224. Some nice and easy inequalities in a triangle.

by Virgil Nicula, Feb 18, 2011, 4:30 PM

Proposed problem 1. Let $a, b$, and $c$ be the side lengths of a triangle $ABC$ . Let $r$, $r_a, r_b, r_c$ and $s$ be

the inradius, the exradii and the semiperimeter of triangle $ABC$ . Prove that $a^2r_a+b^2r_b+c^2r_c \ge 4s^2r$ .


Proof. Here you can find many identities, for example $\boxed{\ \begin{array}{cc}
\sum a(s-b)(s-c)=2sr(2R-r) & (1)\\\\
\sum a^2(s-b)(s-c)=4s^2r(R-r) & (2)\end{array}\ }$ .

I am using them in solving inequalities. Therefore for this well-known inequality appear at least three methods :

$\blacktriangleright\ \sum a^2r_a=S\cdot\sum\frac {a^2}{s-a}\ \stackrel{C.B.S}{\ge}\ sr\cdot\frac {\left(\sum a\right)^2}{\sum (s-a)}=sr\cdot\frac {4s^2}{s}=4s^2r$ .

$\blacktriangleright\ \sum a^2r_a=S\cdot\sum\frac {a^2}{s-a}=$ $\frac {sr}{(s-a)(s-b)(s-c)}\cdot\sum a^2(s-b)(s-c)\ \stackrel{(2)}{=}$

$\frac {sr}{sr^2}\cdot 4s^2r(R-r)=4s^2(R-r)\ge 4s^2r$ because $R-r\ge r\iff R\ge 2r$ .

$\blacktriangleright\ \sum a^2r_a=\frac 1r\cdot\sum\left[a\cdot a(s-b)(s-c)\right]\ \stackrel{\mathrm{Chebychev}\uparrow\uparrow}{\ge}\ \frac {1}{3r}\cdot$ $\sum a\cdot\sum a(s-b)(s-c)\ \stackrel{(1)}{=}$

$\frac {2s}{3r}$ $\cdot 2sr(2R-r)=\frac 43\cdot s^2(2R-r)\ge 4s^2r$ because $2R-r\ge 3r\iff R\ge 2r$ .



Proposed problem 2. Let $ABC$ be a triangle with incircle $C(I)$ and circumcircle $w$ . Consider $D\in (BC)$ , $E\in (CA)$ ,

$F\in (AB)$ for which denote $\{A,X\}=AD\cap w$ , $\{B,Y\}=BE\cap w$ , $\{C,Z\}=CF\cap w$ . Prove that

$\frac {XA}{XD}+\frac {YB}{YE}+\frac {ZC}{ZF}\ge \left(\frac {b+c}{a}\right)^2+\left(\frac {c+a}{b}\right)^2+\left(\frac {a+b}{c}\right)^2$ with equality iff $I\in AD\cap BE\cap CF$ .


Proof. Apply the Stewart's relation for cevian $AD$ and $\triangle\ ABC\ :\ a\cdot AD^2+a\cdot BD\cdot CD=c^2\cdot CD+b^2\cdot BD$ $\Longrightarrow\ \frac{AD^2}{BD\cdot CD}+1=$

$\frac{c^2}{a\cdot BD}+\frac{b^2}{a\cdot CD}\ \stackrel{\small C.B.S.}{\ge}\ \left(\frac{b+c}a\right)^2$ , with equality iff $\frac{c}{a\cdot BD}=\frac{b}{a\cdot CD}$ , in other words, equality is attained when $AD$ is the $A$ - bisector .

Since $X\in AD\cap w\ ,\ A\ne X\ \Longrightarrow\ BD\cdot CD=AD\cdot DX$ . Thus, the last inequality becomes $\frac{AD^2+AD\cdot DX}{AD\cdot DX}\ \ge\ \left(\frac {b+c}a\right)^2$ ,

i.e. $\boxed{\ \frac{XA}{XD}\ \ge\ \left(\frac {b+c}a\right)^2\ }$ . Now, adding up the similar inequalities yields the desired result . Equality holds iff $I\in AD\cap BE\cap CF$ .



Lemma. Let $ ABC$ with orthocenter $ H$ and circumcircle $ w = C(O,R)$ . Then there is the inequality $ \ \boxed {HO\ \ge\ R - 2r\ }$ .
Proof.
Euler's relation. Suppose w.l.o.g. $ A = \max\{A,B,C\}$ . Then $\delta_{BC}(O)+\delta_{CA}(O)+\delta_{AB}(O)=\left\{\begin{array}{ccc}
R+r & \mathrm{if} & A\le 90^{\circ}\\\\
r_a-R & \mathrm{if} & A > 90^{\circ}\end{array}\right\|$ ,

where denote the distance $ \delta_d (X)$ of the point $ X$ to the line $ d$ and the length $ r_a$ of the $ A$-inradius. Remark : $ \boxed {\ r_a = 2R + r\Longleftrightarrow A = 90^{\circ}\ }$ .

Proof.

Proposed problem 3. In any triangle $ ABC$ there is the inequality $ \boxed {\ HO + HA + HB + HC\ \ge\ 3R\ }$ .

Proof. From the well-known property (in any triangle) $ HA = 2\cdot\delta_{BC}(O)$ a.s.o., from the Euler's relation and using the above lemma obtain

$ HO+\sum HA\ge (R-2r)+\left\{\begin{array}{ccc} 
2(R + r) & \mathrm{if} & A\le 90^{\circ}\\\\
2\left(r_a-R\right) & \mathrm{if} & A > 90^{\circ}\end{array}\right\|=$ $\left\{\begin{array}{ccc} 3R & \mathrm{if} & A\le 90^{\circ} \\
 \\
2\left(r_a - r\right) - R & \mathrm{if} & A > 90^{\circ}\end{array}\right\|\ge 3R$ because

$ 2\left(r_a - r\right) - R\ge 3R\Longleftrightarrow r_a\ge 2R + r$ and multiply with $ s(s - a)$ $ \Longleftrightarrow$ $ sS\ge 2s(s - a)R + (s - a)S$ $ \Longleftrightarrow$ $ aS\ge 2s(s - a)R$ and multiply

with $ 2S$ $ \Longleftrightarrow$ $ 2aS^2\ge s(s - a)\cdot 4RS$ $ \Longleftrightarrow$ $ 2as(s - a)(s - b)(s - c)\ge s(s - a)abc$ $ \Longleftrightarrow$ $ 2(s - b)(s - c)\ge bc$ and multiply with $ 2$ $ \Longleftrightarrow$

$ a^2 - (b - c)^2\ge 2bc$ $ \Longleftrightarrow$ $ a^2\ge (b - c)^2 + 2bc$ $ \Longleftrightarrow$ $ a^2\ge b^2 + c^2$ $ \Longleftrightarrow$ $ A\ge 90^{\circ}$ . Hence the inequality $ HO + \sum HA\ \ge\ 3R$ is truly.



Proposed problem 4. \[\begin{array}{c}
\\
\boxed{\ \sum \cos^3\frac{A}{2} \cdot \cos \frac{B-C}{2}\le \frac{9\sqrt{3 }}{8}\ }\\\\
\sum 2\cos^2\frac A2\cdot 2\sin\frac {B+C}{2}\cos\frac {B-C}{2}\le\frac {9\sqrt 3}{2}\\\\
\sum (1+\cos A)(\sin B+\sin C)\le\frac{9\sqrt{3 }}{2}\\\\
2\sum \sin A+\sum (\sin B\cos C+\sin C\cos B)\le\frac{9\sqrt{3 }}{2}\\\\
2\sum \sin A+\sum \sin (B+C)\le\frac{9\sqrt{3 }}{2}\\\\
3\sum \sin A\le\frac{9\sqrt{3 }}{2}\\\\
\sum \sin A\le \frac {3\sqrt 3}{2}\\\\
\sum\frac {a}{2R}\le\frac {3\sqrt 3}{2}\\\\
\frac sR\le \frac {3\sqrt 3}{2}\\\\
s\le \frac {3R\sqrt 3}{2}\\\\
\mathrm{O.K.}\\\
\end{array}\]

Proposed problem 5. Prove that $h_a^2+h_b^2+h_c^2\le s^2$ , where $a+b+c=2s$ .

Proof. $a^2\ge a^2-(b-c)^2\implies$ $a^2\ge (a+b-c)(a+c-b)\implies$ $\frac {1}{a^2}\le \frac {1}{4(s-b)(s-c)}$ a.s.o. $\implies$ $\sum\frac {1}{a^2}\le \frac 14\cdot \sum \frac {1}{(s-b)(s-c)}=$

$\frac {s}{4(s-a)(s-b)(s-c)}=$ $\frac {s}{4sr^2}=$ $\frac {1}{4r^2}\implies$ $\boxed{\frac {1}{a^2}+\frac {1}{b^2}+\frac {1}{c^2}\le\frac {1}{4r^2}}\ (1)$ . Therefore, $\sum h_a^2=4S^2\cdot\sum\frac {1}{a^2}\ \stackrel{(1)}{\le}\ 4S^2\cdot\frac {1}{4r^2}=s^2\implies$

$\boxed{h_a^2+h_b^2+h_c^2\le s^2}\ (2)$ . Remark that $\sum b^2c^2=\sum (bc)^2\ge \sum (ab)\cdot (ac)=abc(a+b+c)\implies$ $\sum \frac {1}{a^2}\ge \sum \frac {1}{bc}=$ $\frac {a+b+c}{abc}=$

$\frac {2s}{4Rsr}=\frac{1}{2Rr}\ge $ $\frac {1}{R^2}$ because $R\ge 2r$ . In conclusion, $\boxed{\frac {1}{4r^2}\ge \frac {1}{a^2}+\frac {1}{b^2}+\frac {1}{c^2}\ge\frac {1}{bc}+\frac {1}{ca}+\frac {1}{ab}\ge \frac {1}{R^2}}\ (3)$ . Nice !



Proposed problem 6. Prove that $m_a\left(bc-a^2\right)+m_b\left(ca-b^2\right)+m_c\left(ab-c^2\right)\ge 0$ , where $m_a$ is the length of the $A$-median a.s.o.

Proof. Denote the centroid $G$ and the points $D\in AG\cap BC$ , $E\in BG\cap CA$ , $F\in CG\cap AB$ . Apply the Ptolemy's inequality

in the quadrilaterals $\left\|\begin{array}{ccccc}
AEGF & :  & 2am_a\le cm_b+bm_c & \implies & 2a^2m_a\le cam_b+abm_c\\\\
BFGD & : & 2bm_b\le am_c+cm_a & \implies & 2b^2m_b\le abm_c+bcm_a\\\\
CDGE & : & 2cm_c\le bm_a+am_b & \implies & 2c^2m_c\le bcm_a+cam_b\end{array}\right\|\ \bigoplus$ $\implies$

$a^2m_a+b^2m_b+c^2m_c\le bcm_a+cam_b+abm_c\implies$ $m_a\left(bc-a^2\right)+m_b\left(ca-b^2\right)+m_c\left(ab-c^2\right)\ge 0$ .
This post has been edited 29 times. Last edited by Virgil Nicula, Nov 22, 2015, 3:06 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a