384. Geometry problems (I).

by Virgil Nicula, Aug 12, 2013, 3:18 PM

PP11 (Ruben Dario). Let $A$-right $\triangle ABC$ with incircle $w=C(I,r)$ which touches it at $\left\{\begin{array}{c}
D\in BC\\\\
E\in CA\\\\
F\in AB\end{array}\right\|$ . Let $\{B,K\}=\{B,E\}\cap w$ . Prove that $AK\parallel DE\iff$ $\frac {KB}{KE}=\sqrt 2-1$ .

Proof 1. Let $BD=BF=x$ and observe that $A=90^{\circ}\iff AE=AF=r$ . Thus, $1+\frac {KE}{KB}=\frac {BE}{KB}=\frac {BE^2}{BK\cdot BE}=$ $\frac {AB^2+AE^2}{BF^2}=$ $\frac {(x+r)^2+r^2}{x^2}=$

$1+\frac {2r(r+x)}{x^2}\implies$ $\boxed{\frac {KB}{KE}=\frac{x^2}{2r(r+x)}}\ (*)$ . Denote $L\in AK\cap BC$ and observe that $AK\parallel DE\iff$ $CI\perp AL\iff$ $DL=AE=AF=r\iff$ $\frac{KB}{KE}=\frac {LB}{LD}\stackrel{(*)}{\iff}$

$\frac{x^2}{2r(r+x)}=\frac {x-r}{r}\iff$ $x^2=2\left(x^2-r^2\right)\iff$ $x=r\sqrt 2\iff$ $\frac {KB}{KE}=\sqrt 2-1$ .

Proof 2. $AK\parallel DE\iff$ $\widehat{KAC}\equiv\widehat{DEC}\iff$ $m\left(\widehat{KAC}\right)=90^{\circ}-\frac C2\iff$ $m\left(\widehat{KAB}\right)=\frac C2\iff$ $\frac {KB}{KE}=\frac {AB}{AE}\cdot\frac {\sin\widehat{KAB}}{\sin\widehat{KAE}}\iff$ $\frac{KB}{KE}=\frac  c{s-a}\cdot\tan\frac C2\iff$

$\frac {KB}{KE}=\frac c{s-c}\iff$ $\frac {KB}{c}=\frac {KE}{s-c}=\frac {BE}{s}$ .Since $BK\cdot BE=BD^2$ , obtain that $\frac cs\cdot BE^2=(s-b)^2\iff$ $c\cdot BE^2=s(s-b)^2\iff$ $\boxed{c\left[c^2+(s-a)^2\right]=s(s-b)^2}\ (*)$ .

Denote $\left\{\begin{array}{c}
s-a=x\ ;\ s-b=y\ ;\ s-c=z\\\\
a=y+z\ ;\ b=z+x\ ;\ c=x+y\end{array}\right\|$ . Thus, $s=x+y+z$ and $A=90^{\circ}\iff$ $a^2=b^2+c^2\iff$ $(y+z)^2=(x+y)^2+(x+z)^2\iff$

$\boxed{yz=x(x+y+z)}\ (1)$ . The relation $(*)$ becomes $(x+y)^3+x^2(x+y)=y^2(x+y+z)\iff$ $2x\left(x^2+2xy+y^2\right)=y^2z\stackrel{(1)}{\iff}$ $2x\left(x^2+2xy+y^2\right)=$

$xy(x+y+z)\iff$ $2(x+y)^2=y(x+y)+yz\stackrel{(1)}{\iff}$ $2(x+y)^2=y(x+y)+x(x+y+z)\iff$ $2(x+y)^2=(x+y)^2+xz\iff$ $(x+y)^2=xz\iff$

$\boxed{(s-a)(s-c)=c^2}\ (2)$ . Thus, $(2)\iff$ $b^2-(a-c)^2=4c^2\iff$ $b^2=a^2-c^2=(a-c)^2+4c^2\iff$ $6c^2=2ac\iff$ $a=3c\iff$ $b^2=a^2-c^2=8c^2\iff$

$b=2c\sqrt 2\iff$ $\boxed{\frac a3=\frac b{2\sqrt 2}=\frac c1}\ (3)$ . In conclusion, $\frac {KB}{KE}=\frac {c}{s-c}=\frac {2c}{a+b-c}\ \stackrel{(3)}{=}\ \frac {2\cdot 1}{3+2\sqrt 2-1}=\frac {1}{\sqrt 2+1}=\sqrt 2-1\implies$ $\boxed{\frac {KB}{KE}=\sqrt 2-1}$ .


An easy extension. Let $\triangle ABC$ be a triangle with $A>60^{\circ}$ . The its incircle $w=C(I,r)$ touches it at $D\in BC$ , $E\in CA$

and $F\in AB$ . Denote $\{B,K\}=\{B,E\}\cap w$ . Prove that $AK\parallel DE\iff$ $\frac {KB}{KE}=\sqrt {\frac{2(1-\cos A)}{1-2\cos A} }-1$ .


Proof. Denote $L\in AK\cap BC$ and $\left\{\begin{array}{c}
AE=AF=x\\\
BF=BD=y\end{array}\right\|$ . Thus, $1+\frac {KE}{LB}=\frac {BE}{BK}=$ $\frac {BE^2}{BK\cdot BE}=$ $\frac {AB^2+AE^2-2\cdot AB\cdot AE\cdot\cos A}{BF^2}=$

$\frac {(x+y)^2+x^2-2x(x+y)\cos A}{y^2}=$ $1+\frac {2x(x+y)(1-\cos A)}{y^2}\implies$ $\boxed{\frac {KB}{KE}=\frac {y^2}{2x(x+y)(1-\cos A)}}$ . Therefore, $AK\parallel DE\iff$

$\left\{\begin{array}{c}
LD=x\\\
BL=y-x\end{array}\right\|\iff$ $\frac {KB}{KE}=\frac {LB}{LD}\iff$ $\frac {y^2}{2x(x+y)(1-\cos A)}=\frac {y-x}{x}\stackrel{(y=tx)}{\iff}$ $\frac {KB}{KE}=\frac {t^2}{2(1+t)(1-\cos A)}=t-1\iff$

$t^2=2\left(t^2-1\right)(1-2\cos A)\iff$ $t=\sqrt {\frac{2(1-\cos A)}{1-2\cos A}}\iff$ $\frac {KB}{KE}=\sqrt {\frac{2(1-cos A)}{1-2\cos A} }-1$ .



PP12 (Elberling Vargas Diaz). Let $ABCD$ be a square with center $O$ . Denote the midpoints $E$ , $F$ , $G$ of $AB$ , $BC$ , $CD$ respectively. Denote

$M\in (EB)$ and $N\in (FB)$ so that the line $MN$ is tangent to the incircle $w$ of the given square. Denote $T\in MG\cap ND$ . Find $m\left(\widehat{TOG}\right)$ .


Proof. Suppose w.l.o.g. that $AB=2$ . Denote $EM=m$ and $FN=n$ . Thus, $MN$ is tangent to $w\iff$ $MN=m+n\iff$ $BM^2+BN^2=MN^2$ , i.e.

$(1-m)^2+(1-n)^2=(m+n)^2\iff$ $m+n+mn=1$ , i.e. $\boxed{(m+1)(n+1)=2}\ (*)$ . Thus, $\left|\begin{array}{cc}
S\in MG\cap AC & \implies\frac {SA}{SC}=\frac {AM}{CG}=m+1\\\\
R\in ND\cap AC & \implies\frac {RA}{RC}=\frac {AD}{CN}=\frac 2{n+1}\end{array}\right|\stackrel{(*)}{\implies}$

$\frac {SA}{SC}=\frac {RA}{RC}\implies$ $R\equiv S\equiv T\implies$ $T\in AC\implies$ $m\left(\widehat{TOG}\right)=45^{\circ}$ .


An easy extension. Let $ABCD$ be a square with center $O$ . Denote the midpoints $E$ , $F$ , $G$ and $H$ of $AB$ , $BC$ , $CD$ and $DA$ respectively. Denote $M\in (EB)$ ,

$N\in (FB)$ , $P\in (GD)$ , $Q\in (DH)$ so that $MN$ and $PQ$ are tangent to the incircle $w$ of the given square. Denote $T\in MP\cap NQ$ . Prove that $T\in AC$ .


Proof. Suppose w.l.o.g. that $AB=2$ . Denote $\left\{\begin{array}{cc}
EM=m\ ; & FN=n\\\
GP=p\ ; & HQ=q\end{array}\right\|$ . Therefore,

$\left\{\begin{array}{ccccc}
MN\ \mathrm{is\ tg.\ of}\ w & \iff & MN=m+n & \iff & BM^2+BN^2=MN^2\iff (1+m)(1+n)=2\\\\
PQ\ \mathrm{is\ tg.\ of}\ w & \iff & PQ=p+q & \iff & DP^2+DQ^2=PQ^2\iff (1+p)(1+q)=2\end{array}\right\|$ . Observe that

$\left\{\begin{array}{ccccc}
S\in NQ\cap AC & \implies & \frac {SA}{SC}=\frac {AQ}{CN} & \implies & \frac {SA}{SC}= \frac {1+q}{1+n}\\\\
R\in MP\cap AC & \implies & \frac {RA}{RC}=\frac {AM}{CP} & \implies & \frac {RA}{RC}=\frac {1+m}{1+p}\end{array}\right\|$ . In conclusion, $(1+m)(1+n)=(1+p)(1+q)=2\implies$

$\frac {1+q}{1+n}=\frac {1+m}{1+p}\implies $ $\frac {SA}{SC}=\frac {RA}{RC}\implies$ $S\equiv R\equiv T\implies$ $T\in MP\cap AC\cap NQ\ne\emptyset\implies$ $T\in AC$ .



PP13. Let two lines $d_1$ and $d_2$ (concurrent or parallel) what are tangent to a circle $w=C(O,r)$ in its points $A$ and $B$ respectively. Prove that

$(\forall )\ M\in d_1\ ,\ N\in d_2\ , \ (\exists )$ the chain $\boxed{MB\perp ON\ \iff\ NA\perp OM\ \iff\ MN^2=MA^2+NB^2}$ .


Proof. $\boxed{ON\perp MB}\iff$ $OM^2-OB^2=NM^2-NB^2\iff$ $\left(OA^2+MA^2\right)-OB^2=MN^2-NB^2\iff$

$\boxed{MN^2=MA^2+NB^2}\iff$ $MN^2-MA^2=ON^2-OB^2\iff$ $MN^2-MA^2=ON^2-OA^2\iff$ $\boxed{OM\perp NA}$ .

Particular cases.

$1\ \blacktriangleright$ Let $\triangle ABC$ with incircle $w=C(I,r)$ what touches $AB\ ,\ AC$ at $F\ ,\ E$ and $\left\{\begin{array}{c}
M\in (AF)\\\
N\in (AE)\end{array}\right\|$ . Prove that $ME\perp IN\iff $ $MN^2=MF^2+NE^2\iff $ $NF\perp IM$ .

$2\ \blacktriangleright$ Let $\triangle ABC$ with incircle $w=C(I,r)$ what touches $BC\ ,\ CA\ ,\ AB$ at $D\ ,\ E\ ,\ F$ . Denote $T\in EF\cap BC$ . Prove that $AD\perp IT$ and $TA^2-TD^2=(s-a)^2$ .



PP14 (Silver Samuel Palacios). Let $\triangle ABC$ so that $AB=AC$ and $AB\perp AC$ . Consider $D\in (AC)$ for which construct the rectangle $ADEF$ with $E\in (BC)$

and $F\in (AB)$ . Denote $P\in DE\cap CF$ , $G\in BC$ so that $DG\perp BC$ , $H\in GP\cap DF$ and $I\in EH\cap CF$ . Prove that $EH\perp DF$ and $I\in BD$ .


Proof. Denote $S\in DG\cap CF$ and $\left\{\begin{array}{c}
AF=DE=DC=x\\\
AD=EF=BF=y\end{array}\right\|$ . Thus, $\left\{\begin{array}{cccc}
\frac {PD}{PE}=\frac {FA}{FB}=\frac xy & \implies & \frac {PD}{x}=\frac {PE}{y}=\frac {DE}{x+y} & (1)\\\\
\frac {PC}{PF}=\frac {DC}{DA}=\frac xy & \implies & \frac {PC}{x}=\frac {PF}{y}=\frac {CF}{x+y} & (2)\end{array}\right\|$ . Apply the Menelaus' theorem to:

$\blacktriangleright\ \overline{DSG}/\triangle EPC\ :\ \frac {DP}{DE}$ $\cdot\frac {GE}{GC}\cdot\frac {SC}{SP}=1\implies$ $\frac {SP}{SC}=\frac {DP}{DE}\cdot\frac {GE}{GC}\stackrel{(1)}{\implies}$ $\frac {SP}{SC}=\frac {x}{x+y}\implies$ $\frac {SP}{x}=\frac {SC}{x+y}=\frac {CP}{2x+y}\ (3)$ .

$\blacktriangleright\ \overline{CSP}/\triangle DGE\ :\ \frac {CG}{CE}$ $\cdot\frac {PE}{PD}\cdot\frac {SD}{SG}=1\implies$ $\frac {SD}{SG}=\frac {CE}{CG}\cdot\frac {PD}{PE}\stackrel{(1)}{\implies}$ $\frac {SD}{SG}=2\cdot \frac {x}{y}\implies$ $\frac {SD}{2x}=\frac {SG}{y}=\frac {DG}{2x+y}\ (4)$ .

$\blacktriangleright\ \overline{GPH}/\triangle DFS\ : \ \frac {GS}{GD}$ $\cdot\frac {HD}{HF}\cdot\frac {PF}{PS}=1\implies$ $\frac {HF}{HD}=\frac {GS}{GD}\cdot \frac {PF}{PC}\cdot\frac {PC}{PS}\stackrel{(2\wedge 3\wedge 4)}{\implies}$ $\frac {HF}{HD}=\frac {y}{2x+y}\cdot\frac yx\cdot\frac {2x+y}{x}=\frac {y^2}{x^2}\implies$ $\frac {HF}{HD}=\frac {y^2}{x^2}\ (5)\implies \boxed{EH\perp DF}$ .

$\blacktriangleright\ \overline{EIH}/\triangle DFP\ :\ \frac {EP}{ED}$ $\cdot\frac {HD}{HF}\cdot\frac {IF}{IP}=1\implies$ $\frac {IF}{IP}=\frac {ED}{EP}\cdot\frac {HF}{HD}\stackrel{(5)}{\implies}$ $\frac {IF}{IP}=\frac {x+y}{y}\cdot\frac {y^2}{x^2}\implies$ $\frac {IF}{y(x+y)}=\frac {IP}{x^2}=\frac {FP}{x^2+xy+y^2}\ (6)$ . Therefore,

$IF=\frac {y(x+y)}{x^2+xy+y^2}\cdot PF\stackrel{(2)}{=}$ $\frac {y(x+y)}{x^2+xy+y^2}\cdot \frac y{x+y}\cdot CF\implies$ $IF=\frac {y^2}{x^2+xy+y^2}\cdot CF$ and $IC=\frac {x(x+y)}{x^2+xy+y^2}\cdot CF$ . Thus, $\frac {IF}{IC}=\frac {y^2}{x(x+y)}\ (7)$ .

Apply the Menelaus' theorem to $\overline {BID}/\triangle ACF\ :\ \frac {BF}{BA}$ $\cdot\frac {DA}{DC}\cdot\frac {IC}{IF}\stackrel{(7)}{=}$ $\frac {y}{x+y}\cdot \frac yx\cdot\frac {x(x+y)}{y^2}=1\implies \boxed{I\in BD}$ .



PP15. Let convex $ABCD$ with $O\in AC\cap BD$ . Denote $\left\{\begin{array}{cc}
M\in AC\ ,\ BM\perp AC\ ; & N\in BD\ ,\ AN\perp BD\\\\
P\in AC\ ,\ DP\perp AC\ ; & Q\in AC\ ,\ CQ\perp AC\end{array}\right\|$ . Prove that $ABCD\sim NMQP$ .

Proof. Prove easily that $\left\{\begin{array}{cc}
\triangle NOM\sim \triangle AOB\ ; & \triangle MOQ\sim\triangle BOC\\\\
\triangle QOP\sim \triangle COD\ ; & \triangle PON\sim\triangle DOA\end{array}\right\|$ . In conclusion, $ABCD\sim NMQP$ . Nice and easy problem !


PP16. Let an equilateral $\triangle ABC$ with circumcircle $w$ . For $S\in w$ so that $BC$ separates $A$ and $S$ denote the $\left\{\begin{array}{c}
P\in BC\cap AS\\\
Q\in AB\cap CS\\\
R\in AC\cap BS\end{array}\right\|$ . Prove that $[QPR]=2\cdot [ABC]$ .

Proof. Suppose w.l.o.g. that $AB=1$ and denote $PB=x\ ,\ PC=y$ where $x+y=1$ . Thus, $\boxed{x+y=1\iff x^2+xy+y^2=x+y^2=y+x^2=1-xy}\ (*)$

and $[ABC]=\frac {\sqrt 3}{4}$ . Prove easily that $PA=\sqrt {1-xy}$ and $\frac {SA}{SP}=\frac 1{xy}$ . Apply Menelaus' theorem to the transvesals: $\left\{\begin{array}{ccc}
\overline{CSQ}/\triangle ABP & \implies & QA=\frac 1y\\\\
\overline{BSR}/\triangle ACP & \implies &  RA=\frac 1x\end{array}\right\|$ .

Thus, $[QPR]=[QAR]-[QAP]-[RAP]\iff$ $2\cdot [QPR]=AQ\cdot AR\cdot\sin\widehat{BAC}-AQ\cdot BP\cdot\sin\widehat{ABC}-AR\cdot CP\cdot\sin\widehat{ACB}=$

$\frac {\sqrt 3}{2}\cdot$ $\left(\frac 1{xy}-\frac xy-\frac yx\right)=\frac {\left(1-x^2-y^2\right)\sqrt 3}{2xy}\ \stackrel{(*)}{=}\ \sqrt 3=$ $4\cdot [ABC]\implies$ $[QPR]=2\cdot [ABC]$ .


An easy extension. Let $\triangle ABC$ with the circumcircle $w$ . For $S\in w$ so that $BC$ separates $A$ and $S$ denote $\left\{\begin{array}{c}
P\in BC\cap AS\\\
Q\in AB\cap CS\\\
R\in AC\cap BS\end{array}\right\|$

so that $BC$ doesn't separate $Q$ and $R$ . Let $PB=x$ and $PC=y$ . Prove that $[QPR]=\frac {2axy\left(b^2x+c^2y\right)}{\left[b^2x+\left(c^2-a^2\right)y\right]\left[c^2y+\left(b^2-a^2\right)x\right]}\cdot [ABC]$ .


Proof. Apply the Stewart's relation to $AP$ in $\triangle ABC\ :\ a\cdot PA^2+axy=b^2x+c^2y\implies$ $PA=\sqrt{\frac {b^2x+c^2y-axy}a}$ . Thus, $xy=PA\cdot PS\iff$ $PS=\frac {axy}{\sqrt{a\left(b^2x+c^2y-axy\right)}}$ and $AS=AP+PS=\frac {b^2x+c^2y}{\sqrt{a\left(b^2x+c^2y-axy\right)}}\implies$ $\boxed{\frac {SA}{SP}=\frac {b^2x+c^2y}{axy}}\ (*)$ . Apply the Menelaus' theorem:

$\left\{\begin{array}{ccc}
\overline{CSQ}/\triangle ABP & \implies & QA=\frac {c\left(b^2x+c^2y\right)}{c^2y+\left(b^2-a^2\right)x}\\\\
\overline{BSR}/\triangle ACP & \implies &  RA=\frac {b\left(b^2x+c^2y\right)}{b^2x+\left(c^2-a^2\right)y}\end{array}\right\|$ . Therefore, $[QPR]=[QAR]-[QAP]-[RAP]\iff$ $2\cdot [QPR]=AQ\cdot AR\cdot\sin\widehat{BAC}-$

$AQ\cdot BP\cdot\sin\widehat{ABC}-AR\cdot CP\cdot\sin\widehat{ACB}=$ $\frac{bc\left(b^2x+c^2y\right)^2\sin A}{\left[c^2y+\left(b^2-a^2\right)x\right]\left[b^2x+\left(c^2-a^2\right)y\right]} -$ $\frac {bcx\left(b^2x+c^2y\right)}{2R\left[c^2y+\left(b^2-a^2\right)x\right]}-$ $\frac {bcy\left(b^2x+c^2y\right)}{2R\left[b^2x+\left(c^2-a^2\right)y\right]}=$

$\frac{abc\left(b^2x+c^2y\right)^2-bcx\left(b^2x+c^2y\right)\left[b^2x+\left(c^2-a^2\right)y\right]-bcy\left(b^2x+c^2y\right)\left[c^2y+\left(b^2-a^2\right)x\right]}{2R\left[c^2y+\left(b^2-a^2\right)x\right]\left[b^2x+\left(c^2-a^2\right)y\right]}=$ $\frac {bc\left(b^2x+c^2y\right)}{2R\left[c^2y+\left(b^2-a^2\right)x\right]\left[b^2x+\left(c^2-a^2\right)y\right]}\cdot$

$\left\{a\left(b^2x+c^2y\right)-x\left[b^2x+\left(c^2-a^2\right)y\right]-y\left[c^2y+\left(b^2-a^2\right)x\right]\right\}=$ $\frac {h_a\left(b^2x+c^2y\right)}{\left[c^2y+\left(b^2-a^2\right)x\right]\left[b^2x+\left(c^2-a^2\right)y\right]}$ $\cdot\left[b^2x(a-x)+c^2y(a-y)+xy\left(2a^2-b^2-c^2\right)\right]=$

$\frac {2a^2h_axy\left(b^2x+c^2y\right)}{\left[c^2y+\left(b^2-a^2\right)x\right]\left[b^2x+\left(c^2-a^2\right)y\right]}=$ $\frac {4axyS\left(b^2x+c^2y\right)}{\left[c^2y+\left(b^2-a^2\right)x\right]\left[b^2x+\left(c^2-a^2\right)y\right]}\implies$ $[QPR]=\frac {2axy\left(b^2x+c^2y\right)}{\left[b^2x+\left(c^2-a^2\right)y\right]\left[c^2y+\left(b^2-a^2\right)x\right]}\cdot [ABC]$ .

Remark. IF $ABC$ is an $A$-isosceles triangle, THEN $2[ABC]=\left(\frac {b^2-a^2}{xy}+\frac {a^2}{b^2}\right)\cdot [QPR]$ . Observe that $a=b=c\implies [QPR]=2[ABC]$ .



PP17. Let $\triangle ABC$ with circumcircle $w$ and $P\in w$ . Let $\left\{\begin{array}{cc}
X\in BC\ : & PX\perp BC\\\
Y\in CA\ ; & PY\perp CA\\\
Z\in AB\ ; & PZ\perp AB\end{array}\right\|$ . Suppose w.l.o.g. that $A\in (BZ)$ and $AC$ separates $B$ , $P$ . Prove that $\boxed{\frac a{PX}+\frac c{PZ}=\frac b{PY}}$ .

Proof 1. Prove easiy $\left\{\begin{array}{ccc}
\widehat{APY}\equiv\widehat{BPX} & \iff & \frac {XB}{XP}=\frac {YA}{YP}\\\\
\widehat{CPX}\equiv\widehat{APZ} & \iff & \frac {XC}{XP}=\frac {ZA}{ZP}\\\\
\widehat{CPY}\equiv\widehat{BPZ} & \iff & \frac {ZB}{ZP}=\frac {YC}{YP}\end{array}\right\|\ (*)$ . So $\frac a{PX}+\frac c{PZ}=\frac {XB}{PX}+\frac {XC}{PX}+\frac {ZB}{ZP}-\frac {ZA}{ZP}\ \stackrel{(*)}{=}\ \frac {YA}{YP}+$ $\frac {ZA}{ZP}+\frac{YC}{YP}-\frac {ZA}{ZP}\implies$ $\frac a{PX}+\frac c{PZ}=\frac b{PY}$

Proof 2 (own). I"ll use the well-known relation $\boxed{bc=2Rh_a}$ in the triangles $\left\{\begin{array}{cc}
\triangle BPC\ : & PB\cdot PC=2R\cdot PX\\\\
\triangle CPA\ : & PC\cdot PA=2R\cdot PY\\\\
\triangle APB\ : & PA\cdot PB=2R\cdot PZ\end{array}\right\|\ (*)$ . Apply the Ptolemy's theorem in $ABCP\ :$

$a\cdot PA+c\cdot PC=b\cdot PB\iff$ $\frac a{PB\cdot PC}+\frac c{PA\cdot PB}=\frac b{PC\cdot PA}\stackrel{(*)}{\iff}$ $\frac a{2R\cdot PX}+\frac c{2R\cdot PZ}=\frac b{2R\cdot PY}\iff$ $\frac a{PX}+\frac c{ PZ}=\frac b{PY}$ .



PP18. Let a trapezoid $ABCD$ so that $AB\parallel CD$ , $O\in AC\cap BD$ . and $M\in AD$ , $N\in BC$ so that $O\in MN$ and $MN\parallel AB$ . Let

$\left\{\begin{array}{cc}
E\in (DM)\ ,\ F\in (CN)\ ;\ EF\parallel AB\\\\
G\in (MA)\ ,\ H\in (NB)\ ;\ GH\parallel AB\end{array}\right\|$ for which $\left\{\begin{array}{cc}
X\in EF\cap DB\ ;\ Y\in EF\cap CA\\\\
U\in GH\cap CA\ ;\ V\in GH\cap DB\end{array}\right\|$ . Prove that $\left\{\begin{array}{c}
EX=XY=YF\\\\
GU=UV=VH\end{array}\right\|\implies$ $\frac 1{AB}+\frac 1{CD}=\frac 1{EF}+\frac 1{GH}$ .


Proof. Denote $AB=a$ and $CD=b$ . Is well-known that $OM=ON=x$ where $\boxed{\frac 1x=\frac 1a+\frac 1b}\ (*)$ and $XE=YF=y$ and $GU=VH=z$ . Observe that

$\left\{\begin{array}{ccccc}
XE=XY & \implies & X\in MC & \implies & \frac 1y=\frac 1x+\frac 1b\\\\
UG=UV & \implies & U\in MB & \implies & \frac 1z=\frac 1x+\frac 1a\end{array}\right\|\stackrel{(*)}{\implies}$ $\frac 1y+\frac 1z=3\left(\frac 1a+\frac 1b\right)$ . In conclusion, $\frac 1{3y}+\frac 1{3z}=$ $\frac 1a+\frac 1b\implies$ $ \frac 1{EF}+\frac 1{GH}=\frac 1{AB}+\frac 1{CD}$ .



PP19 (Ruben Dario). Let $OBE$ be a triangle with $OB\perp OE\ ,\ OB=OE=r$ and the circle $w=C(O,r)$ . For a point $D\in (OE)$ construct $F\in (BE)$ such

that $DF\perp BE$ , $I\in OF\cap w$ so that $BD$ separates $I$ and $O$ . The line $DF$ cut again circumcircle of $\triangle BDE$ in $C$ . Prove that the ray $[EI$ is bisector of $\widehat{BEC}$ .


Proof. Let $x=m\left(\widehat{BEI}\right)\ ,\ y=m\left(\widehat{CEI}\right)$ and $z=m\left(\widehat{EOI}\right)$ . Therefore $OBFD$ is cyclically and $OI=OE\implies$ $z+2\left(45^{\circ}+x\right)=180^{\circ}\implies$ $\boxed{z+2x=90^{\circ}}\ (1)$ .

Thus, $\widehat{EOI}\equiv\widehat{DOF}\equiv\widehat{DBF}\equiv \widehat{DBE}\equiv \widehat{DCE}$ and $CD\perp BE\implies$ $\boxed{z+x+y=90^{\circ}}\ (2)$ . From $(1)$ and $(2)$ obtain that $x=y$ , i.e. the ray $[EI$ is bisector of $\widehat{BEC}$ .



PP20. Let $\widehat{AOB}$ be a right angle with $OA=OB=1$ . Consider the circle $\alpha =C(O,1)$ and the circle $\beta$ with the diameter $[OA]$ . Let $P$ be a point $P\in \beta$

so that the line $OA$ doesn't separate $P$ and $B$ . Construct the rectangle $PQRS$ where $Q\in \alpha$ and $\{R,S\}\subset (OB)$ . Prove that the ratio $\frac {AQ}{AP}$ is constant.


Proof 1. If $T\in OA\cap PQ$ , then $\boxed{AP^2=AO\cdot AT}\ (*)$ and $AQ^2=TQ^2+TA^2=$ $OQ^2-OT^2+ TA^2=$ $OA^2-OT^2+TA^2=$ $(OT+AT)^2-$

$OT^2+AT^2=2\cdot AT\cdot (AT+OT)=2\cdot AO\cdot AT$ . Using the relation (*) obtain that $AQ^2=2\cdot AO\cdot AT=2\cdot AP^2$ . In conclusion, $AQ=AP\sqrt 2$ .

Remark. Let an $A$-isosceles $\triangle ABC$ with $T\in (AB)$ so that $CT\perp AB$ and $P\in (CT)$ so that $PA\perp PB$ . Then $BC=BP\sqrt 2$ . Indeed, denote $M\in BC$

for which $AM\perp BC$ . Thus, $\boxed{BM=\frac {BC}{2}}\ (*)$ and $ATMC$ and $ABMP$ are cyclically. Hence $\widehat{BPM}\equiv\widehat{BAM}\equiv$ $\widehat{BCP}\implies$ $\widehat{BPM}\equiv\widehat{BCP}$ .

In conclusion, $\triangle BPM\sim\triangle BCP\implies$ $BP^2=BM\cdot BC\stackrel{(*)}{=}\frac {BC^2}{2}\implies$ $BC=BP\sqrt 2$ .

Proof 2. Denote $\{A,M\}=AQ\cap \beta$ . Observe that $OA=OQ\implies\boxed{MA=MQ}\ (*)$ and $OMQR$ is cyclically. Thus, $\widehat{APM}\equiv\widehat{AOM}\equiv\widehat{PQM}\equiv\widehat{AQP}\implies$

$\widehat{APM}\equiv\widehat{AQP}\implies$ $\triangle APM\sim\triangle AQP\implies$ $AP^2=AM\cdot AQ\stackrel{(*)}{\implies}$ $AP^2=\frac 12\cdot AQ^2\implies$ $AQ=AP\sqrt 2$ .



PP21 (Josue Garcia Piscoya). Let $ABC$ be an acute triangle with the orthocenter $H$ . Prove that $r_1=\frac s2\left(1-\tan\frac B2\right)\left(1-\tan\frac C2\right)$ , where $r_1$ is the length of the inradius of $\triangle BHC$ .

Proof. I"ll use relations $\left\{\begin{array}{cc}
\tan\frac A2\tan\frac B2+\tan\frac B2\tan\frac C2+\tan\frac C2\tan\frac A2=1 & (1)\\\\
\tan\frac A2\tan\frac B2\tan\frac C2=\frac rs & (2)\\\\
\cos\frac A2\cos\frac B2\cos\frac C2=\frac {s}{4R} & (3)\end{array}\right\|$ . Let $D\in BC$ so that $AD\perp BC$ . Thus, $\left\{\begin{array}{c}
\frac {DA}{DB}=\tan B\\\\
\frac {DB}{DH}=\tan C\end{array}\right\|\implies$ $\frac {[BHC]}{[ABC]}=\frac {DH}{DA}=$

$\frac {DH}{DB}\cdot\frac {DB}{DA}=$ $\cot C\cot B\implies$ $\boxed{\boxed{[BHC]=S\cot B\cot C}}=$ $\frac {S\tan\frac A2\left(1-\tan^2\frac B2\right)\left(1-\tan^2\frac C2\right)}{4\tan\frac A2\tan\frac B2\tan\frac C2}\stackrel{(2)}{\implies}$ $\boxed{[BHC]=\frac {s^2}4\tan\frac A2\left(1-\tan^2\frac B2\right)\left(1-\tan^2\frac C2\right)}\ (4)$ .

Otherwise. $[BHC]=\frac 12\cdot HB\cdot HC\cdot\sin\left(\widehat{BHC}\right)=$ $\frac 12\cdot 2R\cos B\cdot 2R\cos C\cdot \sin\left(180^{\circ}-A\right)=$ $2R^2\sin A\left(\cos^2\frac B2-\sin^2\frac B2\right)\left(\cos^2\frac C2-\sin^2\frac C2\right)=$

$aR\cos^2\frac B2\cos^2\frac C2\left(1-\tan^2\frac B2\right)\left(1-\tan^2\frac C2\right)=$ $4R^2\tan\frac A2\left(1-\tan^2\frac B2\right)\left(1-\tan^2\frac C2\right)\left(\prod\cos\frac A2\right)^2\stackrel{(3)}{\implies}$ $[BHC]=\frac {s^2}{4}\tan\frac A2\left(1-\tan^2\frac B2\right)\left(1-\tan\frac C2\right)$ .

$\blacktriangleright\ HB+HC+BC=$ $2R(\cos B+\cos C+\sin A)=$ $2R\left(2\cos\frac {B+C}{2}\cos\frac {B-C}{2}+2\sin\frac A2\cos\frac A2\right)=$ $4R\sin\frac A2\left(\cos\frac {B-C}{2}+\sin\frac {B+C}{2}\right)=$

$4R\sin\frac A2\left(\sin\frac B2+\cos\frac B2\right)\left(\sin\frac C2+\cos\frac C2\right)=$ $4R\sin\frac A2\cos\frac B2\cos\frac C2\left(1+\tan\frac B2\right)\left(1+\tan\frac C2\right)=$ $4R\tan\frac A2\left(1+\tan\frac B2\right)\left(1+\tan\frac C2\right)\prod\cos\frac A2\stackrel{(3)}{\implies}$

$\boxed{HB+HC+BC=s\tan\frac A2\left(1+\tan\frac B2\right)\left(1+\tan\frac C2\right)}\ (5)$ . Thus, $r_1=\frac {2\cdot [BHC]}{HA+HB+BC}\stackrel{(4\wedge 5)}{\implies}$ $\boxed{r_1=\frac s2\left(1-\tan\frac B2\right)\left(1-\tan\frac C2\right)}\ (*)$ .

Remark. $\boxed{\tan\frac A2=\frac r{s-a}=\frac {r_a}{s}}\ (6)$ .Define analogously inradii $r_2$ , $r_3$ for $\triangle CHA$ and $\triangle AHB$ respectively. Thus,

$\sum_{k=1}^3r_k\stackrel{(*)}{=}\frac s2\sum\left(1-\tan\frac B2\right)\left(1-\tan\frac C2\right)=$ $\frac s2\sum\left[1-\left(\tan\frac B2+\tan\frac C2\right)+\tan\frac B2\tan\frac C2\right]\stackrel{(1)}{=}$

$\frac s2\left(3-2\sum\tan\frac A2+1\right)=$ $s\left(2-\sum\tan\frac A2\right)\stackrel{(6)}{=}a+b+c-\sum r_a\implies$ $\boxed{\ r_1+r_2+r_3+r_a+r_b+r_c=a+b+c\ }$ .

Remark. $r_1=\frac s2\left(1-\tan\frac B2\right)\left(1-\tan\frac C2\right)\implies$ $2r_1=s\left(1-\frac {r_b}{s}\right)\left(1-\frac {r_c}{s}\right)=$ $s\left(1-\frac {r_b+r_c}{s}+\frac {r_br_c}{s^2}\right)=s-\left(r_b+r_c\right)+(s-a)\implies$ $\boxed{r_1+\frac{r_b+r_c}{2}=\frac {b+c}{2}}$ .
This post has been edited 320 times. Last edited by Virgil Nicula, Feb 11, 2018, 3:16 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404398
  • Total comments: 37
Search Blog
a