58. A cevian and two incircles.

by Virgil Nicula, Jul 10, 2010, 2:20 AM

http://www.artofproblemsolving.com/Forum/viewtopic.php?f=47&t=50559&hilit=

http://www.artofproblemsolving.com/Forum/viewtopic.php?f=47&t=356562

P1. Let $\triangle ABC$ with semiperimeter $p$ and incircle $w=C(I,r)\ .$ For $M\in (BC)$ denote $w_{1}=C(I_{1},r_{1}),\ w_{2}=C(I_{2},r_{2})$ of $\triangle ABM,\ \triangle ACM$ respectively. Prove that :

$1.\blacktriangleright\ pr^{2}+ar_{1}r_{2}=pr(r_{1}+r_{2})\ \ (*)$ . This relation $(*)$ $\Longleftrightarrow$ $p(r-r_{1})(r-r_{2})=(p-a)r_{1}r_{2}$ $\Longleftrightarrow$ $\frac{1}{r_{1}}+\frac{1}{r_{2}}=\frac{r}{r_{1}r_{2}}+\frac{2}{h_{a}}$ .

$2.\blacktriangleright\ r< r_{1}+r_{2}\le 2\delta$ , where $\delta=\frac{r}{a}\cdot \left[ p-\sqrt{p(p-a)}\right]$, with equality iff $r_{1}=r_{2}=\delta$ $\iff$ $AM^2=s(s-a)$ .

$3.\blacktriangleright$ $M\in w$ $\Longleftrightarrow w_{1}\ ,\ w_{2}$ are tangent to $AM$ in same point. In this case if $D\ ,\ S$ are midpoints of $[BC]\ ,$ $[AM]$

and $R\in AM$ for which $IR\perp AM\ ,$ then $\left\{\begin{array}{cc}
3.1\blacktriangleright & (r-r_{1})(p-b)=(r-r_{2})(p-c)=r\sqrt{r_{1}r_{2}}\ .\\\\ 
3.2\blacktriangleright & I\in (SD)\ ,\ a\cdot IS=(p-a)\cdot ID\ .\\\\
3.3\blacktriangleright & \widehat{BRM}\equiv\widehat{CRM}\ .\end{array}\right\|$


$1\blacktriangleright$ Proof. Suppose w.l.o.g. that $c<b\ .$ Denote : the tangent points $U\ ,\ V$ of $w_{1}\ ,\ w_{2}$ with $AM$ respectively ; the tangent points $X\ ,\ Y$ of $w_{1}\ ,\ w_{2}$ with $BC$ respectively ;

$BX=x\ ,\ CY=y\ .$ Prove easily that : $UV=b-c+x-y\ ;$ $\tan \frac{B}{2}=\frac{r}{p-b}=\frac{r_{1}}{x}\ ;$ $\tan\frac{C}{2}=\frac{r}{p-c}=\frac{r_{2}}{y}$ and $XY=a-x-y\ .$ Thus, $UV^{2}+(r_{1}+r_{2})^{2}=I_{1}I_{2}^{2}=$

$XY^{2}+(r_{1}-r_{2})^{2}$ $\Longrightarrow$ $UV^{2}+4r_{1}r_{2}=XY^{2}$ $\Longrightarrow$ $\left[(b-c)+(x-y)\right]^{2}+4r_{1}r_{2}=$ $[a-(x+y)]^{2}$ $\Longrightarrow$ $2a(x+y)+2(b-c)(x-y)+4r_{1}r_{2}=$ $a^{2}-(b-c)^{2}+4xy$ $\Longrightarrow$

$(p-c)x+(p-b)y+r_{1}r_{2}=$ $(p-b)(p-c)+xy$ $\Longrightarrow$ $(p-c)\cdot\frac{(p-b)r_{1}}{r}+(p-b)\cdot\frac{(p-c)r_{2}}{r}+r_{1}r_{2}=$ $(p-b)(p-c)+\frac{(p-b)r_{1}}{r}\cdot\frac{(p-c)r_{2}}{r}$,

i.e.$(p-b)(p-c)(r-r_{1})(r-r_{2})=$ $r^{2}r_{1}r_{2}$ , i.e. $p(r-r_{1})(r-r_{2})=$ $(p-a)r_{1}r_{2}$ . Thus $pr^{2}+ar_{1}r_{2}=pr(r_{1}+r_{2})$ . But $\frac{a}{p}=\frac{2r}{h_{a}}$ . In conclusion, $\boxed{\ \frac{1}{r_{1}}+\frac{1}{r_{2}}=\frac{r}{r_{1}r_{2}}+\frac{2}{h_{a}}\ }\ .$

$2.1\blacktriangleright$ Proof 1 (with derivatives). Define $\mathrm{\ x\ .s.s.\ y}$ $\Longleftrightarrow$ $xy>0$ or $x=y=0\ .$ Prove easily $\{r_{1},r_{2}\}\subset (0,r)$ and $1<r_{1}+r_{2}\ .$ Let $k=\frac{a}{p}<1$ , $x=\frac{r_{1}}{r}<1$ , $y=\frac{r_{2}}{r}<1\ .$

The relation $(*)$ becomes $1+kxy=x+y$ and the extremum problem becomes $\max_{(x,y)\in D}\{\ x+y\ \}\ ,\ (x,y)\in D\iff$ $\{x,y\}\subset (0,1)\ ,\ 1<x+y=1+kxy\ ,$ i.e.

$1-x<y=\frac{1-x}{1-kx}\ .$ Remark $0<x<1<\frac{1}{k}\ .$ Let $f: (0,1)\rightarrow\mathbb R\ ,\ f(x)=x+\frac{1-x}{1-kx}=x+y\ .$ Prove easily $f'(x)\mathrm{\ .s.s.\ }(kx^{2}-2x+1)\ .$ Thus,

$(\forall )\ x\in (0,1)\ ,\ f(x)\le f(x_{0})$, where $x_{0}=\frac{1-\sqrt{1-k}}{k}\ .$ Coming back to the initial extremum problem get $\delta =r\cdot \frac{1-\sqrt{1-\frac{a}{p}}}{\frac{a}{p}}\ ,$ i.e. $\boxed{\ \delta =\frac{r}{a}\cdot \left[ p-\sqrt{p(p-a)}\right]\ }$ .

$2.2\blacktriangleright$ Proof 2 (without derivatives). Using the same notations from the previous proof obtain : $1<(x+y)=1+kxy<2$ $\Longrightarrow$ $(x+y)\in (1,2)\ .$ Thus, $(x+y)^{2}\ge 4xy$ $\Longrightarrow$

$k(x+y)^{2}\ge 4[(x+y)-1]$ $\Longrightarrow$ $k(x+y)^{2}-4(x+y)+4\ge 0$ $\implies$ $(x+y)\not\in \left(2\cdot \frac{1-\sqrt{1-k}}k\ ,\  2\cdot\frac{1+\sqrt{1-k}}{k}\right)$ and $(x+y)\in (1,2)$ $\implies$

$1<(x+y)\le 2\cdot\frac{1-\sqrt{1-k}}{k}$ because $1<2\cdot\frac{1-\sqrt{1-k}}{k}<2<$ $2\cdot\frac{1+\sqrt{1-k}}{k}\ .$ We have equality iff $x=y=x_{0}=\frac{1-\sqrt{1-k}}{k}$ a.s.o. In the case

$r_{1}=r_{2}=\delta =\frac{r}{a}\cdot \left[p-\sqrt{p(p-a)}\right]$ add and another relations : $\boxed{\ a\delta^{2}-2pr\delta+pr^{2}=0\ }\mathrm{\ \ ;\ \ }$ $p(r-\delta )^{2}=(p-a)\delta^{2}\mathrm{\ \ ;\ \ }$ $\frac{2}{\delta}=\frac{r}{\delta^{2}}+\frac{2}{h_{a}}$ ; $\frac{MX}{p-c}=\frac{MY}{p-b}=\frac{r-\delta }{r}$ ;

$\left\{\begin{array}{c}MB=(p-c)-\frac{\delta }{r}\cdot (b-c)\\\\ MC=(p-c)+\frac{\delta }{r}\cdot (b-c)\end{array}\right\|\ .$ Now I"ll show that $\boxed{ \blacktriangleleft\ r_1=r_2\ \iff\ AM^{2}=p(p-a)\ \blacktriangleright\ }$ . Indeed, denote $AM=x$ and $BM=m$ . Appling Stewart's theorem

to cevian $AM$ in $\triangle ABC$ obtain that $c^2(a-m)+b^2m-x^2a=$ $am(a-m)$ $\iff$ $am^2-\left(a^2+c^2-b^2\right)m=a\left(x^2-c^2\right)\ (0)$ . Therefore, $r_1=r_2$ $\iff$ $\frac {mh_a}{c+m+x}=$

$\frac {h_a(a-m)}{x+a-m+b}$ $\iff$ $m=\frac {a(x+c)}{2x+b+c}$ . Substitute $m$ in $(0)$ and obtain $x^3+bx^2-s(s-a)x-bs(s-a)=0$ $\iff$ $(x+b)\left[x^2-s(s-a)\right]=0$ $\iff$ $x^2=s(s-a)$ .

$3.\blacktriangleright$ Proof 1. Using the above notations, the circles $w_{1}\ ,\ w_{2}$ are tangent in the same point to the line $AM$ $\Longleftrightarrow$ $MX=MY$ $\Longleftrightarrow$

$MB+MA-c=MC+MA-b$ $\Longleftrightarrow$ $MB+MC=a\ ,\ MB-MC=c-b$ $\Longleftrightarrow$ $MB=p-b$ $\Longleftrightarrow$ $M\in w$ .

Proof 2. $M\in w$ $\Longleftrightarrow$ $MB+AC=MC+AB$ $\Longleftrightarrow$ the triangle $ABC$ is a degenerated circumscribed quadrilateral $ABMC$ $\Longleftrightarrow$

(from a well-known property) the incircles of the triangles $ABM\ ,\ ACM$ are tangent in the same point of the "diagonal" $AM$ .

$3.1\blacktriangleright\ M\in w\Longrightarrow XY=2\sqrt{r_{1}r_{2}}$ $\Longrightarrow$ $[a-(x+y)]^{2}=4r_{1}r_{2}$ $\Longrightarrow$ $\left[a-\frac{r_{1}(p-b)+r_{2}(p-c)}{r}\right]^{2}=4r_{1}r_{2}$ $\Longleftrightarrow$ $\{r[(p-b)+(p-c)]-r_{1}(p-b)-r_{2}(p-c)\}^{2}=$

$4r^{2}r_{1}r_{2}$ $\Longrightarrow$ $[(r-r_{1})(p-b)+(r-r_{2})(p-c)]^{2}=4r^{2}r_{1}r_{2}$ $\Longrightarrow$ $(r-r_{1})(p-b)+(r-r_{2})(p-c)=2r\sqrt{r_{1}r_{2}}\ \ (1)$ . Otherwise, $M\in w\Longleftrightarrow$ $UV=0$ $\Longleftrightarrow$ $x-y=c-b$

$\Longleftrightarrow$ $\frac{r_{1}(p-b)}{r}-\frac{r_{2}(p-c)}{r}=$ $c-b$ $\Longleftrightarrow$ $(p-b)r_{1}-(p-c)r_{2}=$ $r[(p-b)-(p-c)]$, i.e. $(p-b)(r-r_{1})=(p-c)(r-r_{2})\ \ (2)$ . From $(1)$ and $(2)$ obtain that

$\boxed{\ (p-b)(r-r_{1})=(p-c)(r-r_{2})=r\sqrt{r_{1}r_{2}}\ }$ .

$3.2\blacktriangleright$ Denote $L\in BC\cap AI\ ,\ T_{1}\in AB\cap DS\ ,\ T_{2}\in AB\cap DI\ .$ Prove easily $DL=\frac{a(b-c)}{2(b+c)}$ , $DM=\frac{b-c}{2}$ , $LM=\frac{(b-c)(p-a)}{b+c}$ , $\frac{IA}{IL}=\frac{b+c}{a}\ .$ Apply the Menelaus's

theorem
to $\overline{DST_{1}}/\triangle ABM$ , $\overline{DIT_{2}}/\triangle ABL\ :$ $\frac{DM}{DB}\cdot\frac{T_{1}B}{T_{1}A}\cdot\frac{SA}{SM}=1$ $\Longrightarrow$ $\frac{T_{1}A}{T_{1}B}=\frac{DM}{DB}\cdot \frac{SA}{SM}$ $\Longrightarrow$ $\frac{T_{1}A}{T_{1}B}=\frac{b-c}{a}\ \ (3)$ . $\frac{DL}{DB}\cdot\frac{T_{2}B}{T_{2}A}\cdot \frac{IA}{IL}=1$ $\Longrightarrow$ $\frac{T_{2}A}{T_{2}B}=\frac{DL}{DB}\cdot\frac{IA}{IL}$ $\Longrightarrow$

$\frac{T_{2}A}{T_{2}B}=\frac{b-c}{a}\ \ (4)$ . From $(3)$ and $(4)$ get $T_{1}\equiv T_{2}\equiv T$ , i.e. $I\in DS$ and $\frac{TA}{TB}=\frac{b-c}{a}\ .$ Apply the Menelaus' theorem to the transversal $\overline{AIL}/\triangle DMS\ :$ $\frac{AS}{AM}\cdot\frac{LM}{LD}\cdot\frac{ID}{IS}=1$

$\Longrightarrow$ $\frac{IS}{ID}=\frac{AS}{AM}\cdot \frac{LM}{LD}$ $\Longrightarrow$ $\frac{IS}{p-a}=\frac{ID}{a}=\frac{SD}{p}$ , i.e. $\boxed{\ a\cdot IS=(p-a)\cdot ID\ }\ .$ Remark $\frac{TA}{TB}=\frac{IS}{ID}=\frac{p-a}{a}$ !

$3.3\blacktriangleright$ Denote the tangent points $N\in AC\cap w$ , $P\in AB\cap w$ and $V\in BC\cap NP$ . Thus, $AI\perp VN$ , i.e. $AV^{2}-AN^{2}=IV^{2}-IN^{2}$ . Thus, $VA^{2}-VM^{2}=$

$(AV^{2}-AN^{2})+(AN^{2}-VM^{2})=$ $(IV^{2}-IN^{2})+(AN^{2}-VM^{2})=$ $(IV^{2}-VM^{2})+(AN^{2}-IN^{2})=$ $IM^{2}+AN^{2}-IN^{2}=$ $AN^{2}=$ $IA^{2}-IN^{2}=$

$IA^{2}-IM^{2}$ $\Longrightarrow$ $VA^{2}-VM^{2}=IA^{2}-IM^{2}\ ,$ i.e. $\boxed{\ VI\perp AM\ }$ . $V$ , $M$ are conjugate w.r.t. $\{B,C\}\ .$ Thus, $R\in VI$ and $VI\perp AM$ $\Longrightarrow$ $[RM$ is the bisector of $\widehat{BRC}$ .


P2. Prove similarly the following identities :

$\blacktriangleright$ For the triangle $ABC$ denote the length $h_{a}$ of the $A$-altitude and the $A$-exincircle $w=C(I_{a},r_{a})$ . For a point $M\in (BC)$ denote the $A$-exincircles $w_{1}=C(I_{1},r_{1})$ ,

$w_{2}=C(I_{2},r_{2})$ of the triangles $ABM$ , $ACM$ respectively.Prove that $ar_{1}r_{2}+prr_{a}=pr(r_{1}+r_{2})$ which is equivalently with $\boxed{\ \frac{1}{r_{1}}+\frac{1}{r_{2}}-\frac{2}{h_{a}}=\frac{r_{a}}{r_{1}r_{2}}\ }$ .

$\blacktriangleright$ For the triangle $ABC$ denote the length $h_{a}$ of the $A$-altitude and the $A$-exincircle $w=C(I_{a},r_{a})\ .$ For a point $M\in (BC)$ denote the $M$-exincircles $w_{1}=C(I_{1},r_{1})$ ,

$w_{2}=C(I_{2},r_{2})$ of the triangles $ABM$ , $ACM$ respectively. Prove that $ar_{1}r_{2}=pr(r_{1}+r_{2})+prr_{a}+p(p-b)(p-c)$ which is equivalently with $\boxed{\ \frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{r_{a}}{r_{1}r_{2}}=\frac{2}{h_{a}}\ }$ .


$\blacktriangleright$ Let $ABC$ be a triangle with the semiperimeter $p$ and the incircle $w=C(I,r)$ . For a point $M\in (BC)$ denote the incircle $w_{1}=C(I_{1},r_{1})$ of $\triangle ABM$

and the $M$-exincircle $w_{2}=C(I_{2},r_{2})$ of the triangle $ACM$ . Prove that $pr(r_1+r_2)=$ $ar_1r_2+prr_b$ which is equivalently with $\boxed{\ \frac{1}{r_{1}}+\frac{1}{r_{2}}-\frac{2}{h_{a}}=\frac{r_{b}}{r_{1}r_{2}}\ }$ .

$\blacktriangleright$ Let $\triangle ABC,\ w=C(I,r),\ M\in BC\cap w$, the incircles $w_1=C(I_1,r_1),\ w_2=C(I_2,r_2)$ to $\triangle ABM$ ,

$\triangle ACM$ respectively and the midpoints $D,\ S$ of the segments $[BC],\ [AM]$ respectively. Prove that:

$1.\ (r-r_1)(p-b)+(r-r_2)(p-c)=2r\sqrt {r_1r_2}\ ;$

$2.\ I\in (SD),\ a\cdot IS=(p-a)\cdot ID\ ;$

$3.\ R\in AM,\ IR\perp AM\Longrightarrow \widehat {BRM}\equiv \widehat {CRM}.$

$\blacktriangleright$ Let $\triangle ABC$ for which exists $D\in (BC)$ so that $AD\perp BC$ . Denote $r_1$ , $r_2$ the lengths of inradii for the triangles

$ABD$ , $ADC$ respectively. Prove that $\boxed{ar_1+(p-a)(p-c)=ar_2+(p-a)(p-b)=pr}$ , i.e. $\left\{\begin{array}{c}
r_1=\frac {pr-(p-a)(p-c)}{a}\\\\
r_2=\frac {pr-(p-a)(p-b)}{a}\end{array}\right\|$ .



P3. Let $d$ be a fixed line and let $C_e=C(O,R)\ ,\ C_i=C(I,r)$ be two fixed circles so that $C_i$ is interior tangent to $C_e$ in $A\in d$. For a mobile $M\in C_e$ denote the intersections $X\ ,\ Y$

between the line $d$ and the tangents from $M$ to $C_i$. Prove that the sum of the lengths of the radii of the incircles of the triangles $AMX,\ AMY$ is equal to $2[R-\sqrt{R(R-r)}]$ (constant).


Proof (Yetti). Assume that the line a is common tangent to the circles $C_e, C_i$. This is not stressed properly in the problem, but without it, the sum of inradii would not be constant. The circle $C_i$ with radius r is the incircle of $\triangle XYM$. Let $C_x, C_y$ be the incircles of $\triangle XTM, \triangle YTM$ with inradii $r_x, r_y$. Let $P, Q$ be the tangency points of $C_x, C_y$ with MT. Let $s, s_x, s_y$ be the semiperimeters of $\triangle XYM, \triangle XTM, \triangle YTM$ and denote $x = XM$ , $y = YM$ . Then from $\triangle XYM$ with the incircle $C_i$ , $XT = s - YM = s - y,\ \ YT = s - XM = s - x$ . Similarly, from $\triangle XTM, \triangle YTM$ with the incircles $C_x, C_y$, we have $TP = s_x - XM = s_x - x,\ \ TQ = s_y - YM = s_y - y$ and $PQ = TQ - TP = (s_y - y) - (s_x - x) = (s_y - s_x) - (y - x)$ . The semiperimeters $s_x, s_y$ are equal to $s_x = \frac{XM + MT + XT}{2},\ s_y = \frac{YM + MT + YT}{2}$ and their difference to $s_y - s_x = \frac{(YM + MT + YT) - (XM + MT + XT)}{2} =$ $\frac{(y - x) + (s - x) - (s - y)}{2} = y - x$ . Consequently, $PQ = (s_y - s_x) - (y - x) = 0$ and P, Q are identical, i.e. $C_x, C_y$ touch each other on $MT$ . By the way, this is problem 2 in chapter 1 of Honsberger's Episodes. Let $h = MN \perp XY$ be the common M-altitude of $\triangle XYM, \triangle XTM, \triangle YTM$. Let ST be a diameter of $C_e$ with radius R. Denote $\theta = \angle STM$. Then $MT = 2R \cos \theta$ and $h = MT \cos \theta = 2R \cos^2 \theta$, because, $ST$ , $MN$ are both perpendicular to $a \equiv XY$ . According to Inradii problem, we have the relation $\frac 2 h = \frac{1}{r_x} + \frac{1}{r_y} - \frac{r}{r_x r_y},\ \ r_x + r_y = r + \frac{2r_x r_y}{h}$ . Let U, V be the tangency points of $C_x, C_y$ with the line $a \equiv XY$. The segment length UV of the common external tangent of 2 tangent circles with radii $r_x, r_y$ is equal to $UV = 2 \sqrt{r_1r_2}$. Substituting these results into the inradii relation, we get $r_x + r_y = r + \frac{UV^2}{4R \cos^2 \theta}$ . Let I, J be the centers of $C_x, C_y$. Since they are both tangent to MT at the same point, $r_x + r_y = IJ \perp MT$. The angle between $IJ$ and $UV \equiv XY$ is the same as the angle between their perpendiculars MT, ST, which is equal to $\theta$. Hence, $UV = IJ \cos \theta = (r_x + r_y) \cos \theta$. Substituting this last result into the inradii relation, $r_x + r_y = r + \frac{(r_x + r_y)^2}{4R},\ \ (r_x + r_y)^2 - 4R(r_x + r_y) + 4rR = 0$ . Thus we obtained a quadratic equation for the sum $r_x + r_y$ in terms of the fixed radii r, R, which has the roots $r_x + r_y = 2R \pm \sqrt{4R^2 - 4rR} = 2\left[R \pm \sqrt{R(R - r)}\right]$ . The root with the plus sign is greater than 2R and not acceptable. For example, when the variable point M becomes identically with the point S diametrally opposite to the tangency point T, clearly, $r_x = r_y < R$, $r_x + r_y < 2R$.
This post has been edited 82 times. Last edited by Virgil Nicula, Dec 1, 2017, 2:59 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a