384. Geometry problems (I).
by Virgil Nicula, Aug 12, 2013, 3:18 PM
PP11 (Ruben Dario). Let
-right
with incircle
which touches it at
. Let
. Prove that
.
Proof 1. Let
and observe that
. Thus,

. Denote
and observe that

.
Proof 2.

.Since
, obtain that
.
Denote
. Thus,
and

. The relation
becomes


. Thus,

. In conclusion,
.
An easy extension. Let
be a triangle with
. The its incircle
touches it at
, 
and
. Denote
. Prove that
.
Proof. Denote
and
. Thus,

. Therefore, 

.
PP12 (Elberling Vargas Diaz). Let
be a square with center
. Denote the midpoints
,
,
of
,
,
respectively. Denote
and
so that the line
is tangent to the incircle
of the given square. Denote
. Find
.
Proof. Suppose w.l.o.g. that
. Denote
and
. Thus,
is tangent to
, i.e.
, i.e.
. Thus, 
.
An easy extension. Let
be a square with center
. Denote the midpoints
,
,
and
of
,
,
and
respectively. Denote
,
,
,
so that
and
are tangent to the incircle
of the given square. Denote
. Prove that
.
Proof. Suppose w.l.o.g. that
. Denote
. Therefore,
. Observe that
. In conclusion, 
.
PP13. Let two lines
and
(concurrent or parallel) what are tangent to a circle
in its points
and
respectively. Prove that
the chain
.
Proof.

.
Particular cases.
Let
with incircle
what touches
at
and
. Prove that
.
Let
with incircle
what touches
at
. Denote
. Prove that
and
.
PP14 (Silver Samuel Palacios). Let
so that
and
. Consider
for which construct the rectangle
with 
and
. Denote
,
so that
,
and
. Prove that
and
.
Proof. Denote
and
. Thus,
. Apply the Menelaus' theorem to:
.
.
.
. Therefore,
and
. Thus,
.
Apply the Menelaus' theorem to
.
PP15. Let convex
with
. Denote
. Prove that
.
Proof. Prove easily that
. In conclusion,
. Nice and easy problem !
PP16. Let an equilateral
with circumcircle
. For
so that
separates
and
denote the
. Prove that
.
Proof. Suppose w.l.o.g. that
and denote
where
. Thus, 
and
. Prove easily that
and
. Apply Menelaus' theorem to the transvesals:
.
Thus,
![$2\cdot [QPR]=AQ\cdot AR\cdot\sin\widehat{BAC}-AQ\cdot BP\cdot\sin\widehat{ABC}-AR\cdot CP\cdot\sin\widehat{ACB}=$](//latex.artofproblemsolving.com/f/e/c/fec97ed25fdf43860289695e83ab42588c84f770.png)
.
An easy extension. Let
with the circumcircle
. For
so that
separates
and
denote 
so that
doesn't separate
and
. Let
and
. Prove that
.
Proof. Apply the Stewart's relation to
in
. Thus,
and
. Apply the Menelaus' theorem:
. Therefore,
![$2\cdot [QPR]=AQ\cdot AR\cdot\sin\widehat{BAC}-$](//latex.artofproblemsolving.com/3/3/4/3340d14adb222416c6506371c6ffdcdf9dff955e.png)
![$\frac {bcy\left(b^2x+c^2y\right)}{2R\left[b^2x+\left(c^2-a^2\right)y\right]}=$](//latex.artofproblemsolving.com/a/5/0/a50fa687882d70e5201d5a82366308c89f0669f6.png)
![$\frac {bc\left(b^2x+c^2y\right)}{2R\left[c^2y+\left(b^2-a^2\right)x\right]\left[b^2x+\left(c^2-a^2\right)y\right]}\cdot$](//latex.artofproblemsolving.com/0/6/7/067d6939e960873d559d16f78be7c5a160bb7a38.png)
![$\cdot\left[b^2x(a-x)+c^2y(a-y)+xy\left(2a^2-b^2-c^2\right)\right]=$](//latex.artofproblemsolving.com/f/d/3/fd3f433fd70ed7f6bbeb7d83846fb9ea308b4ac6.png)
.
Remark. IF
is an
-isosceles triangle, THEN
. Observe that
.
PP17. Let
with circumcircle
and
. Let
. Suppose w.l.o.g. that
and
separates
,
. Prove that
.
Proof 1. Prove easiy
. So

Proof 2 (own). I"ll use the well-known relation
in the triangles
. Apply the Ptolemy's theorem in 
.
PP18. Let a trapezoid
so that
,
. and
,
so that
and
. Let
for which
. Prove that
.
Proof. Denote
and
. Is well-known that
where
and
and
. Observe that
. In conclusion,
.
PP19 (Ruben Dario). Let
be a triangle with
and the circle
. For a point
construct
such
that
,
so that
separates
and
. The line
cut again circumcircle of
in
. Prove that the ray
is bisector of
.
Proof. Let
and
. Therefore
is cyclically and
.
Thus,
and
. From
and
obtain that
, i.e. the ray
is bisector of
.
PP20. Let
be a right angle with
. Consider the circle
and the circle
with the diameter
. Let
be a point 
so that the line
doesn't separate
and
. Construct the rectangle
where
and
. Prove that the ratio
is constant.
Proof 1. If
, then
and

. Using the relation (*) obtain that
. In conclusion,
.
Remark. Let an
-isosceles
with
so that
and
so that
. Then
. Indeed, denote 
for which
. Thus,
and
and
are cyclically. Hence
.
In conclusion,
.
Proof 2. Denote
. Observe that
and
is cyclically. Thus, 
.
PP21 (Josue Garcia Piscoya). Let
be an acute triangle with the orthocenter
. Prove that
, where
is the length of the inradius of
.
Proof. I"ll use relations
. Let
so that
. Thus,
![$\frac {[BHC]}{[ABC]}=\frac {DH}{DA}=$](//latex.artofproblemsolving.com/9/e/8/9e8a841da9f6fd11f0760fe8e03a73299b091234.png)
.
Otherwise.

.


. Thus,
.
Remark.
.Define analogously inradii
,
for
and
respectively. Thus,
![$\frac s2\sum\left[1-\left(\tan\frac B2+\tan\frac C2\right)+\tan\frac B2\tan\frac C2\right]\stackrel{(1)}{=}$](//latex.artofproblemsolving.com/a/7/d/a7d0ec7d55c81b8fa1da8a04e50417474ebcd673.png)
.
Remark.
.







Proof 1. Let
















Proof 2.











![$\boxed{c\left[c^2+(s-a)^2\right]=s(s-b)^2}\ (*)$](http://latex.artofproblemsolving.com/4/5/2/4529f099a82892100ad8635bb38055747f0f19eb.png)
Denote


























An easy extension. Let





and




Proof. Denote
















PP12 (Elberling Vargas Diaz). Let














Proof. Suppose w.l.o.g. that















An easy extension. Let



















Proof. Suppose w.l.o.g. that










PP13. Let two lines







Proof.







Particular cases.

















PP14 (Silver Samuel Palacios). Let






and








Proof. Denote




























Apply the Menelaus' theorem to



PP15. Let convex




Proof. Prove easily that


PP16. Let an equilateral







![$[QPR]=2\cdot [ABC]$](http://latex.artofproblemsolving.com/2/8/2/2822583080d0a905e17868367133dd1b124946e0.png)
Proof. Suppose w.l.o.g. that




and
![$[ABC]=\frac {\sqrt 3}{4}$](http://latex.artofproblemsolving.com/3/7/2/372282ac1d07c3624ff15b7dda80514c707813db.png)



Thus,
![$[QPR]=[QAR]-[QAP]-[RAP]\iff$](http://latex.artofproblemsolving.com/f/6/0/f605c0da15fa1599d8454d3b982cfbe7f63bbf42.png)
![$2\cdot [QPR]=AQ\cdot AR\cdot\sin\widehat{BAC}-AQ\cdot BP\cdot\sin\widehat{ABC}-AR\cdot CP\cdot\sin\widehat{ACB}=$](http://latex.artofproblemsolving.com/f/e/c/fec97ed25fdf43860289695e83ab42588c84f770.png)


![$4\cdot [ABC]\implies$](http://latex.artofproblemsolving.com/e/d/c/edc6e049b4399a29916886408f105673d8df012b.png)
![$[QPR]=2\cdot [ABC]$](http://latex.artofproblemsolving.com/2/8/2/2822583080d0a905e17868367133dd1b124946e0.png)
An easy extension. Let







so that





![$[QPR]=\frac {2axy\left(b^2x+c^2y\right)}{\left[b^2x+\left(c^2-a^2\right)y\right]\left[c^2y+\left(b^2-a^2\right)x\right]}\cdot [ABC]$](http://latex.artofproblemsolving.com/6/f/f/6ffb4d6708f6fc947d6093749f2d914c9ea174e8.png)
Proof. Apply the Stewart's relation to








![$[QPR]=[QAR]-[QAP]-[RAP]\iff$](http://latex.artofproblemsolving.com/f/6/0/f605c0da15fa1599d8454d3b982cfbe7f63bbf42.png)
![$2\cdot [QPR]=AQ\cdot AR\cdot\sin\widehat{BAC}-$](http://latex.artofproblemsolving.com/3/3/4/3340d14adb222416c6506371c6ffdcdf9dff955e.png)

![$\frac{bc\left(b^2x+c^2y\right)^2\sin A}{\left[c^2y+\left(b^2-a^2\right)x\right]\left[b^2x+\left(c^2-a^2\right)y\right]} -$](http://latex.artofproblemsolving.com/a/c/4/ac4b79510e1109b11b6178cc60428bf4fafd1500.png)
![$\frac {bcx\left(b^2x+c^2y\right)}{2R\left[c^2y+\left(b^2-a^2\right)x\right]}-$](http://latex.artofproblemsolving.com/d/8/4/d840d4d5b41a550970bef00a3a3badf21cfb4e60.png)
![$\frac {bcy\left(b^2x+c^2y\right)}{2R\left[b^2x+\left(c^2-a^2\right)y\right]}=$](http://latex.artofproblemsolving.com/a/5/0/a50fa687882d70e5201d5a82366308c89f0669f6.png)
![$\frac{abc\left(b^2x+c^2y\right)^2-bcx\left(b^2x+c^2y\right)\left[b^2x+\left(c^2-a^2\right)y\right]-bcy\left(b^2x+c^2y\right)\left[c^2y+\left(b^2-a^2\right)x\right]}{2R\left[c^2y+\left(b^2-a^2\right)x\right]\left[b^2x+\left(c^2-a^2\right)y\right]}=$](http://latex.artofproblemsolving.com/3/c/7/3c7de710d7df08c942bdf13e4350b5078b56c7c2.png)
![$\frac {bc\left(b^2x+c^2y\right)}{2R\left[c^2y+\left(b^2-a^2\right)x\right]\left[b^2x+\left(c^2-a^2\right)y\right]}\cdot$](http://latex.artofproblemsolving.com/0/6/7/067d6939e960873d559d16f78be7c5a160bb7a38.png)
![$\left\{a\left(b^2x+c^2y\right)-x\left[b^2x+\left(c^2-a^2\right)y\right]-y\left[c^2y+\left(b^2-a^2\right)x\right]\right\}=$](http://latex.artofproblemsolving.com/7/7/0/7705ff4eda9afa1c215f51ad044c4d5e935c77b5.png)
![$\frac {h_a\left(b^2x+c^2y\right)}{\left[c^2y+\left(b^2-a^2\right)x\right]\left[b^2x+\left(c^2-a^2\right)y\right]}$](http://latex.artofproblemsolving.com/d/c/c/dcc84317853e28b9ee0cac305600b2d138d87bb8.png)
![$\cdot\left[b^2x(a-x)+c^2y(a-y)+xy\left(2a^2-b^2-c^2\right)\right]=$](http://latex.artofproblemsolving.com/f/d/3/fd3f433fd70ed7f6bbeb7d83846fb9ea308b4ac6.png)
![$\frac {2a^2h_axy\left(b^2x+c^2y\right)}{\left[c^2y+\left(b^2-a^2\right)x\right]\left[b^2x+\left(c^2-a^2\right)y\right]}=$](http://latex.artofproblemsolving.com/c/6/5/c65e263239ad3e4e4fca453cf55e7a4916cf3718.png)
![$\frac {4axyS\left(b^2x+c^2y\right)}{\left[c^2y+\left(b^2-a^2\right)x\right]\left[b^2x+\left(c^2-a^2\right)y\right]}\implies$](http://latex.artofproblemsolving.com/1/9/d/19dd5c8108e9ebbd3cf2e3623b4aaada3570b77b.png)
![$[QPR]=\frac {2axy\left(b^2x+c^2y\right)}{\left[b^2x+\left(c^2-a^2\right)y\right]\left[c^2y+\left(b^2-a^2\right)x\right]}\cdot [ABC]$](http://latex.artofproblemsolving.com/6/f/f/6ffb4d6708f6fc947d6093749f2d914c9ea174e8.png)
Remark. IF


![$2[ABC]=\left(\frac {b^2-a^2}{xy}+\frac {a^2}{b^2}\right)\cdot [QPR]$](http://latex.artofproblemsolving.com/e/b/b/ebbdc384c68a483614a41dc0cd1ca0e53d2e66e2.png)
![$a=b=c\implies [QPR]=2[ABC]$](http://latex.artofproblemsolving.com/4/3/8/438fa71cf4c9f9be0bf19cfef04606482f215c6e.png)
PP17. Let









Proof 1. Prove easiy




Proof 2 (own). I"ll use the well-known relation







PP18. Let a trapezoid











Proof. Denote











PP19 (Ruben Dario). Let





that










Proof. Let






Thus,








PP20. Let




![$[OA]$](http://latex.artofproblemsolving.com/c/8/8/c88c6759afc11d97267e95d4023b4419386ea20f.png)


so that the line







Proof 1. If









Remark. Let an








for which







In conclusion,



Proof 2. Denote









PP21 (Josue Garcia Piscoya). Let





Proof. I"ll use relations




![$\frac {[BHC]}{[ABC]}=\frac {DH}{DA}=$](http://latex.artofproblemsolving.com/9/e/8/9e8a841da9f6fd11f0760fe8e03a73299b091234.png)


![$\boxed{\boxed{[BHC]=S\cot B\cot C}}=$](http://latex.artofproblemsolving.com/1/e/2/1e29c453b34b3312bd23209f227437b2a814bbea.png)

![$\boxed{[BHC]=\frac {s^2}4\tan\frac A2\left(1-\tan^2\frac B2\right)\left(1-\tan^2\frac C2\right)}\ (4)$](http://latex.artofproblemsolving.com/7/b/f/7bf8e508d48abb31427b2da5f79c64dc28e03038.png)
Otherwise.
![$[BHC]=\frac 12\cdot HB\cdot HC\cdot\sin\left(\widehat{BHC}\right)=$](http://latex.artofproblemsolving.com/2/0/6/206a8f748eab72bafd951e212d0ee2bd87f1f475.png)




![$[BHC]=\frac {s^2}{4}\tan\frac A2\left(1-\tan^2\frac B2\right)\left(1-\tan\frac C2\right)$](http://latex.artofproblemsolving.com/1/6/1/161d1474c0e187549c862dc91a9edb23d918d281.png)








![$r_1=\frac {2\cdot [BHC]}{HA+HB+BC}\stackrel{(4\wedge 5)}{\implies}$](http://latex.artofproblemsolving.com/6/e/a/6ea88567eb63fe212782bcee479789d121181bf8.png)

Remark.






![$\frac s2\sum\left[1-\left(\tan\frac B2+\tan\frac C2\right)+\tan\frac B2\tan\frac C2\right]\stackrel{(1)}{=}$](http://latex.artofproblemsolving.com/a/7/d/a7d0ec7d55c81b8fa1da8a04e50417474ebcd673.png)



Remark.




This post has been edited 320 times. Last edited by Virgil Nicula, Feb 11, 2018, 3:16 PM