434. Problems with areas II.
by Virgil Nicula, Nov 17, 2015, 9:05 AM
P0. Denote
with the incenter
and
Let
and the areas
Prove that
.
Proof.
I"ll use the theorem of Cosines
Therefore,


P1. Let
be a triangle so that
is constant and
. Find the maximum of the area
.
Proof.
where
. Thus,

. Therefore,
is
is
is
.
Observe that
(constant). In conclusion,
is
,
i.e.
and in this case
.
Remark. Can use relation
. Indeed,
and the relation
becomes
,
i.e.
. Can use the Heron's relation. Thus,
where
.
Proof 2. Let
,
so that
and
. Thus,
,
and
, i.e.
.
Let the midpoint
of
. Circle
is the Appolonius' circle for
and ratio
. Thus,
,
is

.
Extension. Let
so that
is constant and
. Prove that
.
Proof. Suppose w.l.o.g.
. Denote
and
so that
and
. Thus,
and 
and
, i.e.
. Denote the midpoint
of the segment
. The circle
is the Appolonius' circle
for
and the ratio
. In conclusion,
and
is
.
P2. Let
be incircle of
which touch
,
,
at
respectively. Let
and
. Find area
of
.
Proof. Let
. Thus,
and observe that
and ![$S=[ABC]=\sqrt{xyz(x+y+z)}\implies$](//latex.artofproblemsolving.com/7/b/f/7bf94f7e2b6c97353f9538342e19212054ca60c2.png)
. Apply the Stewart's relation

. In conclusion,
.
P3. Prove that for any
exists the inequality
.
Proof 1 (analytic). Let
. Thus,
and
. In conclusion, 
Proof 2 (algebraic).
. In conclusion,
.
Proof 3 (geometric). Let an equilateral
, where
. Let
. So that
. Then
.
From the inequality
obtain that ![$\frac{\sin 60^{\circ}}{2}\cdot\left[z(1-y)+x(1-z)+y(1-x)\right]<\frac {\sqrt 3}{4}\iff$](//latex.artofproblemsolving.com/f/7/9/f79d71bbe0244bdfb307ec27ce9f7303cf38b246.png)
.
P4. Let
be an
-isosceles triangle , let
be a mobile point such that
and let
,
be the circumcircles of
, 
respectively. Let
and
be diameters in these two circles and let
be the midpoint of
. Prove that the area of the triangle
is constant.
Proof. Let
. Because
results that the triangles
,
have the same length
of the circumradius.
I note
. Hence
and
,
. Remark.
is the area of the triangle
.
P5. Let
be a circle with two fixed diameters
and
so that
. For a mobile point
between
and
denote
and
. Prove that the area of the orthogonal quadrilateral
is constant.
Proof 1 (synthetic - Farenhajt). Denote
. Then
,
and
. Therefore,
therefore
. So finally
.
Proof 2. Denote
, where
.
Observe that
and
.
In conclusion, the area of the orthogonal quadrilateral
is constant, i.e.
.
Remark. Area
is max.
is max. because
is constant
is max. because
is constant
is max, where
is max. because
is constant
is max. because
is constant
.
Extension. Let
(North/West/South/East) be a square with circumcircle
. For a mobile
let
. Prove that
(constant).
Proof 1 (metric). Let
. Observe that
.
Prove easily that
. In conclusion,
.
Proof 2 (analytic). Suppose w.l.o.g.
and denote
,
,
and
. For a mobile point
, where 
obtain easily that
. In conclusion,
.
P6. Find the max. of
, where
.
Proof 1. Denote
so that
. Thus the proposed problem becomes : PP. Find the maximum value of
, where
,
.
Proof 2. Observe that
is
is
is
is
. Since
(constant) obtain that
is
,
i.e.
and
. In conclusion,
, where
is equally to
.
Application. Find the
-isosceles triangle
with the fixed vertex
, which is inscribed in a fixed circle
and has maximum area.
Proof. Can suppose w.l.o.g. that
is nonobtuse. Denote
and
,
. Thus, the
area of
is
and its maximum is for
and
, i.e. when it is an equilateral triangle.
A similar proposed problem. Find the dimensions of the cylinder (the lengths of its radius and its generatrix) with constant volum and for which its total surface is minimum.
Proof. Denote
- the length of its radius and
- the length of its generatrix. Then the our problem becomes
. Observe that 
is constant and
is
is
, i.e.the axial section of the required cylinder is a square.
P7 - Pythagoras' theorem. Let
be a
-right-angled triangle. Prove that
.
Proof 1. Let
be a rectangle with side lengths
. Let
.Thus, 
because if
, then
. Also,
, so that
. Then
and by symmetry,
. This is useful because if you draw
and
, you make two
right
,
. Also, the altitude of
from
is
. You can then find area of the rectangle in two different ways

. And finally, with a little more simplifying,
.
Proof 2. Let
be a rectangle with
. Denote
. Thus, 
and
and
,
are right isosceles triangles. Now can find the area of the rectangle in two different ways ![$[ABCD]=AB\cdot AD=$](//latex.artofproblemsolving.com/a/9/f/a9f3a2c5586879b9911fc42829321cff8e0ae060.png)
and
.
In conclusion,
. Remark. 97 nice proofs (<== click) of the Pythagoras' theorem.
P8. Let
be a tangential quadrilateral in which
. Find the length of its inradius.
Proof 1. Since
is a tangential quadrilateral, then
, i.e. there are
so that
. Since
, then
, i.e.
. From ![$S=[ABCD]=\frac 12\cdot AD\cdot (AB+CD)$](//latex.artofproblemsolving.com/1/a/e/1aeb0d1bb4f00281f7faa63120476fa44578eb08.png)
obtain that
. From the relations
and
obtain that
and
. In conclusion, the length of the inradius is
, i.e.
.
Proof 2. Since
is a tangential quadrilateral, then there are
so that
such that
.
Therefore,
.
P9. Let
and three points
,
,
. Denote
,
and
.
Suppose that
. Prove that
, where
is the area of the polygon
.
Proof. Let w.l.o.g.
. Exist
so that
. Apply Menelaus' theorem to 
. Obtain analogously
and
. It is well-known the area
. Observe
that
.
Let
. Thus,

and in this case
. Can verify easily
, i.e.
.
Indeed,
,
where
. Prove easlily that
. Is more difficulty to prove
.
P10. Let a convex (not rectangle)
. Let
,
,
so that
. Prove that
.
Proof 1.
![$\frac {m}{m+1}\cdot([BCD]-[BDX])=$](//latex.artofproblemsolving.com/4/7/2/4722ab5e9926fc6ce8941e3bfc4333cd6b2c6f65.png)
. In conclusion,
.
Proof 2 (Delta). Let
so that
. Thus,
![$[XYW]=[XYM]+[WMX]+[WMY]=$](//latex.artofproblemsolving.com/e/1/4/e14a1f282522b1d1a4c7e59cd08171db8efd023e.png)
![$\frac 1{m+1}\cdot ([CDY]+[ADY])=$](//latex.artofproblemsolving.com/4/d/5/4d5b1b289a556babe396c07e6076f3a762e0cee2.png)
.
P11 (Carlos Olivera). Let an acute
with area
, circumcircle
and the orthic 
where
. Prove that
.
Proof. Let orthocenter
of
and prove easily that
and analogously. Hence
.
I"ll use two identities in
(standard notations)
, where
is the circumcenter
and
is the semiperimeter for
i.e.
. For
obtain that
and
(Euler's circle). Relation
becomes
. Since
.
The relation
becomes
.
Remark. Prove easily that
is the incenter of
, the distance
is the length of the inradius of
and the ratio
.
P12. Let
with the incenter
and
Let
and the areas
Prove that
.
Proof. Observe that
and

.
P13. Let a parallelogram
with
and
,
for which
. Prove that the area
, where
.
Proof. I"ll use an well-known property:
trapezoid
with
and
there is the inequality
, where
. Indeed, if denote
and
, then
and
, i.e.
. Come back to the our
proposed problem. Apply above property to the trapezoids
.
P14. Fie
si punctele
,
,
Sa se arate ca ![$\boxed{\begin{array}{cccc}
1. & [MPN]\cdot [BPC] & = & [BPM]\cdot [CPN]\\\\
2. & [MAN]\cdot [BPC] & = & [ABC]\cdot [MPN]\\\\
3. & [AMPN]=[BPC] & \Longleftrightarrow & \frac {MA}{MB}\cdot\frac {NA}{NC}=1\end{array}}\ .$](//latex.artofproblemsolving.com/e/0/f/e0f2d6c78a6fc05a70acda96bc333596e9a48261.png)
Demonstratie.
![$\blacktriangleright\ \frac{[MPN]}{[CPN]}=\frac{MP}{PC}=\frac{[BPM]}{[BPC]}\ \Longrightarrow\ MPN]\cdot [BPC]=[BPM]\cdot [CPN]\ .$](//latex.artofproblemsolving.com/7/9/6/7965e049513f1d448d8583f6446d53120b5460af.png)
Avem ![$\left\|\begin{array}{ccc}
\frac{PM}{PC} & = & \frac{AM}{AC}\ \cdot\ \frac{\sin(\angle MAP)}{\sin(\angle PAC)}\\\\
\frac{PN}{PB} & = & \frac{AN}{AB}\ \cdot\ \frac{\sin(\angle PAN)}{\sin(\angle PAB)} \end{array}\right| \bigodot\ \Longrightarrow\ \frac{PM\cdot PN}{PC\cdot PB}=\frac{AM\cdot AN}{AB\cdot AC}\ \Longleftrightarrow\ \frac{[MPN]}{[BPC]}=\frac{[MAN]}{[ABC]}\ .$](//latex.artofproblemsolving.com/4/2/7/427027fbc780f9047d19f6d98d3fe1054b8fe14d.png)
Avem


PP15. Let
and
Prove that
Proof.
![$[BPC]=[AEPF]\ .$](//latex.artofproblemsolving.com/a/a/d/aad48f03a520d0c3b43e2b11e13954407481664b.png)
P16. Let an acute
with circumcenter
and orthocenter
Prove that the area of one of
and
is equal to the sum of the areas of the other two.
Proof 1. Suppose w.l.o.g.
Denote the midpoint
of
and the projection
of
on
Is well-known that
Since

and
obtain that

Obtain analogously
In conclusion,
![$[AOH]+[COH]=[BOH]\ .$](//latex.artofproblemsolving.com/c/f/b/cfb84eff0b834661843fc4a41829574eba2276a3.png)
P17. Let
be a convex quadrilateral with
Denote the distancies
Prove that 
Proof. Let
Apply (well known)
Thus,
i.e. 
P18. Let
and an interior point
with its barycentrical coordinates, where
Denote
and choose
and
so that
Prove that
where ![$\left\{\begin{array}{ccc}
m=[BPGD] & ; & q=[CQGD]\\\\
n=[APG] & ; & p=[AQG]\end{array}\right\|\ .$](//latex.artofproblemsolving.com/c/8/d/c8dcb8743dd5f9e7fbf2817f2a27236088185e43.png)
Proof. I"ll use
and apply Cristea's theorem


If
is centroid, i.e.
then required relation
becomes 
P19 (TST USA 2003). Let
be a triangle and let
be a point in its interior. Lines
,
,
intersect sides
,
, 
at
,
,
respectively. Prove that
lies on at least one of the medians of triangle
.
Proof. Denote the area
of the triangle
. I will suppose w.l.o.g. that
and I note:
- the midpoints of the sides
respectively;
![$[PBF]\ ;\ z_1=[PCE]\ ,\ z_2=[PCD]\ ;$](//latex.artofproblemsolving.com/d/5/5/d55e8ffec581e0daf4e3f13c200b268f0d92887a.png)
Thus, 
From the Ceva's theorem results the relation
, i.e. 

![$P\in [AM]\cup [BN]\cup [CP]\ .$](//latex.artofproblemsolving.com/6/a/5/6a58a82d97ecc99388e0e3205217148e8e33bf43.png)
PP. Let
be a triangle and let
be a point in its interior. Lines
,
,
intersect sides
,
,
at
,
, 
respectively. Prove that
lies on at least one of the medians of triangle
.
Proof. Denote the area
of the triangle
. I will suppose w.l.o.g. that
and I note:
- the midpoints of the sides
respectively;
![$[PBF]\ ;\ z_1=[PCE]\ ,\ z_2=[PCD]\ ;$](//latex.artofproblemsolving.com/d/5/5/d55e8ffec581e0daf4e3f13c200b268f0d92887a.png)
Thus, 
From the Ceva's theorem results the relation
, i.e. 

![$P\in [AM]\cup [BN]\cup [CP]\ .$](//latex.artofproblemsolving.com/6/a/5/6a58a82d97ecc99388e0e3205217148e8e33bf43.png)





![$[BIF]=m,$](http://latex.artofproblemsolving.com/5/1/6/5167da3a101bc8bab20d9a1db2e464fbbb0a4ce6.png)
![$[CIE]=n,$](http://latex.artofproblemsolving.com/7/1/9/719a299fcdc0eb74ffd9eb9b5d350e4ed560890e.png)
![$[EIF]=p.$](http://latex.artofproblemsolving.com/d/1/8/d183b8844affbe8640abcda78c783a7753271eec.png)

Proof.
![$\left\{\begin{array}{ccccccc}
\frac{p}{m} & = &\frac {[EIF]}{[BIF]} & = & \frac{IE}{IB} & = & \frac{b}{a+c}\\\\
\frac{p}{n} & = & \frac{[EIF]}{[CIE]} & = & \frac{IF}{IC} & = & \frac{c}{a+b}\end{array}\right\|\ (*)\ .$](http://latex.artofproblemsolving.com/2/5/8/258a8a5764836923ef8540f3f55756a2ede9d948.png)










P1. Let



![$S=[ABC]$](http://latex.artofproblemsolving.com/b/3/a/b3ae3d445111e4dd28be75922309d3270079368c.png)
Proof.















Observe that










i.e.





Remark. Can use relation





i.e.




Proof 2. Let









Let the midpoint

![$[ED]$](http://latex.artofproblemsolving.com/9/2/9/929b45305c082cd1e656a5a9897f0df75740e43e.png)










Extension. Let




Proof. Suppose w.l.o.g.








and




![$[ED]$](http://latex.artofproblemsolving.com/9/2/9/929b45305c082cd1e656a5a9897f0df75740e43e.png)

for













P2. Let










Proof. Let



![$S=[ABC]=\sqrt{xyz(x+y+z)}\implies$](http://latex.artofproblemsolving.com/7/b/f/7bf94f7e2b6c97353f9538342e19212054ca60c2.png)







![$\boxed{S\stackrel{(*)}{=}\frac 12\cdot an(m+n)\cdot \left[a+\sqrt {m(m+n)}\right]}$](http://latex.artofproblemsolving.com/b/c/3/bc3b76e656602404b093a2e10483bd3af8e145a3.png)
P3. Prove that for any


Proof 1 (analytic). Let




Proof 2 (algebraic).

![$xyz+\left[1-\sum x+\sum yz-xyz\right]=$](http://latex.artofproblemsolving.com/9/a/1/9a1c43477dc54e9cb2632514a664c71d6e08ae42.png)


Proof 3 (geometric). Let an equilateral





From the inequality
![$[AB_1C_1]+[BC_1A_1]+[CA_1B_1]<[ABC]$](http://latex.artofproblemsolving.com/5/a/9/5a90f30dd686b144b7eb3f5522680186fbe16597.png)
![$\frac{\sin 60^{\circ}}{2}\cdot\left[z(1-y)+x(1-z)+y(1-x)\right]<\frac {\sqrt 3}{4}\iff$](http://latex.artofproblemsolving.com/f/7/9/f79d71bbe0244bdfb307ec27ce9f7303cf38b246.png)


P4. Let








respectively. Let



![$[B'C']$](http://latex.artofproblemsolving.com/6/4/3/643ba283511a52f78e9eca9df01d94a5918546f6.png)

Proof. Let





I note














![$\sigma [BMC]=\sigma [ABC]$](http://latex.artofproblemsolving.com/d/c/3/dc3cf2b2f1c5de5867166ef20d8115d807ac4c37.png)
![$\sigma [XYZ]$](http://latex.artofproblemsolving.com/3/b/7/3b7c0991c5ed2437164d33c2dec574e6a635dcdf.png)

P5. Let










Proof 1 (synthetic - Farenhajt). Denote








![$[ABPQ]=R^2$](http://latex.artofproblemsolving.com/4/4/e/44e6d28baa3a1e55332bb5bfee63047dc46e562b.png)
Proof 2. Denote





Observe that





In conclusion, the area of the orthogonal quadrilateral

![$[ABPQ]=R^2$](http://latex.artofproblemsolving.com/4/4/e/44e6d28baa3a1e55332bb5bfee63047dc46e562b.png)
Remark. Area
![$[CPQ]$](http://latex.artofproblemsolving.com/7/5/d/75d923803a0834906c85cb4d8aac5112b0619a5a.png)

![$[ABC]$](http://latex.artofproblemsolving.com/d/3/3/d33cc80fa8f093e155c5be46d2e5d9da3d7e1ef5.png)
![$[ABPQ]$](http://latex.artofproblemsolving.com/4/2/9/42984dfb420f346b06b8bbb55fb38f6bced3c08e.png)














Extension. Let





Proof 1 (metric). Let


Prove easily that


Proof 2 (analytic). Suppose w.l.o.g.







obtain easily that




P6. Find the max. of

![$x\in [0,1]$](http://latex.artofproblemsolving.com/5/6/1/561b0f8577e618149adc3fae918f20a4a4d4c5ca.png)
Proof 1. Denote
![$y\in [0,1]$](http://latex.artofproblemsolving.com/b/7/7/b77bfefceeecb585e9f167b6435af39d8a73a766.png)


![$\{x,y\}\subset [0,1]$](http://latex.artofproblemsolving.com/0/2/5/025168d0f8b8be61fd862165c4b74a93d66b8120.png)

Proof 2. Observe that













i.e.



![$\left\{\begin{array}{c}
\{x,y\}\subset[0,1]\\\\
x^2+y^2=1\end{array}\right|$](http://latex.artofproblemsolving.com/0/9/3/0931ab76fa64c55ce480f731ef625ca06e76ead2.png)

Application. Find the




Proof. Can suppose w.l.o.g. that




area of




A similar proposed problem. Find the dimensions of the cylinder (the lengths of its radius and its generatrix) with constant volum and for which its total surface is minimum.
Proof. Denote




is constant and





![$y=2x=\sqrt[3]{4k}$](http://latex.artofproblemsolving.com/7/b/d/7bd4d98fb7a9fe884cf854af172955a3513e5bcf.png)
P7 - Pythagoras' theorem. Let



Proof 1. Let




because if










right





![$[ABCD]=(2b)(a+b)=$](http://latex.artofproblemsolving.com/0/a/1/0a1d022e5c210e80b61f03da5f86d180a1486023.png)







Proof 2. Let




and



![$[ABCD]=AB\cdot AD=$](http://latex.artofproblemsolving.com/a/9/f/a9f3a2c5586879b9911fc42829321cff8e0ae060.png)

![$[ABCD]=[AEJ]+[DJI]+$](http://latex.artofproblemsolving.com/7/4/5/745e40e12addf4f478073054d194b03675b0c3fd.png)
![$[CHG]+BFG]+$](http://latex.artofproblemsolving.com/6/f/7/6f7710d9e1591e9ed019809ee82aa0bd61ba96e1.png)
![$[EJI]+FGH]$](http://latex.artofproblemsolving.com/8/e/5/8e5a0fa4bd33edd3e149309aaec98ae2c5c785d5.png)
![$+[EFHI]=$](http://latex.artofproblemsolving.com/f/1/0/f1022bfe1777d3bae845d3524a807b89c2b0b90f.png)

In conclusion,


P8. Let

![$\left\{\begin{array}{ccc}
AB\parallel CD & ; & AB\perp AD\\\\
AB=3\cdot CD & ; & S=[ABCD]=4\end{array}\right\|$](http://latex.artofproblemsolving.com/3/e/1/3e1f8fd68b3abed69708a8e7a2b710f17258d48a.png)
Proof 1. Since









![$S=[ABCD]=\frac 12\cdot AD\cdot (AB+CD)$](http://latex.artofproblemsolving.com/1/a/e/1aeb0d1bb4f00281f7faa63120476fa44578eb08.png)
obtain that








Proof 2. Since




Therefore,




P9. Let







Suppose that
![$[APK] = [KIJ] = [CNJ] =[BIM]$](http://latex.artofproblemsolving.com/e/6/8/e687ab3eaeb5bdbec18e68f4f5324c4948e46b5d.png)
![$[PKIB] =[AKJN] =[IJCM]$](http://latex.artofproblemsolving.com/f/d/6/fd689b52339aba6ee9d039d33014cb3bff93013d.png)
![$[XYZ...]$](http://latex.artofproblemsolving.com/8/7/c/87caebf1ad1268d0e2f81c7457511405eab38b0b.png)

Proof. Let w.l.o.g.
![$[ABC]=1$](http://latex.artofproblemsolving.com/4/a/0/4a08c4c1431ba612a7f5f04de67b275518a068b2.png)





![$[APK]=\frac {[APK]}{[APC]}\cdot\frac {[APC]}{[ABC]}=$](http://latex.artofproblemsolving.com/f/3/3/f3316dd7bde18ab563d4a89e8a2c5cf7fb792b77.png)


![$\boxed{[APK]=\frac {mp^2}{(1+p)(1+p+pm)}}$](http://latex.artofproblemsolving.com/a/8/9/a89e15b567fa298e964448e9a9287c59aec24a9f.png)
![$\boxed{[BMI]=\frac {nm^2}{(1+m)(1+m+mn)}}$](http://latex.artofproblemsolving.com/a/5/8/a5812a393013ecba4d72406df2bc65fcf414a1df.png)
![$\boxed{[CNJ]=\frac {pn^2}{(1+n)(1+n+np)}}$](http://latex.artofproblemsolving.com/5/b/6/5b6045da73d6a0584e53fa774a2366ef715ff5a2.png)
![$\boxed{[IJK]=\frac {(1-mnp)^2}{(1+m+mn)(1+n+np)(1+p+pm)}}$](http://latex.artofproblemsolving.com/b/f/8/bf840d4075b602b7f89aca5dff3f4a58d1a47452.png)
that
![$x=[APK]= [BMI]=[CNJ]=[IJK]$](http://latex.artofproblemsolving.com/4/3/b/43b071d6a7521963d73262010e16ece92edff711.png)





Let
![$[PKIB] =u\ ,\ [AKJN] =v\ ,\ [IJCM]=w$](http://latex.artofproblemsolving.com/4/3/e/43e180d652d1427408c3638eb807e1a5aa6950c2.png)
![$\left\{\begin{array}{ccccc}
2x+u=[ABM]=\frac {m}{m+1} & \wedge & 2x+v+w=[ACM]=\frac {1}{m+1} & \implies & v+w-u=\frac {1-m}{1+m}\\\\
2x+w=[BCN]=\frac {n}{n+1} & \wedge & 2x+u+v=[BAN]=\frac {1}{n+1} & \implies & u+v-w=\frac {1-n}{1+n}\\\\
2x+v=[CAP]=\frac {p}{p+1} & \wedge & 2x+w+u=[CBP]=\frac {1}{p+1} & \implies & w+u-v=\frac {1-p}{1+p}
\end{array}\right|$](http://latex.artofproblemsolving.com/e/9/6/e96bc35373f1579a015471430f2b371e1c9ae950.png)




![$[ABC]=1$](http://latex.artofproblemsolving.com/4/a/0/4a08c4c1431ba612a7f5f04de67b275518a068b2.png)

Indeed,
![$[ABC]=\frac {(1-mn)(1+p)+(1-np)(1+m)+(1-pm)(1+n)+2\left(2mnp+mn+np+pm-1\right)}{(1+m)(1+n)(1+p)}=$](http://latex.artofproblemsolving.com/e/8/8/e8895f5360dd91bb07146b00784db6c3733fdcf3.png)

where


![$[APK] = [KIJ] = [CNJ] =[BIM]\iff m=n=p$](http://latex.artofproblemsolving.com/e/c/7/ec77a308907a6c520752b73de9f44702de231dbe.png)
P10. Let a convex (not rectangle)





![$[XWY]=\frac {m}{(m+1)^2}\cdot [ABCD]$](http://latex.artofproblemsolving.com/9/e/2/9e205285ab09564843340305c24e0f63d382ae54.png)
Proof 1.
![$[XWY]=[DYW]-[DXW]-[DXY]=$](http://latex.artofproblemsolving.com/d/d/9/dd9a1970d99f757173671d12b08af3629f7b41e1.png)
![$\frac {m}{m+1}\cdot ([BDW]-[CDW]-[BDX])=$](http://latex.artofproblemsolving.com/3/0/2/30269774d4de665f7497b1b9714ba1eb8e3e9fef.png)
![$\frac {m}{m+1}\cdot([BCD]-[BDX])=$](http://latex.artofproblemsolving.com/4/7/2/4722ab5e9926fc6ce8941e3bfc4333cd6b2c6f65.png)
![$\frac {m}{m+1}\cdot ([CDX]+[BCX])=$](http://latex.artofproblemsolving.com/7/3/6/7362113c1fb6c33698c4225785b8d74f83d98d82.png)
![$\frac {m}{m+1}\cdot\frac {1}{m+1}\cdot ([ACD]+[ABC])=$](http://latex.artofproblemsolving.com/a/c/e/acec3e1dd4edb1cb2366b7212a0555857a3f0baf.png)
![$\frac {m}{(m+1)^2}\cdot [ABCD]$](http://latex.artofproblemsolving.com/3/5/2/35281ceb68fe211fc73a7d786f1dc9679b15694d.png)
![$[XWY]=\frac {m}{(m+1)^2}\cdot [ABCD]$](http://latex.artofproblemsolving.com/9/e/2/9e205285ab09564843340305c24e0f63d382ae54.png)
Proof 2 (Delta). Let


![$\left\{\begin{array}{ccc}
XM\parallel AD & \implies & [WMX]=[DMX]\\\\
YM\parallel BC & \implies & [WMY]=[CMY]\end{array}\right|\implies$](http://latex.artofproblemsolving.com/4/6/2/4621c11ae8225c8cd7526469e2fa908a9140e965.png)
![$[XYW]=[XYM]+[WMX]+[WMY]=$](http://latex.artofproblemsolving.com/e/1/4/e14a1f282522b1d1a4c7e59cd08171db8efd023e.png)
![$[XYM]+[DMX]+[CMY]=$](http://latex.artofproblemsolving.com/e/f/6/ef61b1f25064cd41ed5a680e45207b77572bdbde.png)
![$[XYCD]=[XYC]+[XCD]=$](http://latex.artofproblemsolving.com/e/a/c/eac07eaff1e9274dd6c10bd9aae7fc239b8c3b7a.png)
![$\frac 1{m+1}\cdot ([ACY]+[ACD])=$](http://latex.artofproblemsolving.com/f/b/9/fb9c947e9fe0911113fe9ecbaa7a1f359eea6b3b.png)
![$\frac 1{m+1}\cdot [ADCY]=$](http://latex.artofproblemsolving.com/d/5/a/d5a95d9dcdc8f65f3c79ebe945b34a1a9197787a.png)
![$\frac 1{m+1}\cdot ([CDY]+[ADY])=$](http://latex.artofproblemsolving.com/4/d/5/4d5b1b289a556babe396c07e6076f3a762e0cee2.png)
![$\frac m{(m+1)^2}\cdot ([CBD]+[BAD])=$](http://latex.artofproblemsolving.com/8/a/3/8a378ddb8c208a927079edb4099d5aff3e20daa0.png)
![$\frac m{(m+1)^2}\cdot [ABCD]$](http://latex.artofproblemsolving.com/5/1/f/51f850e5acd41c261353766019377e123a56809e.png)
P11 (Carlos Olivera). Let an acute




where


Proof. Let orthocenter





I"ll use two identities in

![$:\ \frac {xyz}{4\rho}=[XYZ]=\sqrt {s(s-x)(s-y)(s-z)}\implies$](http://latex.artofproblemsolving.com/2/3/8/238ae1ccf39b71975dccb675debaa808d190ac1b.png)


and








![$2S=2([BOC]+[COA]+[AOB])=$](http://latex.artofproblemsolving.com/4/a/a/4aafe7bb9a7c22e8b4af4098d9884329d68f5bac.png)




The relation



Remark. Prove easily that




![$\boxed{\frac {[DEF]}{[ABC]}=\frac {\delta}R=2\cos A\cos B\cos C}$](http://latex.artofproblemsolving.com/5/d/6/5d61c4fe7ebd0e912421faaf922c75d619cf06fc.png)
P12. Let





![$[BIF]=m,$](http://latex.artofproblemsolving.com/5/1/6/5167da3a101bc8bab20d9a1db2e464fbbb0a4ce6.png)
![$[CIE]=n,$](http://latex.artofproblemsolving.com/7/1/9/719a299fcdc0eb74ffd9eb9b5d350e4ed560890e.png)
![$[EIF]=p.$](http://latex.artofproblemsolving.com/d/1/8/d183b8844affbe8640abcda78c783a7753271eec.png)

Proof. Observe that











P13. Let a parallelogram





![$[PQRS]\le \frac S4$](http://latex.artofproblemsolving.com/f/f/2/ff269622c8729892d21f0b12d5513dece918efab.png)
![$S=[ABCD]$](http://latex.artofproblemsolving.com/d/7/c/d7c0f0918fa7f2eaf7f90ca234333d338468e9cb.png)
Proof. I"ll use an well-known property:




![$[AIB]=[CID]\le\frac S4$](http://latex.artofproblemsolving.com/d/d/3/dd34c4d1839053b42c55e3215babd14d6744b60e.png)
![$S=[ABCD]"$](http://latex.artofproblemsolving.com/b/c/9/bc9b124185607852455bc791a75405b5ebbce333.png)
![$[AIB]=[CID]=s$](http://latex.artofproblemsolving.com/7/4/6/7466d3cd9b6b29f92807e6e4074f88813721faca.png)
![$\left\{\begin{array}{ccc}
\alpha & = & [AID]\\\\
\beta & = & [BIC]\end{array}\right\|$](http://latex.artofproblemsolving.com/6/1/9/61939b008fe7b20905d76f80f94ffe11f32dbbb9.png)



proposed problem. Apply above property to the trapezoids
![$:\ \odot\begin{array}{cccccc}
\nearrow & PBCR: & [PQR] & \le & \frac {[PBCR]}4 & \searrow\\\\
\searrow & PADR: & [PSR] & \le & \frac {[PADR]}4 & \nearrow\end{array}$](http://latex.artofproblemsolving.com/b/8/b/b8bd5c0f125c4c7327c0dbed41da86942f3a10f8.png)

![$[PQRS]=[PQR]+[PSR]\le \frac S4$](http://latex.artofproblemsolving.com/a/8/6/a860077e4285e4d4e933acbafc7228f06e94a9da.png)
P14. Fie




![$\boxed{\begin{array}{cccc}
1. & [MPN]\cdot [BPC] & = & [BPM]\cdot [CPN]\\\\
2. & [MAN]\cdot [BPC] & = & [ABC]\cdot [MPN]\\\\
3. & [AMPN]=[BPC] & \Longleftrightarrow & \frac {MA}{MB}\cdot\frac {NA}{NC}=1\end{array}}\ .$](http://latex.artofproblemsolving.com/e/0/f/e0f2d6c78a6fc05a70acda96bc333596e9a48261.png)
Demonstratie.
![$\blacktriangleright\ \frac{[MPN]}{[CPN]}=\frac{MP}{PC}=\frac{[BPM]}{[BPC]}\ \Longrightarrow\ MPN]\cdot [BPC]=[BPM]\cdot [CPN]\ .$](http://latex.artofproblemsolving.com/7/9/6/7965e049513f1d448d8583f6446d53120b5460af.png)

![$\left\|\begin{array}{ccc}
\frac{PM}{PC} & = & \frac{AM}{AC}\ \cdot\ \frac{\sin(\angle MAP)}{\sin(\angle PAC)}\\\\
\frac{PN}{PB} & = & \frac{AN}{AB}\ \cdot\ \frac{\sin(\angle PAN)}{\sin(\angle PAB)} \end{array}\right| \bigodot\ \Longrightarrow\ \frac{PM\cdot PN}{PC\cdot PB}=\frac{AM\cdot AN}{AB\cdot AC}\ \Longleftrightarrow\ \frac{[MPN]}{[BPC]}=\frac{[MAN]}{[ABC]}\ .$](http://latex.artofproblemsolving.com/4/2/7/427027fbc780f9047d19f6d98d3fe1054b8fe14d.png)

![$[ABC]=[AMPN]+[BMC]+[BNC]-[BPC]$](http://latex.artofproblemsolving.com/3/9/4/3941b5691d51e19bfef0f4ebabbe0cf975b7fa73.png)

![$[AMPN]-[BPC]=[ABC]-[BMC]-[BNC]$](http://latex.artofproblemsolving.com/1/1/7/117425b300352f6ba720371f7db5d4adcd98f1de.png)

![$[AMPN]-[BPC]=[ABC]$](http://latex.artofproblemsolving.com/8/f/8/8f86363a6bcd7de1e65477a93e7e5a99eddb4ea6.png)


![$[AMPN]=[BPC]$](http://latex.artofproblemsolving.com/7/5/6/756660df6528a4565c6b5a79bcd895737b37b371.png)






PP15. Let




![$[AEPF]=[BPC]\ .$](http://latex.artofproblemsolving.com/1/2/1/12119d518220443678d5e23aab864ee100656def.png)
Proof.
![$\left\{\begin{array}{ccccc}
\frac {[FBC]}{[ABC]} & = & \frac {FB}{AB} & \stackrel{(1)}{=} & \frac {DB}{CB}\\\\
\frac {[EAB]}{[CAB]} & = & \frac {EA}{CA} & \stackrel{(2)}{=} & \frac {DB}{CB}\end{array}\right\|\implies$](http://latex.artofproblemsolving.com/7/5/1/7519d5e8e0a22e90ff7a5860fb89e2c8343a5e01.png)
![$[FBC]=EAB]\iff$](http://latex.artofproblemsolving.com/2/9/a/29aa95dfeb14fa883f8af53b50828105df36f4ac.png)
![$[BPC]+[BPF]=[AEPF]+[BPF]\iff$](http://latex.artofproblemsolving.com/4/c/9/4c9d92ae63d66405fff143bd78d4e53104220d61.png)
![$[BPC]=[AEPF]\ .$](http://latex.artofproblemsolving.com/a/a/d/aad48f03a520d0c3b43e2b11e13954407481664b.png)
P16. Let an acute






Proof 1. Suppose w.l.o.g.


![$[BC]$](http://latex.artofproblemsolving.com/e/a/1/ea1d44f3905940ec53e7eebd2aa5e491eb9e3732.png)






and

![$[AOH]=3\cdot [AOG]=2\cdot [AOM]=2\cdot [DOM]=$](http://latex.artofproblemsolving.com/b/0/3/b03940db318f37adce4f835ef9bb4eed574a826b.png)



![$\boxed{16S\cdot [AOH]=\left(c^2-b^2\right)\left(b^2+c^2-a^2\right)}=$](http://latex.artofproblemsolving.com/4/9/a/49adfcb6c8b4d2508d075197989317041faab3f8.png)


![$[AOH]=\frac {c^2-b^2}{4\tan A}\ .$](http://latex.artofproblemsolving.com/e/7/6/e765fa0752d541b3aa0dcbc7b2760ee9ffff7e24.png)
![$\left\{\begin{array}{ccc}
16S\cdot [BOH] & = & \left(c^2-a^2\right)\left(a^2+c^2-b^2\right)\\\\
16S\cdot [COH] & = & \left(b^2-a^2\right)\left(a^2+b^2-c^2\right)\end{array}\right\|\ .$](http://latex.artofproblemsolving.com/7/f/3/7f3842f9cf79bc3eaa4af880660e086e7b41f84d.png)
![$16S\cdot\left([AOH]+[COH]\right)=$](http://latex.artofproblemsolving.com/4/2/a/42a028b8a1e5302a50934aba7fd0d3cec2722600.png)


![$\left(c^2-a^2\right)\left(a^2+c^2-b^2\right)=16S\cdot [BOH]\implies$](http://latex.artofproblemsolving.com/f/b/2/fb266f0a7cf547d52270ea1280916d611ce0f2a6.png)
![$[AOH]+[COH]=[BOH]\ .$](http://latex.artofproblemsolving.com/c/f/b/cfb84eff0b834661843fc4a41829574eba2276a3.png)
P17. Let




Proof. Let

![$\boxed{[APB]\cdot [CPD]=[BPC]\cdot [DPA]}\ (*).$](http://latex.artofproblemsolving.com/4/5/d/45dfc0611409e0aa92b8e671ce20bb195a195223.png)



P18. Let








![$\left\{\begin{array}{ccc}
m=[BPGD] & ; & q=[CQGD]\\\\
n=[APG] & ; & p=[AQG]\end{array}\right\|\ .$](http://latex.artofproblemsolving.com/c/8/d/c8dcb8743dd5f9e7fbf2817f2a27236088185e43.png)
Proof. I"ll use






![$\beta\cdot\frac {[ABD]}{[APG]}+$](http://latex.artofproblemsolving.com/a/7/e/a7e1708c57aeba4d3499f15e12c2d8edcc5477ea.png)
![$\gamma\cdot\frac {[ACD]}{AQG]}=\frac {AD}{AG}$](http://latex.artofproblemsolving.com/0/a/2/0a233854817df91ff45ba3fddcbfa6d6d6885b4c.png)









P19 (TST USA 2003). Let








at



![$[PAF]+[PBD]+[PCE]=\frac S2\iff P$](http://latex.artofproblemsolving.com/0/f/f/0ffb1377009ffadfc3ab36b85f51f5ea3e150c5b.png)

Proof. Denote the area
![$[XYZ]$](http://latex.artofproblemsolving.com/c/7/6/c7608a3e97e44fc5bcf0cd62a1f7dfc0a0a2e7d4.png)

![$[ABC]=2$](http://latex.artofproblemsolving.com/c/1/4/c14299dcf775aef4150e578061733fd76e2d8772.png)

![$[BC],[CA],[AB]$](http://latex.artofproblemsolving.com/9/0/7/907e51f409d3d7ab73812cf20b2d5bfd529245bb.png)
![$\bullet\ x_1=[PAF]\ ,\ x_2=[PAE]\ ;\ y_1=[PBD]\ ,\ y_2=$](http://latex.artofproblemsolving.com/a/6/9/a690bbdaa1f3aa23e67cf4f08b204ea6e0d28342.png)
![$[PBF]\ ;\ z_1=[PCE]\ ,\ z_2=[PCD]\ ;$](http://latex.artofproblemsolving.com/d/5/5/d55e8ffec581e0daf4e3f13c200b268f0d92887a.png)


From the Ceva's theorem results the relation







![$P\in [AM]\cup [BN]\cup [CP]\ .$](http://latex.artofproblemsolving.com/6/a/5/6a58a82d97ecc99388e0e3205217148e8e33bf43.png)
PP. Let











respectively. Prove that
![$[PAF]+[PBD]+[PCE]=\frac S2\iff P$](http://latex.artofproblemsolving.com/0/f/f/0ffb1377009ffadfc3ab36b85f51f5ea3e150c5b.png)

Proof. Denote the area
![$[XYZ]$](http://latex.artofproblemsolving.com/c/7/6/c7608a3e97e44fc5bcf0cd62a1f7dfc0a0a2e7d4.png)

![$[ABC]=2$](http://latex.artofproblemsolving.com/c/1/4/c14299dcf775aef4150e578061733fd76e2d8772.png)

![$[BC],[CA],[AB]$](http://latex.artofproblemsolving.com/9/0/7/907e51f409d3d7ab73812cf20b2d5bfd529245bb.png)
![$\bullet\ x_1=[PAF]\ ,\ x_2=[PAE]\ ;\ y_1=[PBD]\ ,\ y_2=$](http://latex.artofproblemsolving.com/a/6/9/a690bbdaa1f3aa23e67cf4f08b204ea6e0d28342.png)
![$[PBF]\ ;\ z_1=[PCE]\ ,\ z_2=[PCD]\ ;$](http://latex.artofproblemsolving.com/d/5/5/d55e8ffec581e0daf4e3f13c200b268f0d92887a.png)


From the Ceva's theorem results the relation







![$P\in [AM]\cup [BN]\cup [CP]\ .$](http://latex.artofproblemsolving.com/6/a/5/6a58a82d97ecc99388e0e3205217148e8e33bf43.png)
This post has been edited 185 times. Last edited by Virgil Nicula, Apr 10, 2018, 7:21 AM