391. CRUX Mathematicorum.

by Virgil Nicula, Dec 21, 2013, 9:58 AM

Some own special inequalities from "CRUX Mathematicorum with Mathematical Mayhem - CANADA".


Proposed problem 1. Let $z\in\mathbb C^*$ and $n\in\mathbb N$ , where $n\ge 2$ . Prove that $\boxed{\ \left| {z^n+\frac{1}{z^n}}\right|\le 2\Longrightarrow \left| z+\frac 1z\right| \le 2\ }$ (CRUX, 3242/4/2007).

Proof 1 (directly - own). Show easily that $ \left\{\begin{array}{c} n\in\mathbb N^*\ ,\ x\in\mathbb R \\
 \\
r\in \mathbb R\ ,\ 0 < r\ne 1\end{array}\right\|$ $ \implies$ $ \left\{\begin{array}{cc} 1\blacktriangleright & |\sin nx|\le n\cdot |\sin x| \\
 \\
2\blacktriangleright & n\cdot\left|r - \frac 1r\right|\le \left|r^n - \frac {1}{r^n}\right|\end{array}\right\|$ .

Proof of the inequality (1)

Proof of the inequality (2)

Denote $ z = r\cdot(\cos\phi + i\cdot\sin \phi )$ for which $ \left|z^n + \frac {1}{z^n}\right|\le 2$ . Thus, $ \left|r^n\cdot (\cos\phi + i\cdot\sin\phi ) + \frac {1}{r^n}\cdot (\cos n\phi - i\cdot\sin n\phi )\right|\le 2$ $ \Longleftrightarrow$

$ \left|\left(r^n + \frac {1}{r^n}\right)\cdot\cos n\phi + i\cdot\left(r^n - \frac {1}{r^n}\right)\cdot\sin n\phi\right| \le 2$ $ \Longleftrightarrow$ $ \left(r^n + \frac {1}{r^n}\right)^2\cdot\cos^2 n\phi + \left(r^n - \frac {1}{r^n}\right)^2\cdot\sin^2 n\phi \le 4$ $ \Longleftrightarrow$

$ r^{2n} + \frac {1}{r^{2n}} + 2\cdot\cos 2n\phi \le 4$ $ \Longleftrightarrow$ $ \left(r^n - \frac {1}{r^n}\right)^2\le 4\cdot\sin^2n\phi$ $ \Longleftrightarrow$ $ \left|r^n - \frac {1}{r^n}\right|\le2\cdot|\sin n\phi |$ . In conclusion,

$ \boxed {\ \left|z^n + \frac {1}{z^n}\right|\le 2\ \Longleftrightarrow\ \left|r^n - \frac {1}{r^n}\right|\le2\cdot|\sin n\phi |\ }$ . For $ n = 1$ obtain : $ \boxed {\ \left|z + \frac {1}{z}\right|\le 2\ \Longleftrightarrow\ \left|r - \frac {1}{r}\right|\le2\cdot|\sin \phi |\ }$ . Using the upper

relations $ (1)$ and $(2)$ obtain that $ n\cdot\left|r - \frac 1r\right|\stackrel {(2)}{\ \le\ }\left|r^n - \frac {1}{r^n}\right|\le 2\cdot |\sin n\phi |\stackrel {(1)}{\ \le\ } 2n\cdot |\sin\phi |$ $ \Longrightarrow$ $ \left|r - \frac 1r\right|\le 2\cdot |\sin\phi |$ $ \Longleftrightarrow$ $ \left|z + \frac 1z\right|\le 2$ .

Remark. This problem points out a very interesting property of the structure of complex numbers $:$
Let the set $\mathbb A$ of $z\in\mathbb C^*$ for which

$\left|z+\frac 1z\right|\le 2$ . For $ z\in \mathbb A$ denote the set $ \mathbb A_n(z)$ of the complex numbers $ \omega$ for which $ \omega^n = z$ , where $ n\in\mathbb N^*$ . Then $ \mathbb A_n(z)\subset\mathbb A$ .


Proof 2 (induction - leva1980). Denote $a = z + \frac 1z$ and $x_{n} = z^{n} + \frac {1}{z^{n}}\ ,\ n\in\mathbb N$ . Suppose $ |a| > 2 $ . Have $ ax_{n} = x_{n-1} + x_{n+1} $ . Thus, $ a = \frac{x_{n-1}}{x_{n}} + $ $\frac{x_{n+1}}{x_{n}} $ . Denote $ y_{n} = \frac{x_{n}}{x_{n-1}} $ .

Then we have $y_{n+1} = a - \frac{1}{y_{n}} $ . We know that $ |y_{1}| = \left|\frac a2\right| >1 $ . By induction we can show that $ |y_{n}| > 1 $ . Indeed, if $|y_{n}| > 1 $, then $ |y_{n+1}| = \left| a - \frac{1}{y_{n}} \right|\geqslant |a| - \frac{1}{|y_{n}|} > 2 - 1 = 1 $ .

Therefore $|y_{n}| > 1\ ,\ (\forall )\ n\in\mathbb N^* $ . Thus, $ |x_{n}| > |x_{n-1}|\ ,\ (\forall )\  n\in\mathbb N^*$ $\implies$ $ \left| z^{n} + \frac {1}{z^{n}}\right | =$ $\left|x_{n}\right| >\left |x_{n-1}\right| > \ldots > |x_{1}| = |a| > 2 $ .

Proof 3 (induction - mathlinks). Put $u_n = \left| {{z^n} + \frac{1}{{{z^n}}}} \right|\ ,\ n\in\mathbb N^*$ . Suppose contrary to all reason $u_1=\left|z+\frac 1z\right|>2$ . Have ${u_{n + 1}} = \left| z^{n + 1} + \frac{1}{z^{n + 1}} \right| = $

$\left|\left(z^n + \frac{1}{z^n}\right)\left( z + \frac{1}{z} \right) - \left(z^{n - 1} + \frac{1}{z^{n - 1}} \right) \right|\ge$ $\left|\left(z^n + \frac 1{z^n}\right)\left(z + \frac 1{z}\right)\right|-\left|z^{n - 1} + \frac 1{z^{n - 1}} \right|=$ $\left|z^n + \frac{1}{z^n}\right|\cdot\left|z + \frac 1z\right|-\left|z^{n - 1} + \frac{1}{z^{n - 1}}\right|=$

$u_nu_1-u_{n-1}$ . Hence ${u_{n + 1}} \ge {u_n}\cdot {u_{1}} - {u_{n - 1}}$ with $n\in\mathbb N^*$ . From $|u_1|>2$ obtain that ${u_{n + 1}} > 2{u_n} - {u_{n - 1}}\Rightarrow $ ${u_{n + 1}} - {u_n} \ge$ $ {u_n} - {u_{n - 1}}$

for any $n\in\mathbb N^*$ . On the other hand ${u_2} > 2{u_1} - 2 \Rightarrow {u_2} - {u_1} \ge {u_1} - 2 > 0 \Rightarrow {u_2} > {u_1}$ . Thus ${u_n} > {u_1} > 2$ forall $n\ge 1$ , what is absurd.



Extension (Mateescu Constantin). Let $ z\in\mathbb C^*$ , $\{a,b\}\subset\mathbb R^*_+$ and $ n\in\mathbb{N}\ ,\ n\ge 2$ . Then $ \boxed{\boxed{\ \left|\frac{z^n}{b^n}+\frac{a^n}{z^n}\right|\le 2\cdot \left(\frac{a}{b}\right)^{\frac n2}\ \implies\ \left|\frac zb+\frac az\right|\le 2\sqrt{\frac ab}\ }}$ .

Proof. At first I"ll show that $ \left\{\begin{array}{c} 
n\in\mathbb N^*\ ,\ x\in\mathbb R\\\\
r>0\ ,\ a>0\ ,\ b>0 \end{array}\right\|$ $\implies$ $\left\{\begin{array}{cc} 
1\blacktriangleright & |\sin nx|\le n\cdot |\sin x|\\\\
2\blacktriangleright & n\cdot\left(\frac{a}{b}\right)^{\frac{n-1}2}\cdot\left|\frac{r}{b}-\frac{a}{r}\right|\le \left|\frac{r^n}{b^n}-\frac{a^n}{r^n}\right|\end{array}\right\|$

Proof of (1)-inequality

Proof of (2)-inequality

Denote $ z = r\cdot(\cos\phi + \text i\cdot\sin \phi )\ ,\ r>0\ ,\ \phi\in [0,2\pi )$ for which $ \left|\frac{z^n}{b^n} + \frac {a^n}{z^n}\right|\le 2\cdot\left(\frac ab\right)^{\frac{n}{2}}$ . Thus, $ \left|\frac{r^n}{b^n}\cdot (\cos n\phi + \text i\cdot\sin n\phi ) + \frac {a^n}{r^n}\cdot (\cos n\phi - \text i\cdot\sin n\phi )\right|\le 2\cdot\left(\frac ab\right)^{\frac n2}$ $\iff$

$\left|\left(\frac{r^n}{b^n} + \frac {a^n}{r^n}\right)\cdot\cos n\phi + \text i\cdot\left(\frac{r^n}{b^n} - \frac {a^n}{r^n}\right)\cdot\sin n\phi\right| \le 2\cdot\left(\frac ab\right)^{\frac n2}$ $ \iff$ $\left(\frac{r^n}{b^n} + \frac {a^n}{r^n}\right)^2\cdot\cos^2 n\phi + \left(\frac{r^n}{b^n} - \frac {a^n}{r^n}\right)^2\cdot\sin^2 n\phi\ \le\ 4\cdot\left(\frac ab\right)^n$ $\iff$

$\frac{r^{2n}}{b^{2n}} + \frac {a^{2n}}{r^{2n}} + 2\cdot\left(\frac ab\right)^n\cdot \cos 2n\phi \le 4\cdot\left(\frac ab\right)^n\ \iff\color{white}{.}$ $ \left(\frac{r^n}{b^n}-\frac{a^n}{r^n}\right)^2+2\cdot\left(\frac ab\right)^n(1+\cos 2n\phi)\le 4\cdot\left(\frac ab\right)^n$ $\iff$ $\left(\frac{r^n}{b^n} - \frac {a^n}{r^n}\right)^2\le 4\cdot\left(\frac ab\right)^n\cdot\sin^2n\phi$ $\iff$

$\left|\frac{r^n}{b^n} - \frac {a^n}{r^n}\right|\le2\cdot\left(\frac ab\right)^{\frac n2}\cdot|\sin n\phi |$ . In conclusion, $ \boxed {\ \left|\frac{z^n}{b^n} + \frac {a^n}{z^n}\right|\le 2\cdot\left(\frac ab\right)^{\frac{n}{2}}\ \iff\ \left|\frac{r^n}{b^n} - \frac {a^n}{r^n}\right|\le2\cdot\left(\frac ab\right)^{\frac n2}\cdot |\sin n\phi |\ }$ .

Particularly, for $ n = 1$ obtain $ \boxed {\ \left|\frac zb + \frac az\right|\le 2\sqrt{\frac ab} \ \iff\ \left|\frac rb - \frac ar\right|\le2\sqrt{\frac ab}\cdot|\sin \phi |\ }$ . Using the upper relations $ (1)$ si $ (2)$ obtain :

$ \underline{\underline{n\cdot\left(\frac ab\right)^{\frac{n-1}{2}}\cdot \left|\frac rb-\frac ar\right|}}\stackrel {(2)}{\ \le\ }\left|\frac{r^n}{b^n}-\frac {a^n}{r^n}\right|\le 2\cdot\left(\frac ab\right)^{\frac n2}\cdot |\sin n\phi |\stackrel {(1)}{\ \le\ }$ $ \underline{\underline{2\cdot\left(\frac ab\right)^{\frac{n}{2}}\cdot n\cdot |\sin\phi |}}$ . Therefore, $\left|\frac rb - \frac ar\right|\le 2\sqrt\frac ab\cdot |\sin\phi |\ \iff\ \left|\frac zb+\frac az\right|\le 2\sqrt\frac ab$ .



Proposed problem 2. $\{a,b,c\}\subset\mathbb R\ \implies\ \boxed{\ \ a^2\ +\ b^2\ +\ c^2\ =\ 9\ \Longrightarrow\ 3\ \min\ \{\ a\ ,\ b\ ,\ c\ \}\ \le\  1\ +\ abc\ }$ (CRUX, 3241/4/2007).

Proof. I"ll suppose w.l.o.g. that $a\le b\le c$. Thus, the problem reduces to prove that $3a\le 1+abc$. If $abc=0$ , then $a\le 0$ and $3a< 1+abc$ .

If $a\le b < 0 < c$ , then $abc>0$ and $3a<0<1<1+abc$ , i.e. $3a<1+abc$ . Thus, are remaining only two cases.

$1\blacktriangleright$ If $a\le b\le c<0$ or $a < 0 < b\le c$, then $2bc\le (b^2+c^2)=9-a^2$ and $abc\ge \frac {a(9-a^2)}{2}$ . But $\frac {a(9-a^2)}{2}\ge (3a-1)$ $\iff$ $a^3-3a-2\le 0$ $\iff$

$(a-2)(a+1)^2\le 0$, which is true. Thus, $abc\ge \frac {a(9-a^2)}{2}\ge 3a-1$, i.e. $3a \le 1+abc$. We have equality iff $a=-1$ and $b=c=2$ .

$2\blacktriangleright$ If $0 < a\le b\le c$, then $9=a^2+b^2+c^2\ge b^2+2a^2$, i.e. $2a^2+b^2-9\le 0$ , $a^2-b^2\le 0$ and $b^2 c^2-a^2\left(9-2a^2\right)=$

$b^2\left(9-a^2-b^2\right)-a^2\left(9-2a^2\right)=$ $\left(a^2-b^2\right)\left(2a^2+b^2-9\right)\ge 0$ , i.e. $b^2 c^2\ge a^2\left(9-2a^2\right)$ . But $a^2\le 3< \frac 92$ $\implies$ $\left\|\begin{array}{c}
9-2a^2> 0\\\\
bc\ge a\sqrt {9-2a^2}\end{array}\right\|$ ,

i.e. $abc\ge a^2\sqrt{9-2a^2}$. Is sufficient to prove $a^2\sqrt{9-2a^2}\ge 3a-1\  (*)$ , i.e. $f(a)=2a^6-9a^4+(3a-1)^2\le 0\ ,\ (\forall )\ a\in \left(0 , \sqrt 3\right]$ .

$2.1\blacktriangleright\ \ :\ \ a\in \left(0, \frac 13 \right]$ $\implies$ $a^2\sqrt{9-2a^2}>0\ge 3a-1$ $\implies$ the relation $(*)$ is truly, i.e. $f(a)\le 0$ .

$2.2\blacktriangleright\ \ :\ \ a\in \left(\frac 13 ,1\right]$ $\implies$ $f(a)=2a^4\left(a^2-1\right)-\left(a^2\sqrt 7 -3a+1\right)\left(a^2\sqrt 7 +3a-1\right)< 0$ .

$2.3\blacktriangleright\ \ :\ \ a\in \left(1, \sqrt{\frac 32}\right]$ $\implies$ $f(a)=\left(a^4+\frac 32\right)\left(2a^2-3\right) - 6a^2\left(a^2-1\right)- 6\left(a-\frac {11}{12}\right)< 0$ .

$2.4\blacktriangleright\ \ :\ \ a\in \left(\sqrt {\frac 32} ,\sqrt 3 \right]$ $\implies$ $f(a)=a^2\left(a^2-3\right)\left(2a^2-3\right)+(1-6a) < 0$ .


Application. Prove that $\boxed{\ \left\{\begin{array}{c}
\{a,b,c\}\subset\mathbb R\\\\
a^2 + b^2 + c^2 =9\end{array}\right|\ \implies\ 2(a+b+c)\le 10+abc\ }$ . Indeed, can suppose w.l.o.g. $a\le b\le c$ . Thus,

$\underline{2(a+b+c)}=\left[2\cdot b+2\cdot c+(-1)\cdot a\right]+3a\stackrel{(C.B.S)}{\le}$ $\sqrt {\left[2^2+2^2+(-1)^2\right]\cdot\left[b^2+c^2+a^2\right]}+3a=9+3a\stackrel{(*)}{\le}\underline{10+abc}$ .



Proposed problem 3. Let $\left\{\begin{array}{c}
a>0\ ,\ b>0\\\\
(a-1)(b-1)>0\end{array}\right\|\ \implies\ \boxed{\ a^b + b^a > 1 + ab + (1-a)(1-b)\cdot\min \{1,ab\}\ }$ (CRUX, 3260/4/2007).

Proof. I"ll use the well-known Bernoulli's inequality : $\left\{\begin{array}{cccc}
0<a<1 & \Longrightarrow  & \left( \forall \right) x>-1 \ , & (1+x)^a\le 1+ax\\\\ 
1\le a & \Longrightarrow & \left( \forall \right) x>-1 \ , & (1+x)^a\ge 1+ax\end{array}\right\|$ .

The first case. $0<a,b\le 1\Longrightarrow \min \{ 1,ab\}=ab$ . Thus, $\left(\frac 1a\right)^b=$ $\left[ 1+\left( \frac 1a -1\right)\right]^b\le $ $\frac{a+b-ab}{a}$ $\Longrightarrow $ $a^b\ge \frac{a}{a+b-ab}$ . Analogously, $b^a\ge \frac{b}{a+b-ab}$.

Thus, $a^b+b^a\ge $ $\frac{a+b}{a+b-ab}=$ $1+ab+\frac{ab(1-a)(1-b)}{a+b-ab}$ . Since $a+b-ab=a+b(1-a)>0$ , $\frac{ab}{a+b-ab}\ge ab$ $\Longleftrightarrow$ $ (1-a)(1-b)\ge 0$ ,

what is truly. Thus, $\frac{ab(1-a)(1-b)}{a+b-ab}\ge$ $ ab(1-a)(1-b)$ . Therefore, $a^b+b^a\ge $ $1+ab+ab(1-a)(1-b)=$ $1+ab+(1-a)(1-b)\cdot \min \{1,ab\}$ .

The second case. $1\le a,\ 1\le b $ $\Longrightarrow $ $\min \{1,ab\}=1$ . Thus, $a^b\ge 1+b(a-1)$ , i.e. $a^b\ge 1+ab-b$ .

Analogously, $b^a\ge 1+ab-a$ . Thus, $a^b+b^a\ge $ $1+ab+(1-a)(1-b)=$ $1+ab+(1-a)(1-b)\cdot \min \{1,ab\}$ .



Proposed Problem 4. Let $ z\in\mathbb C$ be a complex number for which exists $ n\in\mathbb N$ so that $ n\ge 2$ and $ 2^{n - 1}\cdot\left(z^n + 1\right) = (z + 1)^n$ . Prove that $ |z| = 1$ .

Proof. Observe that $ z\ne 0\ (z=0\implies n=1)$ . Suppose w.l.o.g. $ z\ne 1$ . Denote $ |z| = r$ . Thus, $ \overline z = \frac {r^2}{z}$ and $ 2^{n - 1}\cdot\left(z^n + 1\right) = (z + 1)^n$ $ \Longleftrightarrow$ $ 2^{n - 1}\cdot\left(\overline z^n + 1\right) = (\overline z + 1)^n$ $ \Longleftrightarrow$

$ 2^{n - 1}\cdot\left(r^{2n} + z^n\right) = \left(r^2 + z\right)^n$ . Suppose $ \mathrm {ad\ absurdum}$ that $ r\ne 1$ . Thus, $ \left\{\begin{array}{c} 2^{n - 1}\cdot\left(z^n + 1\right) = (z + 1)^n \\
 \\
2^{n - 1}\cdot\left(r^{2n} + z^n\right) = \left(r^2 + z\right)^n\end{array}\ \right\|\ \boxed - \ \uparrow$ $ \implies$ $ 2^{n - 1}\cdot\left(r^{2n} - 1\right) = \left(r^2 + z\right)^n - (z + 1)^n$ $ \implies$

$ \frac {2^{n - 1}\cdot\left(r^{2n} - 1\right)}{r^2 - 1} = \left|\sum_{k = 1}^n\left(r^2 + z\right)^{n - k}(z + 1)^{k - 1}\right|\le$ $ \sum_{k = 1}^n\left(r^2 + r\right)^{n - k}(r + 1)^{k - 1} =$ $ (r + 1)^{n - 1}\cdot\sum_{k = 1}^nr^{n - k}$ $ \implies$ $ \frac {2^{n - 1}\cdot\left(r^{2n} - 1\right)}{r^2 - 1}\le (r + 1)^{n - 1}\cdot\frac {r^n - 1}{r - 1}$ $ \implies$

$ \boxed {\ 2^{n - 1}\cdot \left(r^n + 1\right)\le (r + 1)^{n}\ \ (*)\ }$ because $ \frac {r^n - 1}{r - 1} > 0$ . From the relation $ (*)$ and the well-known inequality $ 2^{n - 1}\cdot \left(r^n + 1\right)\ge (r + 1)^{n}$ obtain

$ 2^{n - 1}\cdot \left(r^n + 1\right) = (r + 1)^{n}$ , i.e. $ r = 1$ , what is absurd . In concluzion, $ 2^{n - 1}\cdot\left(z^n + 1\right) = (z + 1)^n$ $ \implies$ $ |z| = 1$ . Here is an equivalent enunciation :


An easy extension. Let $ \{u,v\}\subset \mathbb C$ be two complex numbers for which exists $ n\in\mathbb N$ so that $ n\ge 2$ and $ 2^{n - 1}\cdot\left(u^n + v^n\right) = (u+ v)^n$ . Prove that $ |u| = |v|$ .
This post has been edited 19 times. Last edited by Virgil Nicula, Jun 14, 2015, 2:33 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a