407. Cyclical quadrilaterals.
by Virgil Nicula, Feb 11, 2015, 10:52 AM
PP1. Let a cyclical quadrilateral
with the area
and its circumcircle
.
Denote
and
. Prove that:
, where
- power of
w.r.t.
and 
because

because

and
(Miguel Ochoa Sanchez).
Proof. Can prove easily
. I" ll show only
. Thus,

. But
Thus,
, where
.
![$4R\cdot [EBF]=\frac {abef^2}{k^2\left(a^2-c^2\right)\left(b^2-d^2\right)}\iff$](//latex.artofproblemsolving.com/3/1/f/31f87c854ca897873b3809fdae22753327a5fedf.png)
![$\boxed{4R\cdot [EBF]=\frac {abf(ab+cd)(ad+bc)}{\left(a^2-c^2\right)\left(b^2-d^2\right)}}\ (5)\ .$](//latex.artofproblemsolving.com/2/6/8/268d2085546f84c0a520790394394f95d9add9a5.png)
![$\boxed{4R\cdot [GBE]=\frac {ab^2df}{b^2-d^2}}\ (6)\ .$](//latex.artofproblemsolving.com/f/3/f/f3fd4d5784163b556a924573c3846d36d5fca7f5.png)
![$\boxed{4R\cdot [GBF]=\frac {a^2bcf}{a^2-c^2}}\ (7)\ .$](//latex.artofproblemsolving.com/a/c/2/ac22120f6381f78dbe9308c8d01fc54611a65a60.png)

![$\frac {4R\cdot [EGF]}{4RS}=$](//latex.artofproblemsolving.com/1/a/f/1af29e53d428b43579061f5e0d09f33cabe5e852.png)
![$[EGF]=\frac {2abcdS}{\left(a^2-c^2\right)\left(b^2-d^2\right)}\ .$](//latex.artofproblemsolving.com/0/5/b/05b7d206a605fad148cb7da751dfc96e07104386.png)
Remark. If
is equilateral, then there is the relation
. Indeed, denote
. Observe that
and
. Therefore,

.
PP2. Let
be a circumscribed quadrilateral with
. Denote its incircle
. Prove that
.
Proof 1. Denote
, the midpoint
of
, the projections
on the line
of the points
respectively and
. Thus,
and
, i.e.
. Therefore,

. Observe that
and
. Thus,

, i.e.
.
Proof 2 (Miguel Ochoa Sanchez). Denote
. Observe that

. Since the ray
is
-bisector in
, then

, i.e.
. Very nice!
PP3. Let
and the points
. Prove that
.
Proof 1. Denote
so that
. Thus,

.
Lemma. Let
be a quadrilateral what is inscribed in the circle with the diameter
. Denote
. Prove that
.
Proof 2. Observe that
and generalized Pythagoras
.
PP4 (an extension of the previous lemma). Let
be a cyclical quadrilateral with
. Denote
. Prove that
.
Proof 1. Denote the projections
,
of
on
,
respectively. Observe that

. Apply the previous lemma to the quadrilateral
what is inscribed in the circle with the diameter ![$[AC]\ :\ AC^2=AF\cdot AX+AE\cdot AY=$](//latex.artofproblemsolving.com/e/c/8/ec82713892bcb01002c23090ccdd34979d38b410.png)
.
Proof 2 (Ruben Dario). Denote the second intersection
of the circumcircle
of
with
. Thus, from the power
of the point
w.r.t.
get
.
Observe that
, i.e.
. In conclusion, the sum of
and
becomes the required relation. Very nice proof !
Proof 3 (trigonometric). Denote
. Apply the theorem of Sines in the triangles 
Therefore, the required relation becomes 
. Divide this relation
by the expression
and obtain that
, what is truly.
Proof 4 (synthetic - own). Apply Ptolemy's theorem
. But 
, i.e. the relation
is equivalently with
. I used
in the first ratio.
PP5 (Miguel Ochoa Sanchez). Let a cyclic quadrilateral
for which denote
,
and
. Prove that
.
Proof.
and
. Thus,

![$\cos A\ \stackrel{(*)}{\iff}\ \boxed{\sin 2B\sin [(C-A)+u]+\sin 2C\sin (B-u)=\sin 2A\sin (B+u)}\iff$](//latex.artofproblemsolving.com/4/c/3/4c341b57fe03ee320351a8b1848f237708be9b81.png)
![$\sin 2B\left[\sin (C-A)+\cos (C-A)\tan u\right]+\sin 2C\left(\sin B-\cos B\tan u\right)=\sin 2A(\sin B+\cos B\tan u)\iff$](//latex.artofproblemsolving.com/c/1/7/c1771ca2ab808e6f37aa2162e86abdc8cceb9b9b.png)

, what is truly.
Remark. If
is equilateral, then
.
Lermma. The properties of the cyclic and orthodiagonal quadrilateral.
Let a cyclic, orthodiagonal and convex
with
and the circumcircle circle
I"ll use the standard notations :
,
,
,
,
,
Denote
and the middlepoints
,
,
,
of
,
,
,
respectively. Then there are the following properties :
where
is the distance of the point
to the line 

![$3.\blacktriangleright \sigma [ABCD]=\frac 12(ac+bd)=\frac 12ef\ .$](//latex.artofproblemsolving.com/4/d/8/4d8cf027aa57e45ec810ed7b0e3a44b1b1802955.png)

where
is the power of the point
w.r.t. the circle 
and the projections of
on the sides of the quadrilateral
belong to the circle with the centre in the
middlepoint of
and the length of the diameter equal to
(the circle of the eight points) .

![$[ABCD]=S$](http://latex.artofproblemsolving.com/0/f/8/0f86c6b9da8a5fdcf8087f0d8f6a15023033c46d.png)

Denote


























![$[EGF]=\frac {2abcdS}{\left(a^2-c^2\right)\left(b^2-d^2\right)}$](http://latex.artofproblemsolving.com/4/4/e/44e1af1367c91c52c282f35ca032c922fb8a1d2b.png)
Proof. Can prove easily


![$S=[ABCD]=[ABC]+[ADC]\implies$](http://latex.artofproblemsolving.com/c/7/7/c77a7d4df9171236999db7db544a46fcf1203903.png)








![$\blacktriangleright\ 4R\cdot [EBF]=2R\cdot BE\cdot BF\cdot\sin B\ \stackrel{(2\wedge 3)}{=}\ e\cdot BE\cdot BF=$](http://latex.artofproblemsolving.com/f/e/2/fe22f6c48832e40bc92afecd4b35dc93da6adb9e.png)

![$4R\cdot [EBF]=\frac {abef^2}{k^2\left(a^2-c^2\right)\left(b^2-d^2\right)}\iff$](http://latex.artofproblemsolving.com/3/1/f/31f87c854ca897873b3809fdae22753327a5fedf.png)
![$\boxed{4R\cdot [EBF]=\frac {abf(ab+cd)(ad+bc)}{\left(a^2-c^2\right)\left(b^2-d^2\right)}}\ (5)\ .$](http://latex.artofproblemsolving.com/2/6/8/268d2085546f84c0a520790394394f95d9add9a5.png)
![$\blacktriangleright\ 4R\cdot [GBE]=2R\cdot BG\cdot BE\cdot\sin \widehat{GBE}=$](http://latex.artofproblemsolving.com/f/5/b/f5b0ae1cf27fa2a38dd87d01bd170e4054499791.png)




![$\boxed{4R\cdot [GBE]=\frac {ab^2df}{b^2-d^2}}\ (6)\ .$](http://latex.artofproblemsolving.com/f/3/f/f3fd4d5784163b556a924573c3846d36d5fca7f5.png)
![$\blacktriangleright\ 4R\cdot [GBF]=2R\cdot BG\cdot BF\cdot\sin \widehat{GBF}=$](http://latex.artofproblemsolving.com/8/3/a/83afcaedd0fb50f382cdd7de80d194fdc6d57e98.png)



![$\boxed{4R\cdot [GBF]=\frac {a^2bcf}{a^2-c^2}}\ (7)\ .$](http://latex.artofproblemsolving.com/a/c/2/ac22120f6381f78dbe9308c8d01fc54611a65a60.png)
![$\blacktriangleright\ 4R\cdot [EGF]=4R\cdot\left([EBF]-[GBE]-[GBF]\right)=$](http://latex.artofproblemsolving.com/f/7/6/f766257783986b428d26db84dc927315af705ab9.png)




![$\cdot \left[(ab+cd)(ad+bc)-bd\left(a^2-c^2\right)-ac\left(b^2-d^2\right)\right]=$](http://latex.artofproblemsolving.com/1/0/e/10e7f8686f71d86a1c2acb4d190039d091a0d013.png)

![$\boxed{4R\cdot [EGF]=\frac {2abcdf(ad+bc)}{\left(a^2-c^2\right)\left(b^2-d^2\right)}}\ (8)\ \implies$](http://latex.artofproblemsolving.com/0/7/d/07d2b9fbecd5d6b7512f50d27a644d127c59a541.png)
![$\frac {[EGF]}{[ABCD]}=$](http://latex.artofproblemsolving.com/d/f/e/dfe8c6f3a094212347ed54529003d54b3c8f0b89.png)
![$\frac {4R\cdot [EGF]}{4RS}=$](http://latex.artofproblemsolving.com/1/a/f/1af29e53d428b43579061f5e0d09f33cabe5e852.png)


![$[EGF]=\frac {2abcdS}{\left(a^2-c^2\right)\left(b^2-d^2\right)}\ .$](http://latex.artofproblemsolving.com/0/5/b/05b7d206a605fad148cb7da751dfc96e07104386.png)
Remark. If









PP2. Let




Proof 1. Denote
![$[ABCD]=\mathbb A$](http://latex.artofproblemsolving.com/b/b/c/bbc017190930e171352d76ee1b1f23b1ee40665e.png)

![$[AD]$](http://latex.artofproblemsolving.com/0/f/3/0f3e4c424371b27673db323ced8ef0777940c0d4.png)







![$\mathbb A=[ABM]+[DCN]+[BCNM]\iff$](http://latex.artofproblemsolving.com/8/f/3/8f38ce1a883681c2e10f08d20b93d03595d8949b.png)











Proof 2 (Miguel Ochoa Sanchez). Denote















PP3. Let



Proof 1. Denote








Lemma. Let

![$[AC]$](http://latex.artofproblemsolving.com/0/9/3/0936990e6625d65357ca51006c08c9fe3e04ba0c.png)


Proof 2. Observe that




PP4 (an extension of the previous lemma). Let




Proof 1. Denote the projections











![$[AC]\ :\ AC^2=AF\cdot AX+AE\cdot AY=$](http://latex.artofproblemsolving.com/e/c/8/ec82713892bcb01002c23090ccdd34979d38b410.png)



Proof 2 (Ruben Dario). Denote the second intersection








Observe that






Proof 3 (trigonometric). Denote








by the expression


Proof 4 (synthetic - own). Apply Ptolemy's theorem







PP5 (Miguel Ochoa Sanchez). Let a cyclic quadrilateral





Proof.







![$\cos A\ \stackrel{(*)}{\iff}\ \boxed{\sin 2B\sin [(C-A)+u]+\sin 2C\sin (B-u)=\sin 2A\sin (B+u)}\iff$](http://latex.artofproblemsolving.com/4/c/3/4c341b57fe03ee320351a8b1848f237708be9b81.png)
![$\sin 2B\left[\sin (C-A)+\cos (C-A)\tan u\right]+\sin 2C\left(\sin B-\cos B\tan u\right)=\sin 2A(\sin B+\cos B\tan u)\iff$](http://latex.artofproblemsolving.com/c/1/7/c1771ca2ab808e6f37aa2162e86abdc8cceb9b9b.png)
![$\tan u\left[(\sin 2A+\sin 2C)\cos B-\sin 2B\cos (C-A)\right]=$](http://latex.artofproblemsolving.com/b/8/0/b807837544f7bc12c9c50557306531d83b3ea20d.png)

![$\tan u\left[2\sin B\cos (A-C)\cos B-\sin 2B\cos (C-A)\right]=$](http://latex.artofproblemsolving.com/4/b/4/4b4debc6b4fa233f05ed5d11ec6b70318cfd07e4.png)

Remark. If


Lermma. The properties of the cyclic and orthodiagonal quadrilateral.
Let a cyclic, orthodiagonal and convex














![$[AB]$](http://latex.artofproblemsolving.com/a/d/a/ada6f54288b7a2cdd299eba0055f8c8d19916b4b.png)
![$[BC]$](http://latex.artofproblemsolving.com/e/a/1/ea1d44f3905940ec53e7eebd2aa5e491eb9e3732.png)
![$[CD]$](http://latex.artofproblemsolving.com/e/7/0/e70960e9e5738a46ad23f794e796ef3cb4ad7e2c.png)
![$[DA]$](http://latex.artofproblemsolving.com/7/b/e/7be1ee9448ef63ac6f1f6b8dd6982c30bad9bb31.png)





![$3.\blacktriangleright \sigma [ABCD]=\frac 12(ac+bd)=\frac 12ef\ .$](http://latex.artofproblemsolving.com/4/d/8/4d8cf027aa57e45ec810ed7b0e3a44b1b1802955.png)

![$5\blacktriangleright e^2+f^2=4\left[R^2+p_w (E)\right]\ ,$](http://latex.artofproblemsolving.com/7/c/f/7cf7a18f277f498a00127e6d8e6a2aa148009517.png)







middlepoint of
![$[OE]$](http://latex.artofproblemsolving.com/2/a/0/2a082802ed9a33ba2b0993de60b65d137ee48461.png)

This post has been edited 116 times. Last edited by Virgil Nicula, Aug 27, 2016, 1:46 PM