317. Some interesting geometry problems for middle school.

by Virgil Nicula, Sep 15, 2011, 12:33 AM

PP1 (Sankt-Petersburg, 2003). Let $ABC$ be a triangle with the incenter $I$ and the midpoint $M$ of $[BC]$ . Prove that $\boxed{\ IB\perp IM\ \iff\ a+b=3c\ }$ .

Method 1 (Paul Stoienescu - very nice !). Denote the midpoint $N$ of the side $[AC]$ . Thus, $IB\perp IM\iff$ $m\left(\widehat{IMB}\right)=m\left(\widehat{IMN}\right)=90^{\circ}-\frac B2\iff$

$MN$ is tangent to the incircle $\iff$ $ABMN$ is circumscriptible $\iff$ $AB+MN=AN+BM\iff$ $c+\frac c2=\frac b2+\frac a2\iff a+b=3c$ .

Method 2. Denote $D\in BC\ ,\ ID\perp BC$ . Therefore, $IB\perp IM\iff IB^2=BD\cdot BM\iff$ $\frac {ac(s-b)}{s}=(s-b)\cdot\frac a2\iff s=2c\iff a+b=3c$ .

Method 3 Suppose w.l.o.g. $b>c$ . Denote $D\in BC\ ,\ ID\perp BC$ . Apply the theorem of the altitude in $\triangle BIM$ what is $I$-right: $IB\perp IM\iff$

$ID^2=DB\cdot DM\iff$ $r^2=(s-b)\cdot \frac {b-c}{2}\iff$ $2sr^2=s(s-b)(b-c)\iff$ $2(s-a)(s-b)(s-c)=s(s-b)(b-c)\iff$

$4(s-a)(s-c)=2s(b-c)\iff$ $b^2-(a-c)^2=(a+b+c)(b-c)\iff$ $b^2-a^2+2ac-c^2=ab-ac+b^2-c^2\iff$ $3c=a+b$ .

Method 4. From $m\left(\widehat{BIC}\right)=90^{\circ}+\frac A2$ obtain that $IB\perp IM\iff$ $\widehat{MIC}\equiv\widehat{IAC}\iff$ $\triangle MIC\sim \triangle IAC\iff$

$\frac {IC}{AC}=\frac {MC}{IC}\iff$ $IC^2=AC\cdot MC\iff$ $\frac {ab(s-c)}{s}=b\cdot\frac a2\iff$ $s=2c\iff a+b=3c$ .



An interesting lemma !

Lemma. Let $\triangle ABC$ with orthocenter $H$ . Denote $D\in AH\cap BC$ , $E\in BH\cap AC$ . Then $\boxed{AD^2=\overline{BD}\cdot\overline{DC}+\overline{AE}\cdot\overline{AC}}$ .

Proof. Denote the circumcircle $w$ of $\triangle ABC$ and $\{A,L\}=AH\cap w$ . Observe that $\overline{AH}\cdot\overline {AD}=\overline {AE}\cdot\overline{AC}\iff$ $(\overline{AD}+\overline {DH})\cdot\overline {AD}=$

$\overline {AE}\cdot\overline{AC}\iff$ $AD^2=\overline{HD}\cdot\overline{AD}+\overline {AE}\cdot\overline{AC}\iff$ $AD^2=\overline{LD}\cdot\overline{DA}+\overline {AE}\cdot\overline{AC}\iff$ $AD^2=\overline{BD}\cdot\overline{DC}+\overline{AE}\cdot\overline{AC}$ .



PP2 (Mihai Miculita). In $\triangle ABC$ denote the midpoint $M$ of $[BC]$ and the projections $E$ , $F$ of $M$ on $AB$ , $AC$ respectively. Prove that $ME^2+MF^2=\overline{AE}\cdot\overline{EB}+\overline{AF}\cdot\overline{FC}$ .

Proof. Apply the upper lemma to $\triangle AMB$ and $\triangle AMC\ :$ $\left\{\begin{array}{c}
ME^2=\overline{AE}\cdot\overline{EB}+\overline{MD}\cdot\overline{MB}\\\\
MF^2=\overline{AF}\cdot\overline{FC}+\overline{MD}\cdot\overline{MC}\end{array}\right|\ \bigoplus\ \implies\ ME^2+$ $MF^2=\overline{AE}\cdot\overline{EB}+\overline{AF}\cdot\overline{FC}$ since $\overline {MB}+\overline{MC}=\overline 0$ .

An easy extension. In $\triangle ABC$ denote the midpoint $M$ of $[BC]$ . For $P\in BC$ denote its projections

$E$ , $F$ on $AB$ , $AC$ respectively. Prove that $PE^2+PF^2=\overline{AE}\cdot\overline{EB}+\overline{AF}\cdot\overline{FC}+2\cdot\overline {PM}\cdot\overline{PD}$ .


Remark. If $P\in BC$ , then $\boxed{PE^2+PF^2=\overline{AE}\cdot\overline{EB}+\overline{AF}\cdot\overline{FC} \iff\ P\in\{M,D\}}$ .


PP3. Let $ABCD$ be a trapezoid with $AB\parallel CD$ and $AC\perp BD$ . Denote $O\in AC\cap BD$ . Prove that $AB\cdot CD=AO\cdot OC+BO\cdot OD$ .

Method 1 (trigonometric). Denote $\left\{\begin{array}{c}
m(\angle OAB)=m(\angle OCD)=x\\\\
m(\angle OBA)=m(\angle ODC)=y\end{array}\right|$ . Thus, $x+y=90^{\circ}$ and $AB\cdot CD=AO\cdot OC+BO\cdot OD\iff$

$1=\frac {AO}{AB}\cdot \frac {OC}{CD}+\frac {BO}{AB}\cdot\frac {OD}{CD}\iff$ $1=\sin y\cos x+\sin x\cos y\iff$ $1=\sin (y+x)\iff$ $x+y=90^{\circ}$ , what is truly.

Method 2 (metric). Denote $\left\{\begin{array}{c}
OA=x\ ;\ OB=y\\\\
OC=z\ ;\ OD=t\end{array}\right|$ . Thus, $AB\cdot CD=AO\cdot OC+BO\cdot OD\iff$ $AB^2\cdot CD^2=(AO\cdot OC+BO\cdot OD)^2\iff$

$\left(x^2+y^2\right)\cdot\left(z^2+t^2\right)=$ $(xz+yt)^2\iff$ $x^2t^2+y^2z^2=$ $(xz+yt)^2\iff$ $x^2t^2+y^2z^2=2xyzt\iff$ $(xt-yz)^2=0\iff$ $xt=yz$ ,

what is truly (well-known) because $[ACD]=[BCD]\iff$ $[ACD]-[COD]=[BCD]-[COD]\iff$ $[AOD]=[BOC]\iff$ $xt=yz$ .


An easy extension. Let $ABCD$ be a convex quadrilateral. Denote $O\in AC\cap BD$ and the area $[AOD]=S$ , $m(\angle AOD)=\phi$ . Prove that

$AB^2\cdot CD^2=\left[(xz+yt)+(xt+yz)\cdot\cos\phi\right]^2+(xt-yz)^2\cdot\sin^2\phi$ . Therefore, $AB\cdot CD\ge \left|(xz+yt)+(xt+yz)\cdot\cos\phi\right|$ , with equality where $\phi =90^{\circ}$ .



PP4. Let $H$ be the orthocenter of acute $\triangle ABC$ . Let the midpoint $M$ of $[BC]$ , $P\in AB$ , $Q\in AC$ so that $H\in PQ$ and $\overline {PHQ}\perp MH$ . Prove that $H$ is the midpoint of $[PQ]$ .

Proof 1. If $[AS]$ is a diameter of the circumcircle of $\triangle ABC$ , then $BHCS$ is a parallelogram and the quadrilaterals $BPHS$ , $CQHS$ are cyclically. Thus,

$\widehat {HPS}\equiv$ $\widehat {HBS}\equiv$ $\widehat {HCS}\equiv\widehat {HQS}$ , i.e. $\widehat {HPS}\equiv\widehat {HQS}$ , what means that the triangle $PSQ$ is isosceles and $\overline{SMH}\perp \overline{PHQ}\iff$ $HP=HQ$ .

Remark. In the circle with the diameter $[BC]$ can apply the butterfly's problem to the point $H$ .

Proof 2. Denote the midpoints $U$ and $V$ of $[CE]$ and $[BF]$ respectively , where $E\in BH\cap AC$ and $F\in CH\cap AB$ . Observe that $MU\perp AC$

and $MV\perp AB$ , i.e. the quadrilaterals $MHVP$ and $MHQU$ are cyclically. Since $\tan \widehat {HUM}=\tan\widehat {EHU}=\frac {EC}{2\cdot HE}=\frac 12\cdot\tan A$

(symetrically in $B$ and $C$ ) obtain that $\widehat {HPM}\equiv$ $\widehat {HVM}\equiv$ $\widehat {HUM}\equiv$ $\widehat {HQM}$ , i.e. $\widehat {HPM}\equiv\widehat {HQM}$ , what means $HP=HQ$ .

Proof 3. Denote $E\in BH\cap AC$ , $F\in CH\cap AB$ and $X\in (BE)$ , $Y\in (CF)$ so that $PX\perp PQ$ and $QY\perp PQ$ . Thus, $PEQX$ and $PFQY$ are cyclically $\iff$

$HE\cdot HX=HP\cdot HQ=HF\cdot HY$ $\implies$ $HE\cdot HX=HF\cdot HY$ $\implies$ $EFXY$ is cyclically $\implies$ $\widehat{CBE}\equiv\widehat{CFE}\equiv$ $\widehat{YFE}\equiv\widehat{YXE}$ $\implies$

$\widehat{CBE}\equiv\widehat{YXE}$ $\implies$ $XY\parallel BC$ . Since $PX\parallel MH\parallel QY$ obtain that $PQYX$ is a right trapezoid and $Z\in XY\cap MH$ is the midpoint of $[XY]$ , i.e. $HP=HQ$ .


An easy extension. Let $H$ be the orthocenter of an acute $\triangle ABC$ . For $M\in  [BC]$ denote $P\in AB$ , $Q\in AC$ so that $H\in PQ$ and $\overline {PHQ}\perp MH$ . Prove that $\frac {HP}{HQ}=\frac {MB}{MC}$ .

Proof. Denote $E\in BH\cap AC$ , $F\in CH\cap AB$ and $X\in (BE)$ , $Y\in (CF)$ so that $PX\perp PQ$ and $QY\perp PQ$ . Thus, $PEQX$ and $PFQY$ are cyclically $\implies$

$HE\cdot HX=HP\cdot HQ=$ $HF\cdot HY\implies$ $HE\cdot HX=HF\cdot HY\implies$ $EFXY$ is cyclically $\implies$ $\widehat{CBE}\equiv\widehat{CFE}\equiv$ $\widehat{YFE}\equiv\widehat{YXE}\implies$ $\widehat{CBE}\equiv\widehat{YXE}$ $\implies$

$XY\parallel BC$ . Since $PX\parallel MH\parallel QY$ obtain that $PQYX$ is a right trapezoid and if $Z\in XY\cap MH$ , then $\frac {HP}{HQ}=\frac {ZX}{ZY}=\frac {MB}{MC}$ , i.e. $\frac {HP}{HQ}=\frac {MB}{MC}$ .



PP5. Let $\triangle ABC$ with $B=2C$ . Denote the bisector $[AD$ of $\widehat{BAC}$ where $D\in BC$ and $E\in (AC)$ for which $CE=BD$ . Prove that $m\left(\widehat{CBE}\right)=\frac C2$ .

Proof. It is well-known or prove ($***$) easily that $B=2C\iff b^2=c(c+a)\ (1)$ . Thus, $CE=BD=\frac {ac}{b+c}\implies$

$AE=AC-CE=b-\frac {ac}{b+c}=$ $\frac {b^2+bc-ac}{b+c}\stackrel{(1)}{=}\frac {c^2+ac+bc-ac}{b+c}=c\implies$ $AE=AB\implies$ $m\left(\widehat{CBE}\right)=2C-\frac {3C}{2}=\frac C2$ .

==========================================================================================================================================

($***$) Denote $F\in (AC)$ so that $[BF$ is the bisector of $\widehat{ABC}$ . Since $\widehat{ABF}\equiv\widehat {ACB}$ obtain that $AB^2=AC\cdot AF\iff$ $c^2=b\cdot \frac {bc}{a+c}\iff$ $b^2=c(a+c)$ .



PP6. Let $ABC$ be a triangle. Its $A$-bisector meet again its circumcircle $w$ in the point $L$ . Suppose that exists $E\in (AB)$ so that $AE=\frac {b+c}{2}$ . Prove that $LE\perp AB$ .

Proof. Get $BE=\frac {c-b}{2}$ and $\boxed{EA^2-EB^2=bc}$ . If $D\in AL\cap BC$ , then $\left\{\begin{array}{cccc}
\triangle LBD\sim LAB & \iff & LB^2=LA\cdot LD & (1)\\\\
\triangle LBA\sim\triangle CDA & \iff & AD\cdot AL=bc & (2)\end{array}\right|\implies$

$LA^2-LB^2\stackrel{(1)}{=}LA^2-LA\cdot LD=$ $LA\cdot (LA-LD)=$ $AL\cdot AD\stackrel{(2)}{\implies}$ $\boxed{LA^2-LB^2=bc}\implies$ $LA^2-LB^2=EA^2-EB^2\implies$ $LE\perp AB$ .

Remark 1. $LA^2-LB^2=$ $4R^2\left[\sin^2\left(B+\frac A2\right)-\sin^2\frac A2\right]=$ $4R^2\sin (A+B)\sin B=$ $4R^2\sin B\sin C\implies$ $LA^2-LB^2=bc$ .

Remark 2. If $M$ is the midpoint of the side $[BC]$ , then can prove easily that $EM\perp \overline {ADL}$ .


PP7 (Laurentiu Panaitopol). Let $ABCD$ be a convex quadrilateral. Consider the points $M\in(BC)\ ,\ N\in(CD)$ so that $\frac{MB}{MC}=m\ ,\ \frac{ND}{NC}=n$ .

Denote $P\in AM\cap BN$ , $\frac{PA}{PM}=x$ and $\frac{PB}{PN}=y$ . Prove that $ABCD$ is a parallelogram $\iff \frac {x+1}{y+1}=\frac {n+1}{y}=\frac {m}{m-y}$ .



PP8. Let $\triangle ABC$ with $B=2C$ and $\angle A>90^\circ$ . Let $D\in AB$ such that $CD\perp AC$ and let $M$ be the midpoint of $BC$ . Prove that $\angle AMB=\angle DMC$.

Proof. Let $P\in AB$ so that $PB=PC$ . Then $\widehat{PCB}\equiv\widehat{ABC}$ $\Longrightarrow$ $CA$ is the bisector of $\widehat{PCB}$ $\Longrightarrow$ $CD \perp CA$ and it is the external bisector of $\widehat{PCB}$ $\Longrightarrow$

cross ratio $(P,B,A,D)$ is harmonic. Hence, from $MP \perp MB$ we deduce that $MP$ , $BC$ bisect $\widehat{AMD}$ internally and externally $\Longrightarrow$ $\widehat{AMB}\equiv\widehat{DMC}$ .



PP9. Let $ABCD$ be a square. For $M\in (BC)$ the bisector of $\widehat {BAM}$ meet $BC$ at $E$ and the bisector of $\widehat{DAM}$ meet $CD$ at $F$ . Prove that $AM \perp EF$ .

Proof 1. Note that $m(\angle EAF)=45^{\circ}$ . Extend $CB$ to $G$ such that $\triangle ABG\equiv \triangle ADF$ . Then $AF=AG$

and $m(\angle FAE)=m(\angle GAE)=45^{\circ}$ . Thus, $\triangle AGE\equiv \triangle AFE$ and $AB\perp GE\implies AM\perp EF$ .

Proof 2. Denote $H\in AM$ so that $AH=AB$ . Note that $\left\{\begin{array}{ccc}
\triangle ABE\equiv\triangle AHE & \implies & EH\perp AH\\\\
\triangle ADF\equiv\triangle AHF & \implies & FH\perp AH\end{array}\right|\implies H\in EF$ and $AM\perp EF$ .

Proof 3. Suppose w.l.o.g. $AB=1$ and denote $\left\{\begin{array}{c}
m\left(\widehat{EAB}\right)=m\left(\widehat{EAM}\right)=x\\\\
m\left(\widehat{FAD}\right)=m\left(\widehat{FAM}\right)=y\end{array}\right|$ . Note $x+y=\frac {\pi}{2}$ and $BE=\tan x$ . Thus, $\left\{\begin{array}{c}
BM=\tan 2x\ ;\ MC=1-\tan 2x\\\\
DF=\tan y\ ;\ FC=1-\tan y\end{array}\right|$ .

Hence $AM\perp EF\iff$ $AE^2+FM^2=AF^2+EM^2\iff$ $AB^2+BE^2+FC^2+MC^2=$ $AB^2+DF^2+EM^2\iff$ $BE^2+\left(MC^2-ME^2\right)=$

$DF^2-FC^2\iff$ $\tan ^2x+(1-\tan x)(1+\tan x-2\tan 2x)=$ $2\tan y-1\iff$ $1=\tan y+\tan 2x(1-\tan x)\iff$ $1=\tan y+\frac {2\tan x}{1+\tan x}\iff$

$\tan y=\frac {1-\tan x}{1+\tan x}\iff$ $\tan y=\tan\left(45^{\circ}-x\right)\iff$ $x+y=45^{\circ}$ .



PP10. Let $\triangle ABC$ with the incircle $w=C(I)$ and $\left\{\begin{array}{ccc}
E\in AC\cap w & ; & F\in AB\cap w\\\\
X\in EF\cap BI & ; & Y\in EF\cap CI\end{array}\right|$ . Prove that $X$ and $Y$ belong to the circle with the diameter $[BC]$ .

Proof. Denote $D\in BC\cap w$ . Show easily that $IEXC$ is inscribed in the circle $w_1$ with the diameter $[IC]$ and $IFYB$ is inscribed in the circle $w_2$

with the diameter $[BI]$ . Since $D\in w_1\cap w_2$ obtain that the quadrilaterals $DIXC$ and $DIFB$ are cyclically, i.e. $XB\perp XC$ and $YC\perp YB$ .


Application. Let a tangential $ABCD$ with incircle $w=(I)$ . Let $\left\{\begin{array}{ccc}
E\in BC\cap w & ; & F\in AD\cap w\\\\
K\in AI\cap EF & ; & N\in DI\cap EF\end{array}\right|$ and $M\in BK\cap CN$ . Prove that $IKMN$ is cyclically.


PP11. Let a cyclical convex $ABCD$ with $I\in AC\cap BD$ . Denote the projections $(K,L,M,N)$ of $I$ on $AB$ ,

$BC$ , $CD$ and $DA$ respectively. Prove that $KLMN$ is tangential $\iff IK+IM=IL+IN$ .


Proof. Let $ABCD$ be the cyclic quadrilateral, $I\in AC\cap BD$ , the projections $K,L,M,N$ of $I$ on $AB$ , $BC$ , $CD$ , $DA$ respectively. The quadrilaterals $IKBL$ and $IKAN$ are

cyclically $\iff$ $\widehat{IKL}\equiv\widehat{IBL}$ and $\widehat{IAN}\equiv\widehat{IKN}$ . The quadrilateral $ABCD$ is cyclic $\iff$ $\widehat{DBC}=\widehat{DAC}$ . Therefore, $\widehat{IKL}=\widehat{IKN}$ . So $I$ belongs to the angle bisector of $\widehat{NKL}$

and analogously show that $I$ belongs to the other angle bisectors of $\widehat{KNM}$ , $\widehat{LMN}$ , $\widehat{MNK}$ . In conclusion, $KL+MN=ML+KN$, using the Pithot's reciprocal theorem.



PP12. Let $ABC$ be a triangle with the incircle $w=C(I,r)$ . Denote $D\in BC\cap w$ , $E\in CA\cap w$ and $D_1\in (BC)$ , $E_1\in (CA)$ for

which $D_1C=DB$ , $E_1C=EA$ . Define the points $P\in AD_1\cap BE_1$ and $\{P,Q\}=AD_1\cap w$ . Prove that $AQ=PD_1$ .


Proof. It is well-known that $DB=D_1C=s-b$ and $EA=E_1C=s-a$ . Apply the Menelaus' theorem to the transversal $\overline {BPE_1}$ for $\triangle ACD_1\ :$

$\frac {BD_1}{BC}\cdot\frac {E_1C}{E_1A}\cdot\frac {PA}{PD_1}=1\iff$ $\frac {PD_1}{PA}=\frac {s-c}{a}\cdot\frac {s-a}{s-c}\iff$ $\boxed{\frac {PA}{PD_1}=\frac {a}{s-a}}$ . It is well-known that $[DQ]$ is a diameter of $w$ , i.e. $I\in DQ$ .

Thus, $\frac {D_1Q}{D_1A}=\frac {2r}{h_a}=$ $\frac {2ar}{ah_a}=\frac {2ar}{2sr}=\frac as$ , i.e $\frac {D_1Q}{a}=\frac {D_1A}{s}=\frac {QA}{s-a}\iff$ $\boxed{\frac {QA}{QD_1}=\frac {s-a}{a}}$ . Therefore, $\frac {QA}{QD_1}=\frac {PD_1}{PA}$ , i.e. $AQ=PD_1$ .



PP13. Let $\frac{x^2+y^2}{x^2-y^2} + \frac{x^2-y^2}{x^2+y^2} = k$. Compute the following expression in terms of $k\ :\ \ E= \frac{x^8 + y^8}{x^8-y^8} - \frac{ x^8-y^8}{x^8+y^8}\ .$

Proof 1. $k=\frac {2\left(x^4+y^4\right)}{x^4-y^4}\iff$ $\frac {k+2}{k-2}=\left(\frac xy\right)^4\implies$ $E=\frac {4x^8y^8}{x^{16}-y^{16}}=$ $\frac {4}{\left(\frac xy\right)^8-\left(\frac   yx\right)^8}=$ $\frac {4}{\left(\frac {k+2}{k-2}\right)^2-\left(\frac {k-2}{k+2}\right)^2}$ $\implies$ $E=\frac {\left(k^2-4\right)^2}{4k\left(k^2+4\right)}$ .


PP14. Let $ABC$ be a triangle with the incenter $I$ and $b<c$ . Denote the midpoint $M$ of the side $[BC]$ and the diameter $[NS]$ of

the circumcircle of $\triangle ABC$ so that $NS\perp BC$ and the line $BC$ separates $I$ and $S$ . Prove that $m(\angle ANI)=m( \angle CMI)$ .


Proof 1. Denote $D\in BC$ so that $ID\perp BC$ . Observe that $m(\angle ANI)=m( \angle (IMC)\iff$ $\tan\widehat {ANI}=\tan\widehat{IMC}\iff$ $\frac {AI}{AN}=\frac {DI}{DM}\iff$

$AI\cdot DM=AN\cdot DI\iff$ $\frac {r}{\sin\frac A2}\cdot \frac {c-b}{2}=2R\sin\frac {C-B}{2}\cdot r\iff$ $2R(\sin C-\sin B)=2R\cdot 2\cdot \sin\frac {C-B}{2}\cos\frac {C+B}{2}$ , what is truly.

Proof 2. I"ll use same notations from the previous proof. It is well known that $S$ is the circumcenter of $\triangle BIC$. From this, since $CS\perp CN$ we get that $NB$ and $NC$

are the tangents from the point $N$ to the circumcircle of $\triangle BIC$. Now denote $E\in NI\cap BC$ . Therefore, $IE$ is the $I$-symmedian in $\triangle BIC$ so that $\widehat{MIS}\equiv\widehat {EIC}$ .

Let $F$ be the second intersection of $NI$ with the circumcircle of $\triangle BIC$ . Since $m(\angle IAN) = m(\angle IFS) = 90^{\circ}$ we have that $\angle INA = \angle ISF$ . On the other side

$\angle IMC = \angle MBI + \angle MIB =  \angle CBI + \angle FIC = \angle ISF = \angle INA$ .



PP15. Let $ABCD$ and $BEGF$ be two parallelograms so that $E\in (BC)$ and $BC$ separates $A\ ,\ F$ . Prove that $AE\cap DG\cap CF\ne\emptyset$ .

Proof 1. Let $AB=a\ ,\ AD=b\ ,\ BF=c\ \,\ BE=d$ , $H\in CD\cap FG\ ,\ K\in CF\cap AE\ ,\  L\in CF\cap DG$ . Apply Menelaus' theorem to transversals/triangles :

$\left\{\begin{array}{ccccccc}
\overline{AEK}/\triangle BCF\ : & \frac {AB}{AF}\cdot\frac {KF}{KC}\cdot\frac {EC}{EB}=1 & \implies & \frac {a}{a+c}\cdot \frac {KF}{KC}\cdot\frac {b-d}{d}=1 & \implies & \frac {KC}{KF}=\frac {a(b-d)}{d(a+c)}\\\\
\overline{DGK}/\triangle HCF\ : & \frac {DC}{DH}\cdot\frac {GH}{GF}\cdot\frac {LF}{LC}=1 & \implies & \frac {a}{a+c}\cdot \frac {b-d}{d}\cdot\frac {LF}{LC}=1 & \implies & \frac {LC}{LF}=\frac {a(b-d)}{d(a+c)}\end{array}\right\|$ $\implies\frac {KC}{KF}=\frac {LC}{LF}\implies$ $K\equiv L\implies$ $AE\cap DG\cap CF\ne\emptyset$ .


Proof 2. Let $\left\{\begin{array}{c}
AB=a\ ,\ AD=b\ ,\ BF=c\ \,\ BE=d\\\\
K\in CF\cap AE\ ,\  L\in CF\cap DG\\\\
X\in AE\cap FG\ ,\ Y\in DG\cap BC\end{array}\right\|$ . Thus, $\frac {XF}{EB}=\frac {AF}{AB}$ $\implies$ $\boxed{XF=\frac {d(a+c)}{a}}\ (1)$ and $\frac {YC}{YE}=\frac {DC}{EG}$ $\implies$

$\frac {YC}{a}=$ $\frac {YE}{c}=$ $\frac {b-d}{a+c}$ $\implies$ $\boxed{YC=\frac {a(b-d)}{a+c}}\ (2)\implies$ $\frac {KC}{KF}=\frac {CE}{XF}\stackrel{(1)}{\implies}$ $\boxed{\frac {KC}{KF}=\frac {a(b-d)}{d(a+c)}}\ (3)$ and $\frac {LC}{LF}=\frac {YC}{GF}$ $\stackrel{(2)}{\implies}$ $\boxed{\frac {LC}{LF}=\frac {a(b-d)}{d(a+c)}}\ (4)$ .

From $(3)$ and $(4)$ obtain that $\frac {KC}{KF}=\frac {LC}{LF}$ , i.e. $K\equiv L\implies$ $AE\cap DG\cap CF\ne\emptyset$ .



PP16. Let $\triangle ABC$ with $A>90^{\circ}$ and circumcircle $w$ . Denote the reflection $E$ of $B$ w.r.t. the midpoint $M$ of $[AC]$ and the diameter $[BD]$ of $w$ . Prove that $AC\perp DE$ .

Proof. If $O$ is the center of $w$ , then $OM\perp AC$ and $MB=ME\implies OM\parallel DE\implies AC\perp DE$ . Remark that the point $C$ is the orthocenter of $\triangle ADE$ .

PP17. Let $ABC$ be a triangle with orthocentre $H$ and circumcircle $w=C(O)$. Denote $\left\{\begin{array}{c}
X\in AB\ ,\ HX\parallel AC\\\\
Y\in AC\ ,\ HY\parallel AB\end{array}\right\|$ . Prove that $OX = OY$ .

Proof. $AXHY$ is a parallelogram, i.e. $\left\{\begin{array}{c}
HY=XA\\\
HX=YA\end{array}\right\|$ and $m\left(\widehat {HXB}\right)=m\left(\widehat{HYC}\right)=A$ $\implies$ $H$-right $\triangle HXB\ ,\ \triangle HYC$ are

similarly $\boxed{\frac {HX}{XB}=\frac{HY}{YC}}\ (*)$ $\implies$ $\frac {YA}{XB}=\frac {HX}{XB}\stackrel{(*)}{=}$ $\frac{HY}{YC}=\frac {XA}{YC}\implies$ $XA\cdot XB=YA\cdot YC$ $\implies$ $p_w(X)=p_w(Y)\implies OX=OY$ .

Remark. If $E\in AH\cap XY$ , then $OE\perp XY$ . It is well-known that $[EM]$ is the diameter of the Euler's circle for $\triangle ABC$ .



PP18. For $C(A,r)$ and $C(B,r)$ exists $w=C(I,x)$ tangent to both $ \stackrel{\frown}{AC}$ , $ \stackrel{\frown}{BC}$ and to $AB$ . Prove that if the length of $ \stackrel{\frown}{BC}$ is $l$ , then the perimeter of $w$ is $\frac {9l}{4}$ .

Proof. $\pi r=3l\implies \boxed{r=\frac {3l}{\pi}}\ (*)$ . So $(r-x)^2=x^2+\left(\frac r2\right)^2$ $\implies $ $x=\frac {3r}{8}$ . Perimeter $L$ of $w$ is $2\pi\cdot\frac {3r}{8}=\frac {3\pi }{4}\cdot r\stackrel{(*)}{=}\frac {3\pi}{4}\cdot\frac {3l}{\pi}=\frac {9l}{4}$ . For $l:=12$ get $L=27$ .

$\blacktriangleright$ Lemma. Let $ABCD$ be a convex quadrilateral for which denote $O\in AB\cap CD$ . Find the geometrical locus of the mobile point $L$ which

belongs to the interior of the angle $\widehat{AOD}$ for which $\alpha\cdot [AOB]+\beta\cdot [OCD]=k$ (constant), where $\alpha$ and $\beta$ are two given positive numbers.


Proof. Denote $\left\{\begin{array}{c}
E\in (OA\ ,\ OE=\alpha\cdot AB\\\\
F\in (OD\ ,\ OF=\beta\cdot CD\end{array}\right\|$ . Observe that $[LOE]=\alpha\cdot [LAB]$ and $[LOF]=\beta\cdot [LDC]$ and $k=\alpha\cdot [AOB]+\beta\cdot [OCD]=$

$[LOE]+[LOF]=$ $[LEOF]=[EOF]+[ELF]$ $\implies$ $[ELF]=k-[EOF]$ is constant because the triangle $EOF$ is fixed. Since the segment $[EF]$ is fixed

(with constant length) obtain that $\delta_{EF}(L)$ is constant, i.e. the geometrical locus of $L$ is a parallel segment with $EF$ and which prop up the rays $(OA$ and $(OD$ .



PP19. Let $\triangle ABC$ , $D\in BC$ , $E\in CA$ , $F\in AB$ so that $AD\perp BC$ and $AD\cap BE\cap CF\ne\emptyset$ . Prove that $\widehat{ADF}\equiv\widehat{ADE}$ .

Proof 1. Let $\left\{\begin{array}{c}
G\in DE\\\
H\in DF\end{array}\right\|$ so that $A\in GH\parallel BC$ . Ceva's $\implies\ 1=\frac {DB}{DC}\cdot\frac {EC}{EA}\cdot\frac {FA}{FB}=$ $\frac {DB}{DC}\cdot\frac {DC}{AG}\cdot \frac {AH}{DB}=$ $\frac {AG}{AH}\implies \left\{\begin{array}{c}
AG=AH\\\\
AD\perp HG\end{array}\right\|\implies$ $\widehat{ADF}\equiv\widehat{ADE}$

Proof 2. Denote $I\in AD\cap EF$ and $J\in BC\cap EF$ . Since the division $(E,F;I,J)$ is harmonically and $DI\perp DJ$ , from an well-known property obtain that $\widehat{ADF}\equiv\widehat{ADE}$ .



PP20. Let $ABC$ be a triangle with the $A$-bisector $[AD$ , where $D\in (BC)$ . Suppose $m\left(\widehat {ADC}\right)=60^{\circ}$ and $DB^2=DA\cdot DC$ . Prove that $AD=BC$ .

Proof 1 (synthetic). Let $E\in (AD)$ be a point so that $DE=DC$ . Observe that $\triangle CDE$ is equilateral and $DB^2=DA\cdot DC\iff$

$DB^2=DA\cdot DE\iff$ $\triangle DBE\sim\triangle DAB\implies$ $\widehat{CBE}\equiv\widehat {DAB}\equiv\widehat {DAC}\implies$ $\triangle CBE\equiv\triangle DAC\implies$ $AD=BC$ .

Proof 2 (metric).



PP21. Let $\triangle ABC$ and $P\in (AC)\ ,\ Q\in (AB)$ for which denote the circumcircles $p\ ,\ q$ of $\triangle ABP\ ,\triangle ACQ$ respectively,

$M\in BC\cap q\ ,\ N\in BC\cap p$ so that $M\in BN$ and $\left\{\begin{array}{c}
I\in BP\cap CQ\\\\
m\left(\widehat{BIC}\right)=\phi\end{array}\right\|$ . Prove that $m\left(\widehat{MAN}\right)=A+\phi -\pi$ .


Proof. Observe that $m\left(\widehat{MAN}\right)=A-\left[m\left(\widehat{MAB}\right)+m\left(\widehat{NAC}\right)\right]=$ $A-\left[m\left(\widehat{BCI}\right)+m\left(\widehat{CBI}\right)\right]=$ $A-\left[\pi -m\left(\widehat{BIC}\right)\right]\implies$ $m\left(\widehat{MAN}\right)=A+\phi -\pi$ .


PP22. Let $ABC$ be a $A$-right-angled triangle with $C=15^{\circ}$ and $c=k$ . Ascertain without trigonometry $a$ and $b$ .

Proof 1. Suppose w.l.o.g. $k=1$ , i.e. $\boxed{c=1}$ and denote $D\in (AC)$ so that $m\left(\widehat{CBD}\right)=15^{\circ}\implies$ $m\left(\widehat{ABD}\right)=60^{\circ}$ and $DC=DB=2\cdot AB=2$ , i.e. $DC=2$ . Thus,

$AD^2=BD^2-BA^2\implies$ $AD=\sqrt 3\implies$ $\boxed{b=2+\sqrt 3}$ and $BC^2=AB^2+AC^2=$ $1+\left(2+\sqrt 3\right)^2\implies$ $a^2=4\left(2+\sqrt 3\right)\implies$ $a=2\sqrt{2+\sqrt 3}\implies$ $\boxed{a=\sqrt 2+\sqrt 6}$ .

Proof 2. Suppose w.l.o.g. $k=1$ , i.e. $\boxed{c=1}$ . Denote $E\in (AB)$ so that the line $BC$ separates the points $A$ , $E$ and $m\left(\widehat{BCE}\right)=15^{\circ}$ .

Denote $AE=x$ , i.e. $BE=AE-c=x-1\ ,\ CE=2x$ and $\boxed{b=x\sqrt 3}$ . Apply the theorem of the $C$-angled bisector in $\triangle ACE\ :$ $\frac {CA}{CE}=\frac {BA}{BE}\implies$

$\frac {b}{2x}=\frac {1}{x-1}\implies$ $\boxed{b=\frac {2x}{x-1}}$ . Thus, $\frac {2x}{x-1}=x\sqrt 3\implies$ $x=\frac {3+2\sqrt 3}3$ $\implies$ $\left\{\begin{array}{c}
a=\sqrt 2+\sqrt 6\\\\
b=2+\sqrt 3\\\\
c=1\end{array}\right\|$ .



PP23. Let $\triangle ABC$ such that $\frac {a+b}{c}< \lambda$ , where $\lambda>1$ . Prove that $\tan\frac{A}{2}\tan\frac{B}{2}< \frac{\lambda -1}{\lambda +1}$ .

Proof. Prove easily that $\boxed{\tan\frac A2\tan\frac B2=\frac{s-c}{s}}\ (*)$ and the function $f(\lambda )=\frac{\lambda -1}{\lambda +1}=1-\frac {2}{\lambda +1}\ ,\ \lambda >1$ is increasing.

Therefore, $\frac {a+b}{c}< \lambda\iff$ $f\left(\frac {a+b}{c}\right)<f\left(\lambda\right)\iff$ $\frac {s-c}{s}<\frac{\lambda -1}{\lambda +1}\stackrel{(*)}{\implies}$ $\tan\frac{A}{2}\tan\frac{B}{2}< \frac{\lambda -1}{\lambda +1}$ .



PP24. $\triangle ABC$ is inscribed in $w=C(O,r)$ . The vertices of the triangle divide $w$ in 3 arcs of lengths $\mathrm{arc}(BC)=3$ , $\mathrm{arc}(CA)=4$ and $\mathrm{arc}(AB)=5$ . What is the area of the triangle ?

Proof. Perimeter of the circle is $2\pi r=3+4+5=12\implies \boxed{r=\frac {6}{\pi}}$ . Thus, $\frac A3=\frac B4=$ $\frac C5=\frac {\pi}{12}$ $\implies$ $S=[ABC]=$ $2r^2\sin A\sin B\sin C\implies$

$S=\frac {72}{\pi^2}\sin\frac {\pi}{4}$ $\sin\frac {\pi}{3}\sin\frac {5\pi}{12}=$ $\frac {36\sqrt 3}{\pi^2}\left(2\sin\frac {3\pi}{12}\sin\frac {5\pi}{12}\right)=$ $\frac {36\sqrt 3}{\pi^2}\left(\cos \frac {\pi}6-\cos\frac {2\pi}3\right)\implies$ $\boxed{S=\frac {9\sqrt 3\left(\sqrt 3+1\right)}{\pi^2}}$ .



PP25. Let $\triangle ABC$ with circumcircle $w$ , $M\in (AB)$ , $N\in (AC)$ so that $BM=CN$ . Let midpoint $P$ of arc $\stackrel{\frown}{BC}$ which contains $A$ . Prove that $PM=PN$ , $\widehat {MPN}\equiv\widehat {BAC}$ .

Proof. Prove easily that $\triangle BPM\stackrel{(L.U.L)}{\equiv}\triangle CPN$ . Hence $PM=PN$ and $\widehat{MPB}\equiv\widehat{NPC}$ $\iff$ $\widehat {MPN}=\widehat{MPB}+\widehat{BPN}=$ $\widehat{NPC}+\widehat{NPB}=$ $\widehat{BPC}$ $\implies$ $\widehat{MPN}\equiv\widehat{BPC}$ .


PP26. Let a rhombus $ABCD$ and $M\in (AC)$ , $N\in (BC)$ so that $MN=MD$ . Denote $P\in AC\cap DN$ and $R\in AB\cap DM$ . Prove that $PR=PD$ .

Proof. $MB=MD=MN$ $\implies$ $MB=MN$ $\implies$ $\widehat{MNB}\equiv\widehat{MBN}\equiv$ $\widehat{MDC}\implies$ $\widehat{MNB}\equiv\widehat{MDC}\implies$

$CDMN$ is cyclically $\implies$ $\widehat{RAP}\equiv\widehat{NCM}\equiv$ $\widehat{RDP}\implies$ $ARPD$ is cyclically and $\widehat{PAR}\equiv\widehat{PAD}$ $\implies$ $PR=PD$ .



PP27 (Balkan 2005). Let $ABC$ be an acute-angled triangle whose inscribed circle touches $AB$ and $AC$ at $D$ and $E$ respectively. Let $X$ and $Y$ be the points of intersection

of the bisectors of $\angle ACB$ and $\angle ABC$ with the line $DE$ respectively and let $Z$ be the midpoint of $BC$ . Prove that the triangle $XYZ$ is equilateral if and only if $\angle A = 60^\circ$ .


Proof. Let $I$ be the incenter. An angle chase shows that $B,I,X,D$ are concyclic, so, since $ID\perp AB$, it means that $BX\perp CI$ . This means that $CXB$ is a right triangle,

so $ZX=ZB=ZC$ . In the exactly same way we show that $ZY=ZB$ , so $XYZ$ is always isosceles. Since $ZX=ZC$, we have $\widehat{ZXC}\equiv\widehat{ZCX}\equiv\widehat{ACX}$ ,

so $ZX\|AC$ . We also have $ZY\|AB$ . From the above we conclude that $XYZ$ is equilateral iff $\angle XZY=60^{\circ}$ which is equivalent to $\angle A=60^{\circ}$ .



PP28. Let a regular $ABCDEF$ with $AB=1$ and $M\in (AC)$ and $N\in (CE)$ so that $B\in MN$ and $AM=CN=r$ . Find $r$ .

Proof 1 (trigonometric). Let $m\left(\widehat{CBM}\right)=\phi $ . Thus, $AC=\sqrt 3$ , $\tan \phi =\frac {CN}{CB}=r$ and $\frac {CM}{\sin\widehat{MBC}}=\frac {CB}{\sin\widehat {BMC}}\iff$

$\frac {\sqrt 3-r}{\sin\phi}=\frac 1{\sin\left(\phi +30^{\circ}\right)}\iff$ $\frac {\sqrt 3-r}{\tan\phi}=\frac 2{\tan\phi+\sqrt 3}\iff$ $\frac {\sqrt 3-r}{r}=\frac 2{r+\sqrt 3}\iff$ $3-r^2=2r^2\iff$ $r=1$ .

Proof 2 (trigonometric). Denote $\left\{\begin{array}{c}
m(\angle CBN)=v\\\\
m(\angle EBN)=w\\\\
\left(v+w=60^\circ\right)\end{array}\right|$ . Apply theorem of Ratio : $\left\{\begin{array}{cc}
BM/\triangle ABC\ : & \frac {MC}{MA}=\frac {\sin v}{\sin (w+60^\circ)}\\\\
BN/\triangle CBE\ : & \frac {NE}{NC}=\frac {2\sin w}{\sin v}\end{array}\right|$ . Since $\frac {MC}{MA}=\frac {NE}{NC}$ obtain that

$\sin^2v=2\sin w\sin (w+60^\circ )\iff$ $\sin^2v=\cos 60^\circ -\cos (2w+60^\circ )\iff$ $1-\cos 2v=$ $1-2\cos (2w+60^\circ )\iff$ $\cos 2v=2\cos (2w+60^\circ )$ . From

$2v+\left(2w+60^{\circ}\right)=180^{\circ}$ obtain that $\cos 2v=-2\cos 2v\iff$ $\cos 2v=0\iff$ $v=45^{\circ}\iff$ $\left\{\begin{array}{c}
v=45^\circ\\\
w=15^\circ\end{array}\right|$ . Prove easily that $AC=\sqrt 3$ . In conclusion,

$\frac {MC}{MA}=\frac {\sin 45}{\sin 75}=$ $\frac {2}{1+\sqrt 3}=$ $\sqrt 3-1$ , i.e. $\frac {MC}{\sqrt 3-1}=$ $\frac {MA}{1}=\frac {AC}{\sqrt 3}=1\implies$ $MA=r=1$ .

Remark. Theorem of Ratio : Let $\triangle ABC$ and a point $M$ what belongs to the sideline $BC$ . Then $\boxed{\frac {MB}{MC}=\frac {AB}{AC}\cdot\frac {\sin\widehat{MAB}}{\sin\widehat{MAC}}}$ .

Proof 3. Pythagoras' theorem to $:\ \left\{\begin{array}{cccc}
\triangle CMN\ : & MN^2=MN^2=(\sqrt 3-r)^2=r^2-r(\sqrt 3-r) & \implies & \boxed{MN^2=3\left(r^2-r\sqrt 3+1\right)}\\\\
\triangle CMB\ : & MB^2=(\sqrt 3-r)^2+1-\sqrt 3(\sqrt 3-r) & \implies & \boxed{MB^2=r^2-r\sqrt 3+1}\\\\
\triangle BCN\ : & NB^2=CN^2+CB^2 & \implies & \boxed{NB^2=r^2+1}\end{array}\right\|$ . Thus, $B\in MN\iff$

$MN+MB=NB\iff$ $\left(1+\sqrt 3\right)\sqrt {r^2-r\sqrt 3+1}=\sqrt {r^2+1}\iff$ $\left(4+2\sqrt 3\right)\left(r^2-r\sqrt 3+1\right)=r^2+1\iff$ $\left(3+2\sqrt 3\right)(r-1)^2=0\iff r=1$ .



PP29. Let a cyclical $ABCD$ and let incenters $I$ , $J$ of $\triangle ABC$ , $\triangle ACD$ respectively. Prove that $BIJD$ is cyclically $\iff$ $IJ\perp AC\iff ABCD$ is tangential.

Proof. Let the tangent points $X$ , $Y$ of $C(I)$ , $C(J)$ respectively with $AC$ . Suppose w.l.o.g. that $\boxed{X\in (AY)}\ (1)$ . Thus,

$\left\{\begin{array}{ccc}
AX+BC=CX+BA & \implies & AX-CX=BA-BC\\\\
AY+DC=CY+DA & \implies & AY-CY=DA-DC\end{array}\right\|\ (*)$ . Let $\left\{\begin{array}{cc}
m\left(\widehat{BAC}\right)=2x\ ; &m\left(\widehat{BCA}\right)=2y\\\\
m\left(\widehat{DAC}\right)=2u\ ; & m\left(\widehat{DCA}\right)=2v\end{array}\right\|\ ,$

$x+y+u+v=90^{\circ}$ $\implies$ $\left\{\begin{array}{ccc}
m\left(\widehat{BIX}\right)=m\left(\widehat{BIC}\right)+m\left(\widehat{CIX}\right)=\left(90^{\circ}+x\right)+\left(90^{\circ}-y\right) & \implies & m\left(\widehat{BIX}\right)=180^{\circ}+x-y\\\\
m\left(\widehat{BDJ}\right)=m\left(\widehat{ADB}\right)-m\left(\widehat{ADJ}\right)=2y-\left(90^{\circ}-u-v\right) & \implies & m\left(\widehat{BDJ}\right)=y-x\end{array}\right\|$ .

$\blacktriangleright\ ABCD$ is tangential $\iff AB+CD=AD+BC\iff$ $BA-BC=DA-DC\stackrel{(*)}{\iff}$

$AX-CX=AY-CY\iff$ $AX-AY=CX-CY\stackrel{(1)}{\iff}$ $-XY=XY\iff$ $IJ\perp AC$ .

$\blacktriangleright\ IJ\perp AC\iff$ $X\equiv Y\iff$ $m\left(\widehat{BIX}\right)+m\left(\widehat{BDJ}\right)=\left(180^{\circ}+x-y\right)+\left(y-x\right)=180^{\circ}\iff$ the quadrilateral $BIJD$ is cyclically.



PP30. Prove that in any $A$-rightangled $\triangle ABC$ the line $IG\not\parallel BC$ , but is possibly that $IG\parallel AB\ \vee\ IG\parallel AC$ (standard notations).

Proof. Let $\triangle ABC$ for which I"ll characterize the particularity $IG\parallel BC$ . Thus, $IG\parallel BC\iff 3r=h_a\iff 3ar=2pr\iff b+c=2a\ .$ Therefore,

$\boxed{IG\ \parallel\ BC\iff b+c=2a}\ .$ Suppose $AB\perp AC$ , i.e. $\triangle ABC$ is $A$ - rightangled. In this case $(b+c)^2\le 2\left(b^2+c^2\right)$ , i.e. $\boxed{b+c\le a\sqrt 2}\ (*)$ . Appears three cases:

$\odot\ IG\parallel BC\iff$ $b+c=2$ $a\ \stackrel{(*)}{\iff}\  2a\le a\sqrt 2$ , what isn't truly. Prove easily that $\boxed{IG\perp BC\iff b+c=3a}$ . In conclusion,

$\odot\ a+b=3c\iff IG\perp AB\iff IG\parallel AC\iff $ $a+c=2b\iff a=2b-c\iff b^2+c^2=4b^2-4bc+c^2\iff $ $\frac a5=\frac b4=\frac c3\ .$

$\odot\ a+c=3b\iff IG\perp AC\iff IG\parallel AB\iff $ $a+b=2c\iff a=2c-b\iff b^2+c^2=4c^2-4bc+b^2\iff$ $\frac a5=\frac b3=\frac c4\ .$
This post has been edited 195 times. Last edited by Virgil Nicula, Nov 20, 2015, 7:47 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404400
  • Total comments: 37
Search Blog
a