55. Two important circles - mixtilinear incircle/excircle.

by Virgil Nicula, Jul 10, 2010, 12:24 AM

Proposed problem. Let $C(I,r),C(I_{a},r_{a})$ be the incircle and the $A$-exincircle of $\triangle ABC$ which touches $AC$ at $E$ , $F$ respectively. Define and note the circles $w_1=C(I_{1},r_{1})$

and $w_2=C(I_{2},r_{2})$ the circles which are tangent to $AB$ in $M_{1}$ , $M_{2}$ respectively and to the circumcircle of $\triangle ABC$ (the first -interior, the second-exterior) at $T$ ,$\ T_{a}$ respectively.

Prove that $s\cdot AM_{1}=(s-a)\cdot AM_{2}=bc$ ; $\frac{r_{1}}{r}=\frac{r_{2}}{r_{a}}=\frac{bc}{s(s-a)}$ ; $M_{1}C\parallel BF$ ; $\ M_{2}C\parallel BE$ ; $IT$ , $\ I_{a}T_{a}$ and the bisector of $[BC]$ are concurrently.


Remark. Let $\triangle ABC$ be a triangle with incenter $I$ and the circle $\gamma _a$ internally tangent to $AB$ , $AC$ and to the circumcircle of given triangle.

Denote the contact points $M$ , $N$ of circle $\gamma _a$ with $AB$ , $AC$ respectively. Show that $I$ , $M$ , $N $ are collinear and $MN \perp AI$ .



PP1. Let $ABC$ be a triangle $A$-right-angled and $S$ be its circumcircle. Let $S_1$ be the circle touching the lines $AB$ and $AC$, and the circle $S$ internally.

Further, let $S_2$ be the circle touching the lines $AB$ and $AC$ and the circle $S$ externally. If $r_1$ , $ r_2$ be the radii of $S_1$ , $ S_2$ prove that $r_1 \cdot r_2 = 4\cdot [ABC]$ .


Proof. $AB\perp AC\Longrightarrow r=s-a\ ,\ r_a=s\ ,\ S=s(s-a)=rr_a$ . From upper problem obtain : $\frac{r_1}{r}=\frac{r_2}{r_a}=\frac{bc}{s(s-a)}\Longrightarrow r_1\cdot r_2=rr_a\cdot \left[ \frac{bc}{s(s-a)}\right]^2 =4S$ .


PP2. Let $\triangle ABC$ , the circumcircle $w=C(O,R)$ and the circle $C(O',\rho)$ which touches $AB$ , $AC$ at $E$ , $F$

and which is internal tangent to $w$ at $T$ . Let $\{A,M\}=\{A,O'\}\cap w$ . Prove that $BC\cap EF\cap MT\ne\emptyset$ .


Proof. It's known that the incenter $I$ of $\triangle ABC$ is the midpoint of $EF$ (see here). Let $TA$ , $TC$ cut $C(O')$ again at $A'$ , $C'$ . Prove easily

$TF$ is the bisector of $\angle ATC$ and $TE$ is the bisector of $\angle ATB$ $\Longrightarrow$ $N\in BI\cap TF$ , $P\in CI\cap TE$ belong to $w$ . Apply the Pascal's

theorem
to the cyclic hexagon $TMACBN\ :\ \left\{\begin{array}{c}
 L\in TM\cap CB\\\\
I\ MA\cap BN\\\\
F\in AC\cap NT\end{array}\right\|$ $\implies$ $L\in FI\implies L\in EF\cap BC\cap MT$ .



PP3 (Miguel Ocho Sanchez). The mixtlinear circle $C(O')$ of $\triangle ABC$ touches $AB$ , $AC$ and the circumcircle $w=C(O,R)$

at $M$ , $N$ and $T$ respectively. Denote the projections $P$ , $R$ of $T$ on $MN$ , $BC$ respectively. Prove $TR=TP\cdot\sin\frac A2$ .


Proof. Is well-known that the incenter $I$ is the midpoint of $[MN]$ . Denote the midpoint $L$ of $[BC]$ and the second intersection $S$ of $AO'$ with $w$ . From the previous

problem results that $MN\cap BC\cap TS\ne\emptyset$ . Observe that $\triangle PTR\sim\triangle ISL$ , what means that $\frac {TR}{TP}=\frac {SL}{SI}=\frac {SL}{SC}\implies$ $\frac {TR}{TP}=\sin\frac A2\implies$ $TR=TP\cdot\sin\frac A2$ .



PP4 (Ruben Dario). Let $\triangle ABC$ with the incircle $w=\mathbb C(I,r)$ and the $A$-excircle $w_a=\mathbb C\left(I_a,r_a\right)$ . Let $M\in AC\cap w_a$ and $N\in AB$ so that $CN\parallel MB$ . Prove $IN\perp IA$ .

Proof 1. Denote $P\in w_a\cap AB$ , i.e. $\boxed{AP=AM}\ (1)$ . Prove easily that $\triangle ABI_a\sim\triangle AIC$ . Hence $\frac {AB}{AI_a}=\frac {AI}{AC}\iff$ $\boxed{AI\cdot AI_a=AB\cdot AC}\ (2)$ .

Since $CN\parallel MB$ obtain that $\frac {AN}{AB}=\frac {AC}{AM}\implies$ $AN\cdot AM=AB\cdot AC\ \stackrel{(1)}{\implies}\ AN\cdot AP=$ $AB\cdot AC\ \stackrel{(2)}{\implies}\ AN\cdot AP=$ $AI\cdot AI_a\implies$ $II_aPN$ is cyclically $\implies$

$\widehat {AIN}\equiv\widehat{API_a}\ \left(\ PI_a\perp PA\ \right) \implies$ $IN\perp IA$ . Remark. The point $N$ is the tangent point of the mixtlinear $A$-circle with the sideline $AB$ , i.e. $AN=\frac {bc}{s}$ , where $2s=a+b+c$ .

Proof 2 . $CN\parallel MB\implies \frac {AN}{AB}=\frac {AC}{AM}\implies$ $\boxed{AN=\frac {bc}s}$ . Denote $R\in w\cap AB$ , where $AR=s-a$ . Thus, $RN=AN-AR=\frac {bc}s-(s-a)=$ $\frac {bc-s(s-a)}s=$

$\frac {(s-b)(s-c)}s\implies$ $RN=\frac {(s-b)(s-c)}s\implies$ $RA\cdot RN=\frac {(s-a)(s-b)(s-c)}s=\frac {sr^2}s=r^2\implies$ $\frac {RN}{RI}=\frac {RI}{RA}\ \stackrel{RI\perp AN}{\implies}\ \triangle RNI$ $\sim\triangle RIA\implies IN\perp IA$ .


PP4 (China). Let $\triangle ABC$ and the mixtilinear incircles $:$ $w_1=\mathbb C\left(I_1,r_1\right)$ which is tangent to $AB$ , $AC$ at $S$ , $P$ respectively $;$ $w_2=\mathbb C\left(I_2,r_2\right)$ which is tangent to $BC$ , $BA$ at

$N$ , $R$ respectively $;$ $w_3=\mathbb C\left(I_3,r_3\right)$ which is tangent to $CA$ , $CB$ at $Q$ , $M$ respectively. Prove that $[RI_1Q]=[MI_2S]=[NI_3P]=\frac {r^2(2R+r)}s$ , where $2s=a+b+c$ .


Proof. $r_1=\frac {bcr}{s(s-a)}$ and $\left\{\begin{array}{ccccc}
BN=BR=\frac {ac}s & \implies & AR=AB-BR=c-\frac {ac}s & \implies & AR=\frac {c(s-a)}s\\\\
CM=CQ=\frac {ab}s & \implies & AQ=AC-CQ=b-\frac {ab}s & \implies & AQ=\frac {b(s-a)}s\end{array}\right\|\ .$ Thus, $\boxed{AR+AQ=\frac {(b+c)(s-a)}s}\ (1)$ and $2[RAQ]=$

$AR\cdot AQ\cdot\sin A=$ $\frac {bc\sin A\cdot (s-a)^2}{s^2}\ \stackrel{bc\sin A=2S=2sr}{\implies}\ \boxed{[RAQ]=\frac {r(s-a)^2}s}\ (2)\ .$ Therefore, $2[RI_1Q]=2([RI_1A]+[QI_1A]-[RAQ])=$ $r_1(AR+AQ)-2[RAQ]=$

$\frac {r_1(b+c)(s-a)}s-\frac {2r(s-a)^2}s=$ $\frac {bcr}{s(s-a)}\cdot \frac {(b+c)(s-a)}s-\frac {2r(s-a)^2}s\implies$ $\boxed{2[RI_1Q]=\frac r{s^2}\cdot \left[bc(b+c)-2s(s-a)^2\right]}\ (3)\ .$ From $bc(b+c)-2s(s-a)^2=$

$bc[a+(b+c-a)]-2s(s-a)^2=$ $abc+2bc(s-a)-2s(s-a)^2=$ $abc+2(s-a)[\underline{bc-s(s-a)}]=$ $abc+2(s-a)\underline{(s-b)(s-c)}=$ $4Rsr+2sr^2=2sr(2R+r)$

obtain that $\boxed{bc(b+c)-2s(s-a)^2=2sr(2R+r)}\ (4)\ .$ I used the well-known identity $\boxed{s(s-a)+(s-b)(s-c)=bc}\ (*)\ .$ In conclusion, using the relation $(4)$ ,

the relation $(3)$ becomes $[RI_1Q]=\frac r{s^2}\cdot sr(2R+r)$ , i.e. $[RI_1Q]=\frac {r^2(2R+r)}s$ what is symmetricaly w.r.t. $\triangle ABC$ . Hence $[RI_1Q]=[MI_2S]=[NI_3P]=\frac {r^2(2R+r)}s\ .$
This post has been edited 80 times. Last edited by Virgil Nicula, Nov 23, 2015, 4:36 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a