408. Geometry 1.

by Virgil Nicula, Mar 4, 2015, 1:13 PM

PP1. Let an $A$-isosceles $\triangle ABC$ with the point $D\in (AB)$ so that $CD\perp AB$ and the incircle $w=\mathbb C(I,r)$ of $\triangle ACD$ . Prove that $BD=mr\iff m\cdot AB=r(m^2+2m+2)$ .

Proof. Denote $\left\{\begin{array}{c}
X\in CD\cap w\\\\
Y\in DA\cap w\\\\
Z\in AC\cap w\end{array}\right\|$ , $AY=AZ=x$ and the midpoint $M$ of $(BC)$ . Observe that $BD=mr\iff BY=CZ=CX=r(m+1)\iff$

$CD=r(m+2)$ . Thus, $\triangle AIY\sim CBD\iff$ $\frac {AY}{CD}=\frac {IY}{BD}\iff$ $\frac x{r(m+2)}=\frac r{mr}\iff$ $\boxed{x=\frac {r(m+2)}m}\iff$ $AY=\frac {r(m+2)}m\iff$

$AB=AY+YD+DB\iff$ $AB=\frac {r(m+2)}m+r+mr\iff$ $m\cdot AB=r(m^2+2m+2)$ . Otherwise. Apply the Pythagoras' theorem

to $\triangle ACD\ :\ DA^2+DC^2=AC^2\iff$ $(r+x)^2+r^2(m+2)^2=[r(m+1)+x]^2\iff$ $\boxed{x=\frac {r(m+2)}m}$ a.s.o.



PP2. Let an equilateral $\triangle ABC$ with $\{M,N\}\subset (BC)$ so that $M\in (BN)$ and $m\left(\widehat{MAN}\right)=\phi$ . Denote $BM=a\ ,\ MN=c$

and $NC=b$ with $a+b+c=l$ . Prove that $c^2=a^2+ab+b^2+2S\left(\sqrt 3-\cot\phi\right)$ , where $S$ is the area of the triangle $MAN$ .


Proof. Denote $AM=m\ ,\ AN=n$ . Apply the Stewart's relation to $:\ \left\{\begin{array}{cccc}
AM/\triangle ABC\ : & AM^2=AB^2-MB\cdot MC & \implies & m^2=l^2-a(c+b)\\\\
AN/\triangle ABC\ : & AN^2=AB^2-NB\cdot NC & \implies & n^2=l^2-b(c+a)\end{array}\right\|$ $\implies$

$m^2+n^2=2l^2-2ab-c(a+b)=$ $2\left[c^2+(a+b)^2+2c(a+b)\right]-2ab-c(a+b)=$ $2c^2+2\left(a^2+b^2+ab\right)+3c(l-c)\implies$

$\boxed{m^2+n^2-c^2=-2c^2+3cl+2\left(a^2+b^2+ab\right)}\ (*)$ . Thus, $S=\frac 12\cdot c\cdot \frac {l\sqrt 3}2\implies$ $\boxed{2S=\frac {cl\sqrt 3}2}\ (1)$ . Apply the well-known identity

$4[MAN]=\left(AM^2+AN^2-MN^2\right)\tan\widehat{MAN}$ , i.e. $cl\sqrt 3=$ $\left(m^2+n^2-c^2\right)\tan\phi\ \stackrel{(*)}{\implies}\ cl\cdot \cot\phi\cdot\sqrt 3=$ $-2c^2+3cl+2\left(a^2+b^2+ab\right)\implies$

$2\left[c^2-\left(a^2+b^2+ab\right)\right]=$ $cl\sqrt 3\cdot \left(\sqrt 3-\cot\phi\right)\ \stackrel{(1)}{\implies}\  c^2=$ $a^2+ab+b^2+2S\left(\sqrt 3-\cot\phi\right)$ . In the particular case $\phi =30^{\circ}$ obtain $c^2=a^2+ab+b^2$ .



PP3. Prove that in a $\triangle ABC$ there is the Ionescu - Weitzenbock's inequality $\boxed{a^2+b^2+c^2\ge 4S\sqrt 3}$ , where $S$ is the area of $\triangle ABC$ .

Proof. I"ll use the well-known identity $16S^2=\sum\left(a^2+b^2-c^2\right)\left(a^2+c^2-b^2\right)\ (*)$ . Denote $\left\{\begin{array}{ccc}
b^2+c^2-a^2 & = & x\\\\
c^2+a^2-b^2 & = & y\\\\
a^2+b^2-c^2 & = & z\end{array}\right\|$ . The identity $(*)$

becomes $16S^2=xy+yz+zx$ . Hence $48S^2=3(xy+yz+zx)\le (x+y+z)^2=\left(a^2+b^2+c^2\right)^2\implies$ $4S\sqrt 3\le a^2+b^2+c^2$ .



PP4. Let an $A$-right $\triangle ABC$ with the incircle $w$ and the excircles $w_b$ , $w_c$ . Denote $\left\{\begin{array}{ccc}
E\in AC\cap w & ; & F\in AB\cap w\\\\
E'\in AC\cap w_b & ; & F'\in AB\cap w_c\end{array}\right\|$ and $P\in E'F\cap F'E$ . Prove that $AP\perp BC$ .


Proof. Is well-known that $AE=AF=BF'=CE'=s-a$ and $\left\{\begin{array}{ccc}
EE' & = & a-c\\\\
FF' & = & a-b\end{array}\right\|$ . Denote the projections $X$ , $Y$ of $P$ on the sidelines $AB$ , $AC$ respectively.

Apply the Menelaus' theorem to $:\ \left\{\begin{array}{cccccc}
\overline{E'PF}/\triangle AF'E\ : & \frac {E'E}{E'A}\cdot\frac {FA}{FF'}\cdot \frac {PF'}{PE}=1 & \implies & \frac {a-c}{s-c}\cdot\frac {s-a}{a-b}\cdot \frac {PF'}{PE}=1 & \implies & \frac {PF'}{(a-b)(s-c)}=\frac {PE}{(a-c)(s-a)}\stackrel{(1)}{=}\frac {EF'}{a(s-a)}\\\\
\overline{F'PE}/\triangle AE'F\ : & \frac {F'F}{F'A}\cdot\frac {EA}{EE'}\cdot \frac {PE'}{PF}=1 & \implies & \frac {a-b}{s-b}\cdot\frac {s-a}{a-c}\cdot \frac {PE'}{PF}=1 & \implies & \frac {PE'}{(a-c)(s-b)}=\frac {PF}{(a-b)(s-a)}\stackrel{(2)}{=}\frac {FE'}{a(s-a)}\end{array}\right\|$ .

$\left\{\begin{array}{ccccccc}
PX\parallel AE' & \implies & \frac {PX}{E'A}=\frac {PF}{FE'} & \implies & \frac {PX}{s-c}=\frac {a-b}{a} & \implies & \delta_{AB}(P)=PX=\frac {(a-b)(s-c)}a\\\\
PY\parallel F'A & \implies & \frac {PY}{F'A}=\frac {PE}{EF'} & \implies & \frac {PY}{s-b}=\frac {a-c}{a} & \implies & \delta_{AC}(P)=PY=\frac {(a-c)(s-b)}a\end{array}\right\|$ $\implies $ $\frac {PX}{PY}=\frac {(a-b)(s-c)}{(a-c)(s-b)}\stackrel{(3)}{=}\ \frac cb\implies$ $\frac {\delta_{AB}(P)}{\delta_{AC}(P)}=\frac cb$ , i.e. $AP\perp BC$ .

Remark 1. $A=90^{\circ}\iff$ $(a-b)(s-c)+(a-c)(s-a)\stackrel{(1)}{=}a(s-a)\iff$ $(a-c)(s-b)+(a-b)(s-a)\stackrel{(2)}{=}a(s-a)\iff$ $b(a-b)(s-c)\stackrel{(3)}{=}c(a-c)(s-b)$ .

Remark 2. $\triangle ABC$ with midpoint $M$ of $[BC]$ and $A$-symmedian $AS$ , where $S\in BC$ $\implies$ $\left\{\begin{array}{ccccc}
X\in AM & \iff & \frac {\delta_{AB}(X)}{\delta_{AC}(X)} & = & \frac bc\\\\
Y\in AS & \iff & \frac {\delta_{AB}(Y)}{\delta_{AC}(Y)} & = &  \frac cb\end{array}\right\|$ , where $\delta_d(P)$ is the distance of $P$ to the line $d$ .


An easy extension. Let $\triangle ABC$ with the incircle $w$ and the excircles $w_b$ , $w_c$ . Denote $\left\{\begin{array}{ccc}
E\in AC\cap w & ; & F\in AB\cap w\\\\
E'\in AC\cap w_b & ; & F'\in AB\cap w_c\\\\
P\in E'F\cap F'E & ; & S\in AP\cap BC\end{array}\right\|$ . Prove that $\frac {SB}{SC}=\frac {c(a-b)(s-c)}{b(a-c)(s-b)}$ .

Remark. In the particular case $A=90^{\circ}$ , i.e. $AB\perp AC$ obtain that $\frac {SB}{SC}=\frac {c(a-b)(a+b-c)}{b(a-c)(a+c-b)}=$ $\frac {c\left[c^2+c(b-a)\right]}{b\left[b^2+b(c-a)\right]}=\frac {c^2(b+c-a)}{b^2(b+c-a)}\implies$

$\frac {SB}{SC}=\frac {c^2}{b^2}$ , i.e. $AS$ is the $A$-symmedian. Since $A=90^{\circ}$ obtain that $AS$ is the $A$-altitude, i.e. $AS\perp BC$ .


Proof. Is well-known that $AE=AF=BF'=CE'=s-a$ and $\left\{\begin{array}{ccc}
EE' & = & a-c\\\\
FF' & = & a-b\end{array}\right\|$ . Apply the Menelaus' theorem to the transversal $\overline{E'PF}/\triangle AF'E\ :$

$\frac {E'E}{E'A}\cdot\frac {FA}{FF'}\cdot \frac {PF'}{PE}=1\implies$ $\frac {a-c}{s-c}\cdot\frac {s-a}{a-b}\cdot \frac {PF'}{PE}=1\implies$ $\boxed{\frac {PF'}{(a-b)(s-c)}=\frac {PE}{(a-c)(s-a)}}\ (*)$ . Apply an well-known identity $\frac {PF'}{PE}=\frac {SB}{SC}\cdot\frac {AF'}{AE}\cdot\frac {AC}{AB}\ \stackrel{(*)}{\iff}$

$\frac {(a-b)(s-c)}{(a-c)(s-a)}=$ $\frac {SB}{SC}\cdot\frac {s-b}{s-a}\cdot \frac bc\iff$ $\boxed{\frac {SB}{SC}=\frac {c(a-b)(a+b-c)}{b(a-c)(a+c-b)}}\ (1)$ . Remark that $\frac {SB}{SC}=\frac {c\left[\left(a^2-b^2\right)+c(b-a)\right]}{b\left[\left(a^2-c^2\right)+b(c-a)\right]}=$ $\frac {c\left[c^2-2bc\cos A+c(b-a)\right]}{b\left[b^2-2bc\cos A+b(c-a)\right]}\implies$

$\boxed{\frac {SB}{SC}=\frac {c^2(s-a-b\cos A)}{b^2(s-a-c\cos A)}}$ . In the particular case $A=90^{\circ}$ , i.e. $AB\perp AC$ obtain that $\frac {SB}{SC}=\frac {c^2}{b^2}\implies$ $AS$ is the $A$-altitude, i.e. $AS\perp BC$ .



Lemma. Let $BUVC$ be a trapezoid so that $BU\parallel CV$ and $D\in (BC)$ , $P\in (UV)$ so that $PD\parallel BU$ . Then there is the relation $\boxed{BU\cdot DC+CV\cdot DB=PD\cdot BC}\ (*)$ .

Proof. Suppose w.l.o.g. $CV>BU$ and let $Q\in (PD)$ , $W\in (CV)$ so that $QW\parallel BC$ and $U\in QW$ . Thus, $BU=DQ=CW$ , $PQ=PD-BU$ and $VW=CV-BU$ .

Therefore, $\frac {PQ}{VW}=\frac {UQ}{UW}=$ $\frac {BD}{BC}\implies$ $\frac {PD-BU}{CV-BU}=\frac {BD}{BC}\implies$ $PD\cdot BC= BU\cdot (BC-BD)+CV\cdot BD\implies$ $PD\cdot BC=BU\cdot DC+CV\cdot DB$ .


PP5. Let $\triangle ABC$ and the points $\left\{\begin{array}{ccc}
M\in (AB) & ; & N\in (AC)\\\\
D\in (BC) & ; & P\in AD\cap MN\end{array}\right\|$ . Denote $\frac {MA}{MB}\cdot\frac {DB}{DC}\cdot\frac {NC}{NA}=r$ . Prove that $\left\{\begin{array}{cccc}
(1) & \frac {MB}{MA}\cdot DC+\frac {NC}{NA}\cdot DB & = & \frac {PD}{PA}\cdot BC\\\\
(2) & \frac {DB}{DC}\cdot \frac {AM}{AB}\cdot\frac {AC}{AN} & = & \frac {PM}{PN}\\\\
(3) & \frac {MA}{MB}+r\cdot \frac {NA}{NC} & = & (1+r)\cdot \frac {PA}{PD}\end{array}\right\|$ .

Proof 1. Let $\{U,V\}\subset MN$ so that $BU\parallel AD\parallel CV$ . Thus, $\frac {MB}{MA}\cdot DC+\frac {NC}{NA}\cdot DB=$ $\frac {BU}{AP}\cdot DC+\frac {VC}{AP}\cdot DB=$

$\frac {BU\cdot DC+VC\cdot DB}{AP}\ \stackrel{(*)}{=}\ \frac {PD\cdot BC}{PA}\implies$ $\frac {MB}{MA}\cdot DC+\frac {NC}{NA}\cdot DB=\frac {PD}{PA}\cdot BC$ .

Proof 2. Let $X\in BC\cap MN$ and $Y\in MN$ so that $AY\parallel BC$ . Thus, $\frac {MB}{MA}\cdot DC+\frac {NC}{NA}\cdot DB=$ $\frac {BX}{AY}\cdot DC+\frac {CX}{AY}\cdot DB=$ $\frac {BX\cdot DC+CX\cdot DB}{AY}=$

$\frac {(XD-BD)\cdot DC+(XD+DC)\cdot DB}{AY}=$ $\frac {XD(DB+DC)}{AY}=\frac {XD}{AY}\cdot BC=$ $\frac {PD}{PA}\cdot BC\implies$ $\frac {MB}{MA}\cdot DC+\frac {NC}{NA}\cdot DB=\frac {PD}{PA}\cdot BC$ .

Proof 3. Apply the Menelaus' theorem to the transversals $:\ \left\{\begin{array}{cccc}
\overline{XMP}/\triangle ABD\ : & \frac {XB}{XD}\cdot\frac {PD}{PA}\cdot\frac {MA}{MB}=1 & \implies & \frac {MB}{MA}=\frac {XB}{XD}\cdot\frac {PD}{PA}\\\\
\overline{XNP}/\triangle ACD\ : & \frac {XC}{XD}\cdot\frac {PD}{PA}\cdot\frac {NA}{NC}=1 & \implies & \frac {NC}{NA}=\frac {XC}{XD}\cdot\frac {PD}{PA}\end{array}\right\|$ $\implies$

$\frac {MB}{MA}\cdot DC+\frac {NC}{NA}\cdot DB=$ $\frac {XB}{XD}\cdot\frac {PD}{PA}\cdot DC+\frac {XC}{XD}\cdot\frac {PD}{PA}\cdot DB=$ $\frac {PD}{PA}\cdot\frac {XB\cdot DC+XC\cdot DB}{XD}=$ $\frac {PD}{PA}\cdot \frac {(XD-BD)\cdot DC+(XD+DC)\cdot DB}{XD}=$

$\frac {PD}{PA}\cdot\frac {XD(DC+DB)}{XD}=\frac {PD}{PA}\cdot BC\implies$ $\frac {MB}{MA}\cdot DC+\frac {NC}{NA}\cdot DB=\frac {PD}{PA}\cdot BC$ .

Proof of the second relation. Apply an well-known relation to the cevians $:\ \left\{\begin{array}{cccc}
AP/\triangle MAN\ : & \frac {PM}{PN} & = & \frac {AM}{AN}\cdot\frac {\sin\widehat{PAM}}{\sin\widehat{PAN}}\\\\
AD/\triangle BAC\ : & \frac {DB}{DC} & = & \frac {AB}{AC}\cdot \frac {\sin\widehat{DAB}}{\sin\widehat{DAC}}\end{array}\right\|$ $\implies$ $\frac {PM}{PN}=\frac {AM}{AN}\cdot\frac {DB}{DC}\cdot\frac {AC}{AB}$ .

Proof of the third relation. The third relation (an implication) is also simply. Denote the intersection $S\in MN\cap BC$ and apply the Menelaus' theorem to the transversals $:$

$\left\{\begin{array}{cccc}
\overline{SMP}/\triangle ABD\ : & \frac {SB}{SD}\cdot\frac {PD}{PA}\cdot\frac {MA}{MB}=1 & \implies & \frac {MA}{MB}=\frac {PA}{PD}\cdot\frac {SD}{SB}\\\\
\overline{SNP}/\triangle ACD\ : & \frac {SC}{SD}\cdot\frac {PD}{PA}\cdot\frac {NA}{NC}=1 & \implies & \frac {NA}{NC}=\frac {PA}{PD}\cdot\frac {SD}{SC}\end{array}\right\|$ . The required relation becomes $:\ (1+r)\cdot \frac {PA}{PD}=\frac {PA}{PD}\cdot\frac {SD}{SB}+r\cdot \frac {PA}{PD}\cdot\frac {SD}{SC}\iff$

$1+r=\frac {SD}{SB}+r\cdot\frac {SD}{SC}\iff$ $(1+r)=\frac {SB+BD}{SB}+r\cdot\frac {SC-DC}{SC}\iff$ $1+r=1+\frac {DB}{SB}+r-r\cdot \frac {DC}{SC}\iff$ $r\cdot\frac {DC}{SC}=\frac {DB}{SB}\iff$

$\frac {MA}{MB}\cdot\frac {DB}{DC}\cdot\frac {NC}{NA}\cdot\frac {DC}{SC}=\frac {DB}{SB}\iff$ $\frac {SB}{SC}\cdot \frac {NC}{NA}\cdot\frac{MA}{MB}=1$ what is truly because $\{S,M,N\}$ are collinearly and this relation is the Menelaus' condtion for it.

Remark. If $AD\cap BN\cap CM\ne\emptyset$ , then $r=1$ and our relation becomes $\frac {MA}{MB}+\frac {NA}{NC}=2\cdot \frac {PA}{PD}$ . From Aubel's relation $\frac {MA}{MB}+\frac {NA}{NC}=\frac {RA}{RD}$ ,

where $R\in AD\cap BN\cap CM$ , obtain that $\frac {RA}{RD}\ =\ 2\cdot\frac {PA}{PD}$ , what means that the division $(A\ ,\ R\ ;\ P\ ,\ D)$ is harmonically.



PP6. Let a square $ABCD$ and the circle $w=C(A,a)$ , where $AB=a$ . Consider the points $E\in (BC)$ and $F\in (CD)$

so that the line $EF$ is tangent to $w$ in the point $T$ . Prove that $GHTM$ is cyclically, where $M$ is the midpoint of $[EF]$ .


Proof 1 (metric). Denote $AB=a$ and $\left\{\begin{array}{c}
EB=ET=x<a\\\\
FD=FT=y<a\end{array}\right\|$ , where $EF=x+y$ . Observe that $EF^2=CE^2+CF^2\iff$ $(x+y)^2=(a-x)^2+(a-y)^2\iff$

$\boxed{xy+a(x+y)=a^2}\  (*)$ . Prove easily that $xy+a(x+y)=a^2\iff$ $\frac {a^2+x^2}{a+x}=x+y\iff$ $\frac {a^2+y^2}{a+y}=x+y\iff$ $\frac {a^2+x^2}{a+x}=\frac {a^2+y^2}{a+y}$ . Therefore, $\frac{EG}x=\frac {EA}{a+x}\implies$

$EG\cdot EA=\frac {x\cdot EA^2}{a+x}=\frac {x\left(a^2+x^2\right)}{a+x}=x(x+y)=ET\cdot EF\implies$ $EG\cdot EA=ET\cdot EF\implies$ $AGTF$ is a cyclical quadrilateral $\implies FG\perp  AE$ . Analogously obtain that

$\frac {FH}y=\frac {FA}{a+y}\implies$ $FH\cdot FA=\frac {y\cdot FA^2}{a+y}=$ $\frac {y\left(a^2+y^2\right)}{a+y}=$ $y(x+y)=FT\cdot FE\implies$ $ FH\cdot FA=FT\cdot FE\implies$ $AHTE$ is a cyclical quadrilateral $\implies EH\perp AF$ .

In conclusion, $GHTM$ is cyclically and its circumcircle is the Euler's circle of the triangle $AEF$ .

Proof 2 (synthetic). Prove easily that $:\ ABET\ ,\ ADFT$ are cyclical deltoids $;\ \widehat{EBT}\equiv \widehat{ETB}\equiv$ $\widehat{EAB}\equiv\widehat{EAT}\equiv $ $\widehat{HTD}\equiv\widehat{HDT}$ (with common value $x)\ ;$

$\widehat{FDT}\equiv \widehat{FTD}\equiv$ $\widehat{FAD}\equiv\widehat{FAT}\equiv $ $\widehat{GTB}\equiv\widehat{GBT}$ (with common value $y)\ ,$ where $x+y=45^{\circ}\ ;\ \widehat{GBA}\equiv$ $\widehat{GTA}\equiv \widehat{HDA}\equiv\widehat{HTA}\ ($ with common value $45^{\circ})\ .$

Therefore, $\left\{\begin{array}{ccccc}
m\left(\widehat{GAF}\right)+m\left(\widehat{GTF}\right)=180^{\circ} & \implies & AGTF\ \mathrm{cyclically} & \implies & FG\perp AE\\\\
m\left(\widehat{HAE}\right)+m\left(\widehat{HTE}\right)=180^{\circ} & \implies & AHTE\ -\ \mathrm{cyclically} & \implies & EH\perp AF\end{array}\right\|$ a.s.o.

Remark. The length $r$ of the circumradius for $\triangle EAF\ :\ EF=2r\sin\widehat{EAF}\iff$ $x+y=2r\sin45^{\circ}\iff$ $x+y=r\sqrt 2$ .

The minimum area of $\triangle EAF$ is touched when $T\in AC$ and in this case $BE=DF=a\left(\sqrt 2-1\right)$ , i.e. $\boxed{\ \sqrt 2-1\ \le\ \frac {[EAF]}{a^2}\ < \frac 12\ }$ .



PP7. Construct $\triangle AMB$ and $\triangle ANC$ outside of $\triangle ABC$ where $\left\{\begin{array}{cc}
MA=MB\ ; & MA\perp MB\\\\
NA=NC\ ; & NA\perp NC\end{array}\right\|$ . Let $\{X,Y\}\subset BC$ so that $\left\{\begin{array}{c}
MX\perp MN\\\\
NY\perp MN\end{array}\right\|$ . Prove that $BX=CY$ .

Proof 1 (synthetic). Denote the midpoints $(D,U,V)$ of $[BC]$ , $[AB]$ , $[AC]$ respectively. Prove easily that $\triangle DUM\equiv\triangle NVD$ . Thus, $DM=ND$ and $DM\perp DN$ , i.e. $\triangle MDN$

is $D$-isosceles right triangle. Denote the midpoint $E$ of $[MN]$ . So $DE\parallel MX\parallel NY$ , i.e. $[DE]$ is the midline of the trapezoid $MNYX\iff$ $DX=DY\iff BX=CY$ .

Proof 2 (trigonometric). Denote $\left\{\begin{array}{ccc}
m\left(\widehat{AMN}\right)=x\ ; & BX=m\\\\
m\left(\widehat{ANM}\right)=y\ ; & CY=n\end{array}\right\|$ where $\boxed{x+y+A=90^{\circ}}\ (*)$ and apply the theorem of Sines in $:$

$\left\{\begin{array}{ccccccc}
\triangle MXB & \implies & \frac {XB}{MB}=\frac {\sin\widehat{XMB}}{\sin\widehat{MXB}} & \implies & \frac {m\sqrt 2}c=\frac {\sin x}{\sin (45^{\circ}+B-x)} & \implies & m\sqrt 2=\frac {c\sin x}{\sin(45^{\circ}+B-x)}\\\\
\triangle NYC & \implies & \frac {YC}{NC}=\frac {\sin\widehat{YNC}}{\sin\widehat{NYC}} & \implies & \frac {n\sqrt 2}b=\frac {\sin y}{\sin (45^{\circ}+C-y)} & \implies & n\sqrt 2=\frac {b\sin y}{\sin(45^{\circ}+C-y)}\\\\
\triangle MAN & \implies & \frac {AM}{AN}=\frac {\sin\widehat{ANM}}{\sin\widehat{AMN}} & \implies & \frac cb=\frac {sin y}{\sin x} & \implies & c\sin x=b\sin y\ (1)\end{array}\right\|$ and $m=n\ \stackrel{(1)}{\iff}$ $\sin\left(45^{\circ}+B-x\right)=$ $\sin \left(45^{\circ}+C-y\right)$ $\iff$

$(45^{\circ}+B-x)+$ $\left(45^{\circ}+C-y\right)=180^{\circ}\iff$ $180^{\circ}-(B+C)+(x+y)=90^{\circ}\iff$ $A+(x+y)=90^{\circ}\ \iff\ (*)$ what is truly.



PP8. Let a $B$-isosceles $\triangle ABC$ , the midpoint $M$ of $[BC]$ and the projection $H$ of $A$ on $BC$ . Prove that $\widehat{MAB}\equiv\widehat{MAH}\implies \frac {HM}{HC}=\frac 32$ .

Proof. Denote: $BA=BC=2b$ , i.e. $MB=MC=b$ ; the midpoint $D$ of $[AC]$ , i.e. $DA=DC=a$ ; the intersection $G\in AM\cap BD$ , i.e. $G$ is the centroid of $\triangle ABC$ and

the incircle of $\triangle ABH$ ; the projection $P$ of $M$ on $AC$ , i.e. $PD=PC=\frac a2$ . Prove easily that $m\left(\widehat{MAC}\right)=45^{\circ}$ and $BD=2\cdot MP=2\cdot AP=2\left(a+\frac a2\right)$ , i.e. $\boxed{BD=3a}$

and $DG=a$ . Thus, $D$ and $H$ belong to the circle with the diameter $[AB]$ , i.e. $CD\cdot CA=CH\cdot CB\iff$ $2a^2=2b\cdot HC\iff$ $\boxed{HC=\frac {a^2}b}\ (1)$ . Therefore, $HM=MC-HC=$ $b-\frac {a^2}b\implies$ $\boxed{HM=\frac {b^2-a^2}b}\ (2)$ . Thus, $\boxed{\frac {HM}{HC}=\left(\frac ba\right)^2-1}\ (*)$ and $\widehat{MAB}\equiv\widehat{MAH}\iff\frac {MH}{MB}=\frac {AH}{AB}\iff$ $\frac {b^2-a^2}{b^2}=\frac {AH}{2b}\iff$

$\boxed{AH=\frac {2\left(b^2-a^2\right)}{b}}\ (3)$ . Since $\triangle ACH\sim\triangle BCD$ obtain that $\frac {AH}{BD}=\frac {CH}{CD}\iff$ $\frac {2\left(b^2-a^2\right)}{3ab}=\frac {a^2}{ab}\iff$ $2b^2=5a^2\iff$ $\left(\frac ba\right)^2=$ $\frac 52\ \stackrel{(*)}{\iff}\ \frac {HM}{HC}=\frac 32$ .



PP9. Let $ABC$ be a triangle with $A=120^{\circ}$ and the incircle $w$ which touches $\triangle ABC$ at $D\in (BC)$ , $E\in (CA)$ and $F\in (AB)$ . Prove that $DE\perp DF$ .

Proof 1. $\left\{\begin{array}{ccc}
AD=\frac {2bc\cos\frac A2}{b+c}\ \wedge\ A=120^{\circ} & \implies & \boxed{AD=\frac {bc}{b+c}}\ (*)\\\\
\begin{array}{cc}
\widehat{FCA}\equiv \widehat{FCB} & \searrow\\\\
\widehat{EBA}\equiv \widehat{EBC} & \nearrow\end{array} & \implies & \begin{array}{cc}
\nearrow & \frac{FA}{FB}=\frac ba\\\\
\searrow & \frac{EA}{EC}=\frac ca\end{array}\\\\
\frac {DB}c=\frac {DC}b=\frac a{b+c} & \implies & \begin{array}{cc}
\nearrow & DB=\frac {ac}{b+c}\\\\
\searrow & DC=\frac {ab}{b+c}\end{array}\end{array}\right\|$ $\implies$ $\left\{\begin{array}{ccc}
\frac {DA}{DB}=\frac ba=\frac {FA}{FB} & \implies & \widehat{FDA}\equiv\widehat{FDB}\\\\
\frac {DA}{DC}=\frac ca=\frac {EA}{EC} & \implies & \widehat{EDA}\equiv\widehat{EDC}\end{array}\right\|$ $\implies DE\perp DF$ .

Remark 1. Can prove easily the relation $(*)$ . Indeed, let $K\in AB$ so that $A\in (BK)$ and $AK=AC$ . Observe that $ACE$

is an equilateral triangle, i.e. $CE=b$ and $AD\parallel CE\implies$ $\frac {AD}{CE}=\frac {BA}{BE}\implies\frac {AD}b=\frac {c}{b+c}\implies AD=\frac {bc}{b+c}$ .

Remark 2. Denote $\left\{\begin{array}{c}
S\in AD\cap EF\\\\
L\in BC\cap EF\end{array}\right\|$ . Is well-known that the division $(E,S,F,L)$ is harmonically and $\widehat{FDS}\equiv\widehat{FDL}\iff DE\perp DF$ .

Proof 2 (Mihai Miculita). Denote $M\in (BD)$ and $N\in (DC)$ so that $m\left(\widehat{BAM}\right)=m\left(\widehat{CAN}\right)=30^{\circ}$ . Prove easily that $F$ is the $C$-excenter of $\triangle ACD$

and $E$ is the $B$- excenter of $\triangle ABD$ . In conclusion, the ray $[DF$ is the bisector of $\widehat{ADB}$ and the ray $[DE$ is the bisector of $\widehat{ADC}$ , i.e. $DF\perp DE$ . Very nice !



PP10. An acute $\triangle ABC$ with $H\in (BC)$ so that $AH\perp BC$ , $AH=h\ ;$ $w=C(O,r)$ which is tangent to $BC$ at $H$ and $\left\{\begin{array}{ccc}
\{D,E\}=AB\cap w\\\\
\{F,G\}=BC\cap w\end{array}\right\|$ $\implies\frac {AD+AE}{AF+AG}=\frac {AC}{AB}$ .

Proof 1 (Sunken Rock). Let $M$ , $N$ be the midpoints of $[DE]$ , $[FG]$ respectively. Since $BMOH$ , $CNOH$ are cyclically obtain that $\boxed{AM\cdot AB=AO\cdot AH=AN\cdot AC}\ (*)$ .

In conclusion, $\left\{\begin{array}{ccccccc}
AD+AE=2\cdot AM & \stackrel{(*)}{\implies} & (AD+AE)\cdot AB=2\cdot AO\cdot AH\\\\
AF+AG=2\cdot AN & \stackrel{(*)}{\implies} & (AF+AG)\cdot AC=2\cdot AO\cdot AH\end{array}\right\|$ $\implies$ $(AD+AE)\cdot AB=(AF+AG)\cdot AC\implies$ $\frac {AD+AE}{AF+AG}=\frac {AC}{AB}$ .

Proof 2. Denote $\{A,X\}=\{A,H\}\cap w$ . Thus, $\left\{\begin{array}{cccccc}
AD\cdot AE & = & AX\cdot AH & = & AF\cdot AG & (1)\\\\
BA^2-BH^2 & = & AH^2 & = & CA^2-CH^2 & (2)\end{array}\right\|$ . In conclusion, we"ll get the following implication chains $:$

$\left\{\begin{array}{cccc}
BH^2=BE\cdot BD=(AB-AE)(AB-AD) \stackrel{(1)}{\implies}AB^2-AB(AD+AE)+AX\cdot AH\stackrel{(2)}{\implies} & AB(AD+AE)=AH(AH+AX)\\\\
CH^2=CF\cdot CG=(AC-AF)(AC-AG)\stackrel{(1)}{\implies}AC^2-AC(AF+AG)+AX\cdot AH\stackrel{(2)}{\implies} & AC(AF+AG)=AH(AH+AX)\end{array}\right\|$ $\implies$ $\frac {AD+AE}{AF+AG}=\frac {AC}{AB}$ .


An easy extension. Let an acute $\triangle ABC$ and a circle $w=C(O,r)$ which is tangent to $BC$ at $T\in (BC)$ .

Denote $\left\{\begin{array}{ccc}
\{D,E\}=(AB)\cap w & ; & X\in OT\cap AB\\\\
\{F,G\}=(AC)\cap w & ; & Y\in OT\cap AC\end{array}\right\|$ . Prove that $\frac {XD+XE}{YF+YG}=\frac {AC}{AB}\cdot\frac {OX}{OY}$ .


Proof 1. Let $M$ , $N$ be the midpoints of the segments $[DE]$ , $[FG]$ respectively. Apply the Menelaus' theorem to the transversal $\overline{BTC}$

and the triangle $XAY\ :\ \frac {TX}{TY}\cdot\frac {CY}{CA}\cdot \frac {BA}{BX}=1\implies$ $\boxed{\frac {YC}{XB}\cdot\frac {TX}{TY}=\frac {AC}{AB}}\ (*)$ . Since $BMOT$ , $CNOT$ are cyclically obtain that $:$

$\left\{\begin{array}{ccccc}
XB\cdot (XD+XE) & = & 2\cdot XB\cdot XM & = & 2\cdot XO\cdot XT\\\\
YC\cdot (YF+YG) & = & 2\cdot YC\cdot YN & = & 2\cdot YO\cdot YT\end{array}\right\|$ $\implies$ $\frac {XD+XE}{YF+YG}=\frac {YC}{XB}\cdot \frac {TX}{TY}\cdot\frac {XO}{YO}\ \stackrel{(*)}{\implies}\ \frac {XD+XE}{YF+YG}=$ $\frac {AC}{AB}\cdot\frac {OX}{OY}$ .

Proof 2. Prove easily that $\left\{\begin{array}{ccccc}
XD+XE & = & 2\cdot MX & = & 2\cdot OX\sin B\\\\
YF+YG & = & 2\cdot NY & = & 2\cdot OY\sin C\end{array}\right\|\implies$ $\frac {XD+XE}{YF+YG}=\frac {OX}{OY}\cdot\frac {\sin B}{\sin C}\implies$ $\frac {XD+XE}{YF+YG}=$ $\frac {AC}{AB}\cdot\frac {OX}{OY}$ .



PP11. Let a cyclical quadrilateral $ABCD$ where $K\in AC\cap BD$ . Denote the midpoints $(M,N,P,Q)$ of the sides $([AB],[BC],[CD],[DA])$

respectively. Construct the circumcircles of the triangles $MKN$ , $PKQ$ and denote $d$ - their radical axis. Prove that $d\perp BD$ (O.N.M. Serbia, 2015).


Nice proof (Mihai Miculita) ! Denote $:\ \left\{\begin{array}{ccc}
A'\in AC\cap MQ & ; & B'\in BD\cap MN\\\\
C'\in AC\cap NP & ; & D'\in BD\cap PQ\end{array}\right\|$ . Therefore, $\left\{\begin{array}{ccc}
KA'=MB'=QD' & ; & KB'=MA'=NC'\\\\
KC'=NB'=PD' & ; & KD'=PC'=QA'\end{array}\right\|$ .

Denote the circumcircle $w$ of $ABCD\ ,$ the circumcircle $\beta =\mathbb C(I)$ of $\triangle MKN$ and the circumcircle $\delta =\mathbb C(J)$ of $\triangle PKQ\ ;$ $\left\{\begin{array}{c}
\{E,K\}\in BD\cap \beta\\\\
\{F,K\}\in BD\cap \delta\end{array}\right\|$ .

Therefore, $ABCD$ is cyclic $\implies$ from the power $p_w(K)$ of $K$ w.r.t. $w$ obtain that $KA\cdot KC=KB\cdot KD\implies$ $KA'\cdot KC'=KB'\cdot KD'\ (1)$ . Thus,

$\blacktriangleright\ NKME$ is cyclic $\implies$ $B'E\cdot \underline{B'K}=B'M\cdot B'N=$ $KA'\cdot KC'\ \stackrel{(1)}{=}\ \underline{B'K}\cdot KD'\implies$ $B'E=KD'\implies$ $KE=B'D'\implies$ $\left|\begin{array}{c}
KE=NP\\\\
(\ NP\parallel KE\ )\end{array}\right|$ $\implies$ $\boxed{EN\parallel KP}\ (2)$ .

$\blacktriangleright\ PKQF$ is cyclic $\implies$ $D'F\cdot \underline{D'K}=D'P\cdot D'Q=$ $KC'\cdot KA'\ \stackrel{(1)}{=}\ KB'\cdot \underline{KD'}\implies$ $D'F=KB'\implies$ $KF=B'D'\implies$ $\left|\begin{array}{c}
KF=NP\\\\
(\ NP\parallel KF\ )\end{array}\right|$ $\implies$ $\boxed{FP\parallel KN}\ (3)$ .

From $(2)\ \wedge\ (3)$ obtain that $\widehat{ENK}\equiv\widehat {KPF}$ . Since $KMEN$ , $KPFQ$ are cyclical quadrilaterals obtain $\widehat{KLE}\equiv\widehat{KLF}$ and $KE=KF=NP\implies$ $d=KL\perp BD$ .



PP12. Let $:$ two exterior tangent circles $w_k=\mathbb C_k\left(O_k,r_k\right)\ ,\ k\in \{1,2\}$ with $\{T\}=w_1\cap w_2\ ;$ their an exterior common tangent $T_1T_2$ where $T_1\in w_1\ ,\ T_2\in w_2\ ;$ the circle

$w=\mathbb C(O,r)$ which is tangent in $D$ to $T_1T_2$ and which is exterior tangent to the circles $w_1\ ,\ w_2$ in $E\in w_1\ ,\ F\in w_2$ respectively. Prove that $:\ ED\perp ET_1$ and $FD\perp FT_2\ ;$

the quadrilaterals $T_1EFT_2$ , $TFDT_1$ and $TEDT_2$ are cyclically $;\ TD$ is the bisector of the angle $\widehat{T_1TT_2}$ , i.e. $\frac {DT_1}{DT_2}=\sqrt{\frac {r_1}{r_2}}=\frac {TT_1}{TT_2}\ ;\ T_1T_2\cap EF\cap O_1O_2\ne\emptyset$.


Proof. $\left\{\begin{array}{c}
DT_1=2\sqrt{r_1r}\\\\
DT_2=2\sqrt{r_2r}\\\\
T_1T_2=2\sqrt{r_1r_2}\end{array}\right\|\ ;\ \left\{\begin{array}{ccc}
DT_1+DT_2=T_1T_2\\\\
\frac {DT_1}{DT_2}=\sqrt{\frac {r_1}{r_2}}\end{array}\right\|$ $\implies\boxed{\frac 1{\sqrt {r_1}}+\frac 1{\sqrt{r_2}}=\frac 1{\sqrt r}}\ ;$ Let $\left\{\begin{array}{c}
m\left(\widehat{OO_1T_1}\right)=2x\ ;\ m\left(\widehat{OO_1T}\right)=2y\\\\
m\left(\widehat{OO_2T_2}\right)=2t\ ;\ m\left(\widehat{OO_2T}\right)=2z\end{array}\right\|\ ,\ x+y+z+t=90^{\circ}\ \implies$

$\left\{\begin{array}{ccccccccc}
m\left(\widehat{ETT_1}\right) & = & m\left(\widehat{ET_1D}\right) & = & m\left(\widehat{ODE}\right) & = m\left(\widehat{OED}\right) & = & x\\\\ 
m\left(\widehat{FTT_2}\right) & = & m\left(\widehat{FT_2D}\right) & = & m\left(\widehat{ODF}\right) & = m\left(\widehat{OFD}\right) & = & t\end{array}\right\|$ and $\left\{\begin{array}{c}
m\left(\widehat{ET_1T}\right)=y\ ;\  m\left(\widehat{FT_2T}\right)=z\\\\
m\left(\widehat{OEF}\right)=m\left(\widehat{OFE}\right)=m\left(\widehat{ETF}\right)=y+z\end{array}\right\|$ . Therefore $:$

$1\blacktriangleright\ \left\{\begin{array}{ccccc}
m\left(\widehat{EDT_1}\right)=90^{\circ}-m\left(\widehat{ODE}\right)=90^{\circ}-x & \implies & m\left(\widehat{ET_1D}\right)+m\left(\widehat{EDT_1}\right)=90^{\circ} & \implies & \boxed{ED\perp ET_1}\\\\
m\left(\widehat{FDT_2}\right)=90^{\circ}-m\left(\widehat{ODF}\right)=90^{\circ}-t & \implies & m\left(\widehat{FT_2D}\right)+m\left(\widehat{FDT_2}\right)=90^{\circ} & \implies & \boxed{FD\perp FT_2}\end{array}\right\|$ .

$2.1\blacktriangleright\ m\left(\widehat{ET_1T_2}\right)+m\left(\widehat{EFT_2}\right)=$ $m\left(\widehat{ET_1D}\right)+m\left(\widehat{EFO}\right)+$ $m\left(\widehat{OFD}\right)+m\left(\widehat{DFT_2}\right)=$ $x+(y+z)+t+90^{\circ}=180^{\circ}$ $\implies $ the quadrilateral $T_1EFT_2$ is cyclic.

$2.2\blacktriangleright\ m\left(\widehat{EDT_1}\right)=90^{\circ}-x=$ $(y+z)+t=m\left(\widehat{ETF}\right)+m\left(\widehat{FTT_2}\right)=$ $m\left(\widehat{ETT_2}\right)\implies$ $ \widehat{EDT_1}\equiv \widehat{ETT_2}\implies$ the quadrilateral $TEDT_2$ is cyclic.

$2.3\blacktriangleright\ m\left(\widehat{FDT_2}\right)=90^{\circ}-t=$ $(y+z)+x=m\left(\widehat{FTE}\right)+m\left(\widehat{ETT_1}\right)=$ $m\left(\widehat{FTT_1}\right)\implies$ $ \widehat{FDT_2}\equiv \widehat{ETT_2}\implies$ the quadrilateral $TFDT_1$ is cyclic.

$3\blacktriangleright$ Let $S\in T_1T_2\ ,\ ST\perp O_1O_2$ . Thus, $\left\{\begin{array}{c}
TT_1\perp TT_2\\\\
SO_1\perp SO_2\\\\
\frac {TO_1}{TO_2}=\left(\frac {SO_1}{SO_2}\right)^2\end{array}\right\|$ and $\left\{\begin{array}{ccc}
TT_1 & = & SO_1\sin\widehat{TO_1T_1}\\\\
TT_2 & = & SO_2\sin\widehat{TO_2T_2}\end{array}\right\|$ $\implies$ $\frac {TT_1}{TT_2}=\frac {SO_1}{SO_2}=\sqrt{\frac {TO_1}{TO_2}}=\sqrt{\frac {r_1}{r_2}}\implies$ $\boxed{\frac {TT_1}{TT_2}=\sqrt{\frac {r_1}{r_2}}=\frac {DT_1}{DT_2}}$ .

$4\blacktriangleright$ Denote $L\in O_1O_2\cap T_1T_2$ and apply Menelaus' theorem to $\triangle O_1OO_2$ and $L\in O_1O_2\ ,\ E\in O_1O\ ,\ F\in O_2O\ :\ \frac {LO_1}{LO_2}$ $\cdot\frac {FO_2}{FO}\cdot\frac{EO}{EO_1}=$ $\frac {r_1}{r_2}\cdot \frac {r_2}r\cdot\frac r{r_1}=1\implies$ $\boxed{L\in EF}$ .



Application. Construct at least a circle $w=\mathbb C(I,r)$ so that a given point $F$ belongs to $w$ and $w$ is tangent to given circles $w_1=\mathbb C\left(O_1,R_1\right)$ and $w_2=\mathbb C\left(O_2,R_2\right)$ .

Proof. Let $T_1\in w_1$ , $T_2\in w_2$ so that $T_1T_2$ is a common exterior tangent of the circles $w_1$ , $w_2$ . Denote $L\in O_1O_2\cap T_1T_2$ and $X_1\in w_1\cap w$ , $X_2\in w_2\cap w$ . Apply the Menelaus' theorem to $\triangle O_1IO_2$ and the points $\left\{\begin{array}{ccc}
L & \in & O_1O_2\\\
X_1 & \in & IO_1\\\
X_2 & \in & IO_2\end{array}\right\|\ :\ \frac {LO_1}{LO_2}$ $\cdot\frac {X_2O_2}{X_2I}\cdot\frac {X_1I}{X_1O_1}=$ $\frac {R_1}{R_2}\cdot \frac {R_2}r\cdot \frac r{R_1}=1\implies$ $\boxed{L\in X_1X_2}$ . Suppose w.l.o.g. that $R_1<R_2$ . Denote $:$

$\left\{\begin{array}{ccccc}
m\left(\widehat{O_1T_1X_1}\right) & = & m\left(\widehat{O_1X_1T_1}\right) & = & \alpha_1\\\\
m\left(\widehat{IX_1X_2}\right) & = & m\left(\widehat{IX_2X_1}\right) & = & x\\\\
m\left(\widehat{O_2T_2X_2}\right) & = & m\left(\widehat{O_2X_2T_2}\right) & = & \alpha_2\end{array}\right\|$ . Thus, $\left\{\begin{array}{ccccc}
m\left(\widehat{X_1T_1T_2}\right)+m\left(\widehat{X_1X_2T_2}\right) & = & \left(90^{\circ}-\alpha_1\right)+\left(180^{\circ}-x-\alpha_2\right) & = & 270^{\circ}-\left(x+\alpha_1+\alpha_2\right)\\\\
m\left(\widehat{X_2X_1T_1}\right)+m\left(\widehat{X_2T_2T_1}\right) & = & \left(180^{\circ}-\alpha_1-x\right)+\left(90^{\circ}-\alpha_2\right) & = & 270^{\circ}-\left(x+\alpha_1+\alpha_2\right)\end{array}\right\|$ $\implies$

$m\left(\widehat{X_1T_1T_2}\right)+m\left(\widehat{X_1X_2T_2}\right)=m\left(\widehat{X_2X_1T_1}\right)+m\left(\widehat{X_2T_2T_1}\right)=270^{\circ}-\left(x+\alpha_1+\alpha_2\right)=180^{\circ}$ and $x+\alpha_1+\alpha_2=90^{\circ}\implies$ the quadrilateral $T_1X_1X_2T_2$

is cyclically. Denote $\{F,G\}=FL\cap w$ . Hence from the powers of $L$ w.r.t. the circumcircles of $T_1X_1X_2T_2$ and $w$ obtain that $LT_1\cdot LT_2=LX_1\cdot LX_2=LF\cdot LG\implies$

$LT_1\cdot LT_2=LF\cdot LG$ , i.e. $G$ belongs to the circumcircle of $T_1T_2F$ . In conclusion, $\{F,G\}\in w$ - the required circle and $w$ is exterior tangent to $w_1$ a.s.o. $(\mathrm{CCP}\implies\mathrm{CPP})\ .$



PP13 (Miguel Ochoa Sanchez). Let $\triangle ABC$ with $B=30^{\circ}$ and the incircle $w=\mathcal C(I,r)$ which touches $\triangle ABC$

at $D\in (BC)$ , $E\in (CA)$ and $F\in (AB)$ . Prove that $AB+AE=DB+DA\iff m\left(\widehat{BID}\right)\in\left\{65^{\circ},75^{\circ}\right\}$


Proof. Let $m\left(\widehat{BID}\right)=x$ . Apply the theorem of Sines in $\triangle ABD$ and $\triangle ABE\ :\ AB+AE=DB+DA\iff$ $1+\frac {AE}{AB}=\frac {DB+DA}{AB}\iff$ $1+\frac {\sin 15^{\circ}}{\sin (2x-15^{\circ})}=$

$\frac {\sin (x-15^{\circ})+\sin 30^{\circ}} {\sin (x+15^{\circ})}\iff$ $1+\frac {\sin 15^{\circ}}{\sin (2x-15^{\circ})}=\frac {\sin\frac {x+15^{\circ}}2\cos\frac {x-45^{\circ}}2}{\sin \frac {x+15^{\circ}}2\cos\frac {x+15^{\circ}}2}\iff$ $\cos\frac {x+15^{\circ}}2\left[\sin 15^{\circ}+\sin (2x-15^{\circ})\right]=\sin (2x-15^{\circ})\cos\frac {x-45^{\circ}}2\iff$

$2\cos\frac {x+15^{\circ}}2\sin x\cos (x-15^{\circ})=\sin (2x-15^{\circ})\cos\frac {x-45^{\circ} }2\iff$ $\sin x\left[\cos\left(\frac {3x-15^{\circ}}2+\cos\frac {x-45^{\circ}}2\right)\right]=\sin (2x-15^{\circ})\cos\frac {x-45^{\circ} }2\iff$

$\sin x\cos\frac {3x-15^{\circ}}2=\cos\frac {x-45^{\circ}}2\left[\sin (2x-15^{\circ})-\sin x\right]\iff$ $\sin x\cos\frac {3x-15^{\circ}}2=2\cos \frac {x-45^{\circ}}2\sin\frac {x-15^{\circ}}2\cos\frac {3x-15^{\circ}}2\iff$ $\cos\frac {3x-15^{\circ}}2=0\ \vee$

$\sin x=2\cos \frac {x-45^{\circ}}2\sin\frac{x-15^{\circ}}2\iff$ $\frac {3x-15^{\circ}}2=90^{\circ}\ \vee\ \sin x=\sin (x-30^{\circ})+\sin 15^{\circ}\iff$ $3x=15^{\circ}+180^{\circ}\ \vee\ \sin x-\sin (x-30^{\circ})=\sin 15^{\circ}\iff$

$3x=195^{\circ}\ \vee\ 2\sin 15^{\circ}\cos (x-15^{\circ})=\sin 15^{\circ}\iff$ $x=65^{\circ}\ \vee\ \cos (x-15^{\circ})=\frac 12\iff$ $x=65^{\circ}\ \vee\ x-15^{\circ}=60^{\circ}\iff x\in\left\{65^{\circ},75^{\circ}\right\}$ .

Extension. Is well-known that $AD=\frac {2bc}{b+c}\cdot\cos\frac A2$ . Thus, $AB+AE=DB+DA\iff$ $c+\frac {bc}{a+c}=\frac {ac}{b+c}+\frac {2bc}{b+c}\cdot\cos\frac A2\iff$ $\frac {a+b+c}{a+c}=\frac {a+2b\cos\frac A2}{b+c}\iff$

$a(b+c)+(b+c)^2=a(a+c)+2b(a+c)\cdot\cos\frac A2\iff$ $ab+b^2+c^2+2bc=a^2+2b(a+c)\cdot\cos\frac A2\iff$ $ab+b^2+c^2+2bc=$ $\left(b^2+c^2-2bc\cdot\cos A\right)+$

$2b(a+c)\cdot\cos\frac A2\iff$ $ab+2bc=-2bc\cdot\cos A+2b(a+c)\cdot\cos\frac A2\iff$ $a+2c=-2c\cdot\cos A+2(a+c)\cdot\cos\frac A2\iff$ $a+2c(1+\cos A)=2(a+c)\cdot\cos\frac A2\iff$

$a+4c\cdot\cos^2\frac A2=2(a+c)\cdot\cos\frac A2\ \stackrel{\cos\frac A2=t}{\iff}\ 4ct^2-2(a+c)t+a=0\iff$ $(2t-1)(2ct-a)=0\implies$ $t\in\left\{\frac 12,\frac {a}{2c}\right\}$ . For $m\left(\widehat{BID}\right)=x$ get $\frac ac=\frac {\sin\left(2x-B\right)}{\sin 2x}$ and

$\odot$ $\begin{array}{ccccccccccc}
\nearrow & t=\frac 12 & \implies & \cos\frac A2\ =\ \frac 12 & \implies & A=120^{\circ}\ \mathrm{and}\ A=2x-B & \implies & 2x-B\ =\ 120^{\circ} & \implies & \boxed{x=60^{\circ}+\frac B2} & \searrow\\\\
\searrow & t=\frac a{2c} & \implies & 2\cos\frac A2=\frac ac & \implies & 2\cos \left(x-\frac B2\right)=\frac {\sin  (2x-B)}{\sin  2x} & \implies & \sin 2x=\sin\left(x-\frac B2\right) & \implies & \boxed{x=60^{\circ}+\frac B6} & \nearrow\end{array}$ $\odot$ $\implies$ $x\in 60^{\circ}+\left\{\frac B6,\frac B2\right\}$ .



PP14 (M.O. Sanchez). Let $\triangle ABC$ and $D\in (AC)$ so that $BD=AC$ and $\left\{\begin{array}{ccc}
m\left(\widehat{DBC}\right) & = & x\\\
m\left(\widehat{ACB}\right) & = & 3x\\\
m\left(\widehat{ABD}\right) & = & 4x\end{array}\right\|$ , where $x<\frac {\pi}4$ . Prove that $C=30^{\circ}$ (degrees) .

Proof 1. Observe that $m\left(\widehat{ADB}\right)=m\left(\widehat {CBD}\right)+m\left(\widehat {CDB}\right)=$ $x+3x=4x=m\left(\widehat {ABD}\right)$ $\implies$ $\widehat{ADB}\equiv\widehat {ABD}$ $\implies$ $\triangle BAD$ is $A$-isosceles $\implies$ $AB=AD\implies$

$AD=c$ and $CD=b-c$ $\implies$ $BD=2\cdot AB\cdot\cos\widehat{ABD}\implies$ $\boxed{\frac bc=2\cos 4x}\ (*)$ . Apply the theorem of Sines in $\triangle ABC\ :\ \frac bc=\frac {\sin 5x}{\sin 3x}\ \stackrel{(*)}{\implies}\ 2\cos 4x=$ $\frac {\sin 5x}{\sin 3x}$ $\implies$

$2\cos 4x\sin 3x=\sin 5x$ $\implies$ $\sin 7x-\sin x=\sin 5x$ $\implies$ $\sin 7x-\sin 5x=\sin x$ $\implies$ $2\sin x\cos 6x=\sin x$ $\implies$ $\cos 6x=\frac 12$ $\implies$ $6x=60^{\circ}$ $\implies$ $x=10^{\circ}$ $\implies$ $C=30^{\circ}$ .



PP15 (M.O. Sanchez). Let $\triangle ABC$ with incenter $I$ for which let $\left\{\begin{array}{ccc}
D\in BC\cap AI & ; & P\in (AD)\\\\
E\in BP\cap AC & ; & F\in CP\cap AB\end{array}\right\|\ .$ Prove that $\frac 1{AB^3}+\frac 1{AE^3}=\frac 1{AC^3}+\frac 1{AF^3}\ (*)\ \iff AB=AC\ .$

Proof. $\left\{\begin{array}{ccc}
AE=mb & \iff & CE=(1-m)b\\\\
AF=nc & \iff & BF=(1-n)c\end{array}\right\|\ .$ Apply the Menelaus' theorem $\frac {DB}{DC}\cdot\frac {EC}{EA}\cdot\frac {FA}{FB}=1\iff$ $\frac cb\cdot \frac {1-m}m\cdot\frac n{1-n}=1\iff$ $\boxed{\frac {1-m}{mb}=\frac {1-n}{nc}=x}\ (1)\iff$

$\boxed{m=\frac 1{1+bx}\ \wedge\ n=\frac 1{cx+1}}\ (2)$ and $(*)\iff\frac 1{c^3}+\frac 1{(mb)^3}=\frac 1{b^3}+\frac 1{(nc)^3}\iff$ $\frac {1-m^3}{m^3b^3}=\frac {1-n^3}{n^3c^3}\iff$ $\frac {1-m}{mb}\cdot\frac {1+m+m^2}{m^2b^2}=\frac {1-n}{nc}\cdot\frac {1+n+n^2}{n^2c^2}\ \stackrel{(1)}{\iff}$

$\frac {1+m+m^2}{m^2b^2}=\frac {1+n+n^2}{n^2c^2}\iff$ $\frac {(1-m)^2+3m}{m^2b^2}=$ $\frac {(1-n)^2+3n}{n^2c^2}\iff$ $\left(\frac {1-m}{mb}\right)^2+\frac 3{mb^2}=\left(\frac {1-n}{nc}\right)^2+\frac 3{nc^2}\ \stackrel{(1)}{\iff}\ mb^2=nc^2\ \stackrel{(2)}{\iff}\ \frac {b^2}{bx+1}=\frac {c^2}{cx+1}\iff$

$xbc(b-c)+\left(b^2-c^2\right)=0\iff$ $(b-c)(b+c+xbc)=0\iff$ $b=c\iff$ $\boxed{\ AB=AC\ }\ .$
This post has been edited 333 times. Last edited by Virgil Nicula, Jul 30, 2016, 2:30 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404398
  • Total comments: 37
Search Blog
a