)\ .$

In conclusion, from the relations $(1\wedge 2)$ obtain that $[AEB]=[BFH]\iff$ $[AEB]-[BDF]=[BFH]-[BDF]\iff$ $[AEDF]=[BDH]\ .$



P15 (Khoa Linh, Vietnam). Let $\triangle ABC$ with the incircle $w=\mathbb C(I,r)\ ,$ the circumcenter $O$ and the midpoint $M$ of the side $[BC]\ .$ Prove that $OI\perp AM\iff \boxed{\ \frac 1b+\frac 1c=\frac 2a\ }\ .$


Proof. $IA^2=r^2+(s-a)^2\ ,$ $IM^2=r^2+\frac{(b-c)^2}4$ and $OM^2=R^2-\frac {a^2}4\ .$ Hence $IO\perp AM\iff$ $IA^2-IM^2=$ $OA^2-OM^2\iff$ $\left[r^2+(s-a)^2\right]-\left[r^2+\frac {(b-c)^2}4\right]=$

$R^2-\left(R^2-\frac {a^2}4\right)\iff$ $(b+c-a)^2=(b-c)^2+a^2\iff$ $(b+c)^2-2a(b+c)=(b-c)^2\iff$ $4bc=2a(b+c)\iff$ $2bc=a(b+c)\iff$ $\frac 1b+\frac 1c=\frac 2a\ .$ Very nice problem !



P16 (Kadir, ALTINTAS, Turkey). Let $\triangle BC$ with the incircle $I\ ,$ the Nagel's point $N$ and $E\in BI\cap AC\ ,$ $F\in CI\cap AB\ .$

Prove that $\boxed{\ N\in EF\implies\frac {s-b}b+\frac {s-c}c=\frac {s-a}a\iff \frac 1b+\frac 1c=\frac 1a+\frac 1s\iff s^2+r^2=4Rh_a\ }$ (standard notations).


Proof. Denote $D\in AN\cap BC$ and apply the Van Aubel's relation for the point $N\ :\ \frac {NA}{ND}=\frac {FA}{FB}+\frac {EA}{EC}=$ $\frac {s-b}{s-a}+\frac {s-c}{s-a}=\frac {(s-b)+(s-c)}{s-a}=\frac a{s-a}\implies$ $\boxed{\ \frac {NA}{ND}=\frac a{s-a}\ }\ (1)\ .$ Apply the

Cristea's relation $:\ \frac {FB}{FA}\cdot DC+\frac {FC}{FA}\cdot DB=$ $\frac {ND}{NA}\cdot BC\ ,$ i.e. $\frac {\cancel a}b\cdot (s-b)+\frac {\cancel a}c\cdot (s-c)=$ $\frac {s-a}a\cdot \cancel a\iff\boxed{\ \frac {s-b}b+\frac {s-c}c=\frac {s-a}a\ }\ .$ Prove easily that $\frac {s-b}b+\frac {s-c}c=\frac {s-a}a\iff$

$\frac 1b+\frac 1c=$ $\frac 1a+\frac 1s\iff s^2+r^2=4Rh_a\ .$ Indeed $:\ \frac {s-b}b+\frac {s-c}c=$ $\frac {s-a}a\iff $ $\frac sb-1+\frac sc-1=$ $\frac sa-1\iff$ $\frac sb+\frac sc=\frac sa+1\iff$ $\boxed{\frac 1b+\frac 1c=\frac 1a+\frac 1s\ }\ ;$ $\frac {s-b}b+\frac {s-c}c=$ $\frac {s-a}a\iff$

$ac(s-b)+ab(s-c)=bc(s-a)\iff$ $\cancel s(ac+ab-bc)=4R\cancel sr\iff$ $(ab+bc+ca)=2bc+4Rr\iff$ $s^2+r^2+\cancel{4Rr}=4Rh_a+\cancel{4Rr}\iff$ $\boxed{\ s^2+r^2=4Rh_a\ }\ .$


Generalization 1. Let $ABC$ be a triangle with the incircle $I\ ,$ where denote $E\in BI\cap AC\ ,\ F\in CI\cap AB$ and a point $P\left(\alpha ,\beta ,\gamma\right)\in (EF)\ ,$

where $\left(\alpha ,\beta ,\gamma\right)$ are the barycentrical coordinates of $P$ w.r.t. $\triangle ABC\ .$ Prove that there is the following identity $:\ \boxed{\ \frac {\beta}b+\frac {\gamma}c=\frac {\alpha}a\ }\ .$

Particular cases $:\ G(1,1,1)\implies \frac 1b+\frac 1c=\frac 1a\ ;\ N(s-a,s-b,s-c)\implies \frac {s-b}b+\frac {s-c}c=\frac {s-a}a\ ;\ \Gamma\left(r_a,r_b,r_c\right)\implies$ $\frac {r_b}b+\frac {r_c}c=\frac {r_a}a\ ;$

$H\left (\tan A,\tan B,\tan C\right)\implies$ $\frac 1{\cos B}+\frac 1{\cos C}=\frac 1{\cos A}\ ;\ O(\sin 2A,\sin 2B,\sin 2C)\implies \cos B+\cos C=\cos A\ ;\ L\left(a^2,b^2,c^2\right)\implies L\not\in EF\ .$


Proof. Prove easily that $E(a,0,c)\ \wedge F(a,b,0)\ .$ Hence $P\left(\alpha ,\beta ,\gamma\right)\in (EF)\iff$ $\left|\begin{array}{ccc}
\alpha & \beta & \gamma\\\\
a & 0 & c\\\\
a & b & 0\end{array}\right|=0\iff$ $ab\gamma+ac\beta=bc\alpha\iff \frac {\beta}b+\frac {\gamma}c=\frac {\alpha}a\ .$

Generalization 2. Let $ABC$ be a triangle and two interior points $M_1\left(x_1,y_1,z_1\right)\ ,$ $M_2\left(x_2,y_2,z_2\right)$ with the barycentrical coordinates w.r.t.

$\triangle ABC$ such that $M_2\in EF\ ,$ where $E\in BM_1\cap AC\ ,$ $F\in CM_1\cap AB\ .$ Prove that there is the following identity $:\ \boxed{\ \frac {y_2}{y_1}+\frac {z_2}{z_1} =\frac {x_2}{x_1}\ }\ .$


Example: $M_1\equiv H\left(\cos A,\cos B,\cos C\right)\ \wedge\ M_2\equiv G(1,1,1)\implies$ $\tan A\tan C+\tan A\tan B=\tan B\tan C\implies$ $\cot B+\cot C=\cot A\implies$

$\frac {\cos b}b+\frac {\cos C}c=\frac {\cos A}a\iff$ $a(c\cdot \cos B+b\cdot \cos C)=bc\cdot\cos A\iff$ $a^2=bc\cdot \cos A\iff$ $2a^2=b^2+c^2-a^2\implies$ $\boxed{\ b^2+c^2=3a^2\ }\ .$



P17 (Ercole SUPPA). Let $ABC$ be a triangle with the midpoint $M$ of $[BC]\ ,$ the incircle $w=\mathbb C(I,r)\ ,$ the circumcenter $O$ and $D\in BC\cap w\ .$ Prove that $\boxed{\ IO\perp AD\implies\frac 1b+\frac 1c\ge\frac 2a\ }\ .$

Proof. Prove easily that $OD^2=OM^2+MD^2=$ $\left(OC^2-MC^2\right)+MD^2=$ $R^2-\left(MC^2-MD^2\right)=$ $R^2-\left[\frac {a^2}4-\frac {(b-c)^2}4\right]=$ $R^2-(s-b)(s-c)\implies$ $\boxed{\ OD^2=R^2-(s-b)(s-c)\ }\ .$

Therefore, $IO\perp AD\iff$ $IA^2-ID^2=OA^2-OD^2\iff$ $(bc-4Rr)-r^2=\cancel{R^2}-\left[\cancel{R^2}-(s-b)(s-c)\right]\iff$ $bc=(s-b)(s-c)+r^2+4Rr\iff$ $s(s-a)+\cancel{(s-b)(s-c)}=$

$\cancel{(s-b)(s-c)}+r^2+4Rr\iff$ $\boxed{\ s(s-a)=r^2+4Rr\ }\iff$ $s^2+s(s-a)=s^2+r^2+4Rr\iff$ $s(b+c)=ab+bc+ca\iff$ $(a+b+c)(b+c)=2a(b+c)+2bc\iff$

$(b+c)^2=a(b+c)+2bc\iff$ $\boxed{\ b^2+c^2=a(b+c)\
 }\ .$ In conclusion, $a(b+c)=b^2+c^2\ge 2bc\iff$ $a(b+c)\ge 2bc\iff$ $\boxed{ \frac 1b+\frac 1c\ge \frac 2a\ }\ .$



P18 (Kadir Altintas, Turkey). Let $\triangle ABC$ with $b\ne c$ and its interior point $P$ with the barycentrical coordinates $(\alpha ,\beta ,\gamma )$ w.r.t. $\triangle ABC\ ,$ where $D\in AP\cap BC\ .$

Denote the midpoints $E,F$ of the sides $[AC],[AB]$ respectively. Prove that $:\ \boxed{\ DE=DF\iff 2a^2(\beta -\gamma )=(\beta +\gamma )\left(b^2-c^2\right)\ }$ (standard notations).


Proof.


P19 (Mehmet Sahin, Turkey). $\boxed{\ \mathrm{Prove\ that}\ \forall\ \triangle ABC\ \mathrm{there\ is\ the\ identity}\ :\ ar_a+br_b+cr_c=2\left(\left[I_aI_bI_c\right]-\left[ABC\right]\right)\ \mathrm{(standard\ notations)}\ .}$

Proof. $[ABC]=sr=(s-a)r_a\implies$ $ar_a=s\left(r_a-r\right)\implies$ $\sum ar_a=s\sum\left(r_a-r\right)=s(4R+r)-3sr=s(4R-2r)=2s(2R-r)\implies$

$\boxed{\sum ar_a=2s(2R-r)}\ (*)\ .$ Hence $\left[I_aI_bI_c\right]=\sum\left([BIC]+\left[BI_aC\right]\right)=[ABC]+\frac 12\cdot \sum ar_a\implies$ $2\left(\left[I_aI_bI_c\right]-[ABC]\right)\ \stackrel{(*)}{=}\ \sum ar_a\ .$



P20 (Mehmet Sahin, Turkey). $\boxed{\ \mathrm{Prove\ that}\ \forall\ \triangle ABC\ \mathrm{there\ is\ the\ identity}\ :\ \frac a{r_b+r_c}+\frac b{r_c+r_a}+\frac c{r_a+r_b}=\frac {2\left(r_a+r_b+r_c\right)}{a+b+c}\ \mathrm{(standard\ notations)}\ .}$

Proof. $\frac a{r_b+r_c}=\frac {a(s-b)(s-c)}{r_b(s-b)\cdot (s-c)+r_c(s-c)\cdot(s-b)}=$ $\frac {a(s-b)(s-c)}{S[(s-c)+(s-b)]}=$ $\frac {\cancel a(s-b)(s-c)}{\cancel aS}=$ $\frac S{s(s-a)}=$ $\frac {r_a}s$ $\implies$ $\sum\frac a{r_b+r_c}=\sum\frac {r_a}s\implies$ $\sum\frac a{r_b+r_c}=\frac {2\left(r_a+r_b+r_c\right)}{a+b+c}\ .$


P21 (USAMO 2001). Let $\triangle ABC$ and let $w=\mathbb C(I,r)$ be its incircle. Denote by $D_{1}$ and $E_{1}$ where $w$ is tangent to $BC$ , $AC$ respectively. Denote by $D_{2}$ , $E_{2}$ the points on $BC$ and $AC$ respectively,

such that $CD_{2}=BD_{1}$ , $CE_{2}=AE_{1}$ and denote by $P\in AD_{2}\cap BE_{2}\ .$ Circle $w$ intersects $AD_{2}$ at two points, the closer of which to the vertex $A$ is denoted by $Q$ . Prove that $AQ=PD_{2}\ .$


Proof. Is well-known property $Q\in ID_1\ \ (*)$ . Therefore, $\frac {AQ}{AD_2}=\frac {h_a-2r}{h_a}=\frac {ah_a-2ar}{ah_a}=\frac {2pr-2ar}{2pr}=\frac {p-a}{a}\ \ (1)$ . Apply Menelaus' theorem to $\overline {BPE_2}/AD_2C\ \ :$

$\frac {BD_2}{BC}\cdot\frac {E_2C}{E_2A}\cdot\frac {PA}{PD_2}=1$ $\implies$ $\frac {p-b}{a}\cdot\frac {p-a}{p-c}\cdot\frac {PA}{PD_2}=1$ $\implies$ $\frac {PA}{p}=\frac {PD_2}{p-a}=\frac {AD_2}{a}$ $\implies$ $\frac {PD_2}{AD_2}=\frac {p-a}{a}\ \ (2)$ . From the relations $(1)$ , $(2)$ obtain $AQ=PD_2$ .

==================================

$(*)\ \blacktriangleright$ Let $\{D_1,Q_1\}=w\cap D_1I$ .Prove easily that $\frac {AD}{Q_1D_1}=\frac {h_a}{2r}=\frac {ah_a}{2ar}=\frac {2pr}{2ar}=\frac pa$ and $\frac {DD_2}{D_1D_2}=\frac {p|b-c|}{a}\cdot \frac {1}{|b-c|}=\frac pa$ . Hence $\frac {AD}{Q_1D_1}=\frac {DD_2}{D_1D_2}$ , i.e. $Q_1\in w\cap AD_2$ $\implies$ $Q_1\equiv Q$ .
This post has been edited 509 times. Last edited by Virgil Nicula, Jun 24, 2018, 9:27 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a