407. Cyclical quadrilaterals.

by Virgil Nicula, Feb 11, 2015, 10:52 AM

PP1. Let a cyclical quadrilateral $ABCD$ with the area $[ABCD]=S$ and its circumcircle $w=\mathbb C(O,R)$ .

Denote $\left\{\begin{array}{ccccc}
AB=a & ; &  BC=b & ; & AC=e\\\\
CD=c & ; & DA=d & ; & BD=f\end{array}\right\|$ and $\left\{\begin{array}{c}
G\in AC\cap BD\\\\
E\in AB\cap CD\\\\
F\in AD\cap BC\end{array}\right\|$ . Prove that:

$1.\ \blacktriangleright\ \frac {GA}{da}=\frac {GB}{ab}=$ $\frac {GC}{bc}=\frac {GD}{cd}=$ $\frac e{ad+bc}=\frac f{ab+cd}=$ $\sqrt{\frac {ac+bd}{(ad+bc)(ab+cd)}}=$ $\sqrt {-\frac {p_w(G)}{abcd}}\equiv k$ , where $p_w(X)$ - power of $X$ w.r.t. $w$ and $\boxed{k^2=\frac {ac+bd}{(ad+bc)(ab+cd)}}\ .$

$2.\ \blacktriangleright\ \frac {EA}{de}=\frac {EB}{bf}=$ $\frac {EC}{be}=\frac {ED}{df}=$ $\frac a{bf-de}=\frac c{be-df}=\frac 1{k\left(b^2-d^2\right)}$ because $(1)\implies\frac c{be-df}=$ $\frac c{b\cdot k(ad+bc)-d\cdot k(ab+cd)}=$ $\frac c{k\left(b^2c-cd^2\right)}=$ $\frac 1{k\left(b^2-d^2\right)}\ .$

$3.\ \blacktriangleright\ \frac {FA}{ae}=\frac {FB}{af}=$ $\frac {FC}{ce}=\frac {FD}{cf}=$ $\frac d{ae-cf}=\frac b{af-ce}=\frac 1{k\left(a^2-c^2\right)}$ because $(1)\implies\frac b{af-ce}=$ $\frac b{a\cdot k(ab+cd)-c\cdot k(ad+bc)}=$ $\frac b{k\left(a^2b-bc^2\right)}=$ $\frac 1{k\left(a^2-c^2\right)}\ .$

$4.\ \blacktriangleright\ m\left(\widehat{AGB}\right)=\phi\implies 2kR\sin\phi =1$ and $[EGF]=\frac {2abcdS}{\left(a^2-c^2\right)\left(b^2-d^2\right)}$ (Miguel Ochoa Sanchez).


Proof. Can prove easily $(1)\ ,\ (2)\ ,\ (3)$ . I" ll show only $(4)$. Thus, $S=[ABCD]=[ABC]+[ADC]\implies$ $S=\frac 1{4R}\cdot (bcf+adf)\implies$ $4RS=f(ad+bc)=$ $\frac {ef}k\stackrel{(1)}{\implies}$

$\boxed{4RS=\frac {ef}k}\ (*)$ . But $2S=ef\sin\phi\implies$ $\boxed{2kR\sin\phi =1}\ .$ Thus, $\left\{\begin{array}{ccc}
S^2 & = & (s-a)(s-b)(s-c)(s-d)\\\\
4RS & = & \sqrt{(ac+bd)(ab+cd)(ad+bc)}\end{array}\right\|$ , where $2s=a+b+c+d$ .

$\blacktriangleright\ 4R\cdot [EBF]=2R\cdot BE\cdot BF\cdot\sin B\ \stackrel{(2\wedge 3)}{=}\ e\cdot BE\cdot BF=$ $e\cdot \frac {bf}{k\left(b^2-d^2\right)}\cdot\frac {af}{k\left(a^2-c^2\right)}\implies$ $4R\cdot [EBF]=\frac {abef^2}{k^2\left(a^2-c^2\right)\left(b^2-d^2\right)}\iff$

$\boxed{4R\cdot [EBF]=\frac {abf(ab+cd)(ad+bc)}{\left(a^2-c^2\right)\left(b^2-d^2\right)}}\ (5)\ .$

$\blacktriangleright\ 4R\cdot [GBE]=2R\cdot BG\cdot BE\cdot\sin \widehat{GBE}=$ $d\cdot BG\cdot $ $BE\ \stackrel{(1\wedge 2)}{=}\ d$ $\cdot abk\cdot \frac {bf}{k\left(b^2-d^2\right)}$ $\implies$ $\boxed{4R\cdot [GBE]=\frac {ab^2df}{b^2-d^2}}\ (6)\ .$

$\blacktriangleright\ 4R\cdot [GBF]=2R\cdot BG\cdot BF\cdot\sin \widehat{GBF}=$ $c\cdot BG\cdot BF\ \stackrel{(1\wedge 3)}{=}\ c$ $\cdot abk\cdot \frac {af}{k\left(a^2-c^2\right)}$ $\implies$ $\boxed{4R\cdot [GBF]=\frac {a^2bcf}{a^2-c^2}}\ (7)\ .$

$\blacktriangleright\ 4R\cdot [EGF]=4R\cdot\left([EBF]-[GBE]-[GBF]\right)=$ $\frac {abf(ab+cd)(ad+bc)}{\left(a^2-c^2\right)\left(b^2-d^2\right)}-$ $\frac {ab^2df}{b^2-d^2}-$ $\frac {a^2bcf}{a^2-c^2}=$ $\frac {abf}{\left(a^2-c^2\right)\left(b^2-d^2\right)}$

$\cdot \left[(ab+cd)(ad+bc)-bd\left(a^2-c^2\right)-ac\left(b^2-d^2\right)\right]=$ $\frac {2abcdf(ad+bc)}{\left(a^2-c^2\right)\left(b^2-d^2\right)}\implies$ $\boxed{4R\cdot [EGF]=\frac {2abcdf(ad+bc)}{\left(a^2-c^2\right)\left(b^2-d^2\right)}}\ (8)\ \implies$ $\frac {[EGF]}{[ABCD]}=$ $\frac {4R\cdot [EGF]}{4RS}=$

$\frac {2abcdf(ad+bc)}{\left(a^2-c^2\right)\left(b^2-d^2\right)}\cdot \frac k{ef}=$ $\frac {2abcd}{\left(a^2-c^2\right)\left(b^2-d^2\right)}\implies$ $[EGF]=\frac {2abcdS}{\left(a^2-c^2\right)\left(b^2-d^2\right)}\ .$

Remark. If $\triangle ABC$ is equilateral, then there is the relation $\frac {EA}{FC}=\left(\frac {EC}{FA}\right)^2$ . Indeed, denote $\left\{\begin{array}{c}
\left(\widehat{ACE}\right)=\alpha\\\\
\left(\widehat{CAE}\right)=\beta\end{array}\right\|$ . Observe that $\alpha +\beta =60^{\circ}$ and

$\left\{\begin{array}{ccc}
m\left(\widehat{ACE}\right)=\alpha=60^{\circ}-\beta=m\left(\widehat{CFA}\right) & \implies & \widehat{ACE}\equiv \widehat{CFA}\\\\
m\left(\widehat{CAF}\right)=\beta=60^{\circ}-\alpha=m\left(\widehat{AEC}\right)  & \implies & \widehat{AEC}\equiv \widehat{CAF}\end{array}\right\|$ . Therefore, $\triangle ACE\sim\triangle CFA\implies$ $\frac {CA}{FC}=\frac {AE}{CA}=\frac {CE}{FA}\implies$

$\odot\begin{array}{ccc}
\nearrow & AE=CA\cdot\frac {EC}{FA} & \searrow\\\\
\searrow & FC=CA\cdot\frac {FA}{EC} & \nearrow\end{array}\odot\implies$ $\frac {EA}{FC}=\left(\frac {EC}{FA}\right)^2$ .



PP2. Let $ABCD$ be a circumscribed quadrilateral with $A=D$ . Denote its incircle $w=\mathbb C(I,r)$ . Prove that $\frac 1{AB}+\frac 1{DC}=\frac {\sin A}{r}$ .

Proof 1. Denote $[ABCD]=\mathbb A$ , the midpoint $S$ of $[AD]$ , the projections $(M,N)$ on the line $AB$ of the points $(B,C)$ respectively and

$\left\{\begin{array}{ccccc}
AB=a & , & DC=b & ;  & SA=SD=s\\\\
BM=m & , & CN=n & ; & AM=p\ ,\ DN=q\end{array}\right\|$ . Thus, $AB+CD=BC+AD=p$ and $\mathbb A=pr$ , i.e. $\boxed{\mathbb A=r(a+b)}\ (*)$ . Therefore,

$\mathbb A=[ABM]+[DCN]+[BCNM]\iff$ $2\mathbb A=MA\cdot MB+ND\cdot NC+MN\cdot (MB+NC)=$ $MB\cdot AN+NC\cdot MD=$ $m(2s-q)+n(2s-p)\implies$

$\boxed{2\mathbb A=2s(m+n)-(mq+np)}$ . Observe that $s=r\cot\frac A2$ and $\left\{\begin{array}{ccccc}
\frac ma & = & \frac nb & = & \sin A\\\\
\frac pa & = & \frac qb & = & \cos A\end{array}\right\|$ . Thus, $2\mathbb A=2r(a+b)\sin A\cot\frac A2-$ $2ab\sin A\cos A\ \stackrel{(*)}{\iff}$

$2r(a+b)=2r(a+b)(1+\cos A)-2ab\sin A\cos A\iff$ $r(a+b)=ab\sin A\iff \frac 1a+\frac 1b=\frac {\sin A}r$ , i.e. $\frac 1{AB}+\frac 1{DC}=\frac {\sin A}{r}$ .

Proof 2 (Miguel Ochoa Sanchez). Denote $E\in BI\cap AD$ . Observe that $A+\frac B2+\frac C2=180^{\circ}\implies$ $\left\{\begin{array}{c}
m\left(\widehat{IEA}\right)=\frac C2\\\\
\delta_{AE}(I)=\delta_{DC}(I)=r\end{array}\right\|$ $\implies$ $\triangle AIE\equiv \triangle DIC\implies$

$ AE=DC\implies AE=b$ . Since the ray $[AI$ is $A$-bisector in $\triangle ABE$ , then $AI=\frac {2\cdot AB\cdot AE\cdot \cos\frac A2}{AB+AE}\implies$ $AI=\frac {2ab\cos\frac A2}{a+b}\implies$ $\frac r{\sin\frac A2}=\frac {2ab\cos\frac A2}{a+b}\implies$

$r(a+b)=ab\sin A\implies$ $\frac 1a+\frac 1b=\frac {\sin A}r$ , i.e. $\frac 1{AB}+\frac 1{DC}=\frac {\sin A}{r}$ . Very nice!



PP3. Let $\triangle ABC$ and the points $\left\{\begin{array}{ccc}
M\in (AB) & ; & N\in (AC)\\\\
D\in (BC) & ; & P\in AD\cap MN\end{array}\right\|$ . Prove that $\frac {MB}{MA}\cdot DC+\frac {NC}{NA}\cdot DB=\frac {PD}{PA}\cdot BC$ .

Proof 1. Denote $\{U,V\}\subset MN$ so that $BU\parallel AD\parallel CV$ . Thus, $\left\{\begin{array}{ccc}
\frac {MB}{MA} & = & \frac {BU}{AP}\\\\
\frac {NC}{NA} & = & \frac {VC}{AP}\end{array}\right\|$ $\implies$ $\frac {MB}{MA}\cdot DC+\frac {NC}{NA}\cdot DB=$ $\frac {BU}{AP}\cdot DC+\frac {VC}{AP}\cdot DB=$

$\frac {BU\cdot DC+VC\cdot DB}{AP}\ \stackrel{(*)}{=}\ \frac {PD\cdot BC}{PA}\implies$ $\frac {MB}{MA}\cdot DC+\frac {NC}{NA}\cdot DB=\frac {PD}{PA}\cdot BC$ .


Lemma. Let $AXCY$ be a quadrilateral what is inscribed in the circle with the diameter $[AC]$ . Denote $\left\{\begin{array}{ccc}
E\in AY & ; & CE\parallel AX\\\\
F\in AX & ; & CF\parallel AY\end{array}\right\|$ . Prove that $AE\cdot AY+AF\cdot AX=AC^2$ .

Proof 2. Observe that $\left\{\begin{array}{c}
EC=AF\\\\
FC=AE\end{array}\right\|$ and generalized Pythagoras $:\ \left\{\begin{array}{ccc}
EC/\triangle AEC\ : & EC^2=AE^2+AC^2-2\cdot AE\cdot AY\\\\
FC/\triangle AFC\ : & FC^2=AF^2+AC^2-2\cdot AF\cdot AX\end{array}\right\|$ $\bigoplus\implies$ $AE\cdot AY+AF\cdot AX=AC^2$ .

PP4 (an extension of the previous lemma). Let $ABCD$ be a cyclical quadrilateral with $A<90^{\circ}$ . Denote $\left\{\begin{array}{ccc}
E\in AD & ; & CE\parallel AB\\\\
F\in AB & ; & CF\parallel AD\end{array}\right\|$ . Prove that $AE\cdot AD+AF\cdot AB=AC^2$ .

Proof 1. Denote the projections $X$ , $Y$ of $C$ on $AB$ , $AD$ respectively. Observe that $\left\{\begin{array}{ccc}
\triangle CEY\sim\triangle CFX & \implies & \frac {CE}{CF}=\frac {CY}{CX}\\\\
\triangle CYD\sim\triangle CXB & \implies & \frac {CY}{CX}=\frac {DY}{BX}\end{array}\right\|$ $\implies$ $\frac {CE}{CF}=\frac {DY}{BX}\implies$ $\frac {AF}{AE}=\frac {DY}{BX}\implies$

$\boxed{AF\cdot BX=AE\cdot DY}\ (*)$ . Apply the previous lemma to the quadrilateral $AXCY$ what is inscribed in the circle with the diameter $[AC]\ :\ AC^2=AF\cdot AX+AE\cdot AY=$

$AF\cdot (AB+BX)+AE\cdot (AD-DY)=$ $AF\cdot AB+AE\cdot AD+$ $(AF\cdot BX-AE\cdot DY)\ \stackrel{(*)}{\implies}\ AC^2=AE\cdot AD+AF\cdot AB$ .

Proof 2 (Ruben Dario). Denote the second intersection $L$ of the circumcircle $w$ of $\triangle BCF$ with $AC$ . Thus, from the power $p_w(A)$ of the point $A$ w.r.t. $w$ get $\boxed{AF\cdot AB=AL\cdot AC}\ (1)$ .

Observe that $\triangle CLF\sim\triangle ADC$ , i.e. $\frac {CL}{AD}=\frac {FC}{CA}$ $\implies$ $\boxed{AE\cdot AD=CL\cdot CA}\ (2)$ . In conclusion, the sum of $(1)$ and $(2)$ becomes the required relation. Very nice proof !

Proof 3 (trigonometric). Denote $\left\{\begin{array}{ccc}
m\left(\widehat{ADC}\right) & = & \phi\\\
m\left(\widehat{CAB}\right) & = & x\\\
m\left(\widehat{CAD}\right) & = & y\end{array}\right\|$ $\implies$ $\left\{\begin{array}{ccc}
m\left(\widehat{CFB}\right) & = & x+y\\\
m\left(\widehat{ACB}\right) & = & \phi -x\\\
m\left(\widehat{ACD}\right) & = & 180^{\circ}-(\phi +y)\end{array}\right\|$ . Apply the theorem of Sines in the triangles $:$

$\left\{\begin{array}{cccccc}
\triangle AEC\ \wedge\ \triangle AFC\ : & \frac {AE}{\sin x} & = & \frac {AF}{\sin y} & = & \frac {AC}{\sin (x+y)}\\\\
\triangle ABC\ \wedge\ \triangle ADC\ : & \frac {AB}{\sin (\phi -x)} & = & \frac {AD}{\sin(\phi +y)} & = & \frac {AC}{\sin \phi}\end{array}\right\|\ .$ Therefore, the required relation becomes $\frac {AE}{AC}\cdot \frac {AD}{AC}+\frac {AF}{AC}\cdot\frac {AB}{AC}=1\iff$

$\frac {\sin x}{\sin (x+y)}\cdot\frac {\sin (\phi +y)}{\sin \phi}+\frac {\sin y}{\sin (x+y)}\cdot\frac {\sin (\phi -x)}{\sin \phi}=1\iff$ $\boxed{\sin x\sin (\phi +y)+\sin y\sin (\phi -x)=\sin\phi\sin(x+y)}$ . Divide this relation

by the expression $\cos x\cos y\cos\phi$ and obtain that $\tan x(\tan\phi+\tan y)+\tan y(\tan\phi -\tan x)=\tan\phi (\tan x+\tan y)$ , what is truly.

Proof 4 (synthetic - own). Apply Ptolemy's theorem $:\ \boxed{CD}\cdot AB+\boxed{BC}\cdot AD=\boxed{BD}\cdot AC\ (*)$ . But $\triangle BCD\sim\triangle AEC\iff$

$\frac {\boxed{CD}}{EC}=\frac {\boxed{BC}}{AE}=$ $\frac {\boxed{BD}}{AC}$ , i.e. the relation $(*)$ is equivalently with $\boxed{AF}\cdot AB+\boxed{AE}\cdot AD=\boxed{AC}\cdot AC$ . I used $EC=AF$ in the first ratio.



PP5 (Miguel Ochoa Sanchez). Let a cyclic quadrilateral $ABDC$ for which denote $M\in AB\cap CD$ , $ N\in AC\cap BD$ and $P\in AD\cap BC$ . Prove that $\frac {\cos B}{BN}+\frac {\cos C}{CM}=\frac {\cos A}{AP}$ .

Proof. $\left\{\begin{array}{ccccc}
m\left(\widehat{DAB}\right)=m\left(\widehat{DCB}\right)=u\\\
m\left(\widehat{DAC}\right)=m\left(\widehat{DBC}\right)=v\end{array}\right\|\implies$ $\left\{\begin{array}{ccccc}
m\left(\widehat{APB}\right)=C+v & ; & m\left(\widehat{APC}\right)=B+u\\\
m\left(\widehat{MBN}\right)=C+u & ; & m\left(\widehat{MCN}\right)=B+v\\\
m\left(\widehat{AMC}\right)=B-u & ; & m\left(\widehat{ANB}\right)=C+v\end{array}\right\|$ and $\boxed{(B+u)+(C+v)=(B+v)+(C+u)=\pi}\ (*)$ . Thus,

$\frac {\cos B}{BN}+\frac {\cos C}{CM}=\frac {\cos A}{AP}\iff$ $\frac {AP}{AB}\cdot\frac {BA}{BN}\cdot \cos B+\frac {AP}{AC}\cdot\frac {CA}{CM}\cdot \cos C=\cos A\iff$ $\frac {\sin\widehat{ABP}}{\sin\widehat{APB}}\cdot\frac {\sin\widehat{BNA}}{\sin\widehat{BAN}}\cdot \cos B+\frac {\sin\widehat{ACP}}{\sin\widehat{APC}}\cdot\frac {\sin\widehat{CMA}}{\sin\widehat{CAM}}\cdot \cos C=\cos A\iff$

$\frac {\sin B}{\sin (C+v)}\cdot\frac {\sin (C-v)}{\sin A}\cdot \cos B+\frac {\sin C}{\sin (B+u)}\cdot \frac {\sin (B-u)}{\sin A}\cdot\cos C=$ $\cos A\ \stackrel{(*)}{\iff}\ \boxed{\sin 2B\sin [(C-A)+u]+\sin 2C\sin (B-u)=\sin 2A\sin (B+u)}\iff$

$\sin 2B\left[\sin (C-A)+\cos (C-A)\tan u\right]+\sin 2C\left(\sin B-\cos B\tan u\right)=\sin 2A(\sin B+\cos B\tan u)\iff$

$\tan u\left[(\sin 2A+\sin 2C)\cos B-\sin 2B\cos (C-A)\right]=$ $\sin 2B\sin (C-A)+\sin B(\sin 2C-\sin 2A)\iff$

$\tan u\left[2\sin B\cos (A-C)\cos B-\sin 2B\cos (C-A)\right]=$ $\sin 2B\sin (C-A)-2\sin B\cos B\sin (C-A)$ , what is truly.

Remark. If $\triangle ABC$ is equilateral, then $\frac 1{BN}+\frac 1{CM}=\frac 1{AP}$ .



Lermma. The properties of the cyclic and orthodiagonal quadrilateral.

Let a cyclic, orthodiagonal and convex $ABCD$ with $(AC\perp BD)$ and the circumcircle circle $w=C(O,R)\ .$ I"ll use the standard notations : $AB=a$, $BC=b$, $CD=c$,

$DA=d$,$AC=e$, $BD=f\ .$ Denote $E\in AC\cap BD$ and the middlepoints $M$, $N$, $P$, $Q$ of $[AB]$, $[BC]$, $[CD]$, $[DA]$ respectively. Then there are the following properties :

$1.\blacktriangleright ME\perp CD\ ;\ \delta_{AB}(O)=\frac 12\cdot CD\ ,$ where $\delta_{AB}(O)$ is the distance of the point $O$ to the line $AB\ .$

$2.\blacktriangleright \delta_{AB}(O)+\delta_{BC}(O)+\delta_{CD}(O)+\delta_{DA}(O)=p\ .$

$3.\blacktriangleright \sigma [ABCD]=\frac 12(ac+bd)=\frac 12ef\ .$

$4.\blacktriangleright a^2+c^2=b^2+d^2=4R^2\ ;\ MP=NQ=\frac 12\sqrt{e^2+f^2}\ .$

$5\blacktriangleright e^2+f^2=4\left[R^2+p_w (E)\right]\ ,$ where $p_w(E)=R^2-OE^2$ is the power of the point $E$ w.r.t. the circle $w\ .$

$6.\blacktriangleright$ $M,N,P,Q$ and the projections of $P$ on the sides of the quadrilateral $ABCD$ belong to the circle with the centre in the

middlepoint of $[OE]$ and the length of the diameter equal to $R^2+p_w(E)=2R^2-OE^2$ (the circle of the eight points) .
This post has been edited 116 times. Last edited by Virgil Nicula, Aug 27, 2016, 1:46 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404398
  • Total comments: 37
Search Blog
a