258. Some difficult and nice problems with complex numbers.

by Virgil Nicula, Apr 2, 2011, 9:47 PM

Proposed problem 1. Suppose that for $n\in\mathbb N^*$ and $z\in\mathbb C$ exists $\lambda\in \mathbb C$ so that

$\lambda  =\frac {z^{n+1}+1}{z^n+z}$ . Prove that $\lambda\in \mathbb R$ and $|\lambda | \le 1\ \implies\ |z|=1$ (Al. Halanay).



An easy extension. Suppose that for $\{k,n\}\subset\mathbb N^*$ , $k<n$ and $z\in\mathbb C$ exists $\lambda\in \mathbb C$ so that

$ \lambda =\frac {z^n+1}{z^{n-k}+z^k}$ . Prove that $\lambda\in \mathbb R$ and $|\lambda |\le 1\ \implies\ |z|=1$ (Fl. Vulpescu Jalea).


Proof. Let $a$ be a complex number such that $|a| \leq 1$ and let $z$ be an arbitrary complex number. Prove easily that $\left\{\begin{array}{ccc}
 |z| \leq 1 & \implies & \left|a +z\right| \leq \left|1+\bar{a}z\right|\\\\
|z| \geq 1 & \implies & \left|a +z\right| \geq \left|1+\bar{a}z\right|\end{array}\right\|\ (*)$ .

In both cases the equality holds iff $|a|=1$ or $|z|=1$ . Suppose that $ \lambda =\frac {z^n+1}{z^{n-k}+z^k}$ , i.e. $z^{n-k}\left(z^k-\lambda\right)=\lambda z^k-1$ . If $z^k=\lambda$ , then $\lambda z^k=1\implies$

$\lambda =\pm 1$ and $|z|=1$ . Assume that $z^k\ne \lambda$ . Thus, $z^{n-k} =\frac{\lambda z^k-1}{z^k-\lambda}$ . If $\lambda =\pm 1$ , then the result is established immediately. We suppose for now that $|\lambda | \neq 1$ .

If $|z| < 1$ by $(*)$ with $a:=-\lambda$ and $z:=z^k$ we have $1 > |z|^{n-k} = \left|\frac{\lambda z^k-1}{z^k-\lambda}\right| > 1$ which is absurd. Likewise, $|z| > 1$ is not a possibility. Therefore, $|z|=1$ .

Remark. For $k:=1$ and $n:=n+1$ obtain an old and very nice Al. Halanay's problem.



Proposed problem 2. Let $a,b,c \in \mathbb{C}, a \neq b \neq c$ and $|bc|a + |ca|b + |ab|c = 0$ . Prove that $|(b+c)(a+c)(a+b)| \geq |abc|$ .

Proof (algebraic).

Proof (geometric). If $abc = 0$ then the inequality is clearly. Suppose from this point that $abc \neq 0$ . Write $x:=\frac{a}{|a|}$ , $y:=\frac{b}{|b|}$ and $z:=\frac{c}{|c|}$ . Therefore, $x$ , $y$ and $z$

are points on the unit circle with the property that $x+y+z=0$ , i.e. the centroid of the triangle generated by $x$ , $y$ and $z$ is exactly the circumcenter. Thus, $x$ , $y$ and $z$

form an equilateral triangle. We may assume without loss of generality that $x$, $y$ and $z$ are located in this order if viewed counterclockwise. Geometrically, if $A$ , $B$ , $C$

and $O$ are points representing $a$ , $b$ , $c$ and $0$ , then $\angle{BOC}=\angle{COA}=\angle{AOB}=\frac{2\pi}{3}$ . Let $P$ , $Q$ and $R$ be the midpoints of $BC$ , $CA$ and $AB$ respectively.

The inequality we have to prove is equivalent to $OP \cdot OQ \cdot OR \geq $ $\frac{OA \cdot OB \cdot OC}{8}$ . We may instead show $OP \geq \sqrt{\frac{OB\cdot OC}{4}}$ . The Stewart's theorem

and the Law of Cosine give us $OP^2 = \frac{OB^2+OC^2}{2}-\left(\frac{BC}{2}\right)^2 = \frac{OB^2+OC^2}{2}-\frac{OB^2+OC^2+OB\cdot OC}{4}$ .

That is $OP^2 = \frac{OB^2+OC^2-OB\cdot OC}{4} \geq \frac{OB \cdot OC}{4}$ , where we have used AM-GM. The proof is now complete.



Proposed problem 3. Let $P$ be a point in an acute $\triangle ABC$. Prove that $\left\{\begin{array}{c}
PA\cdot PB\sin C+PB\cdot PC\sin A+PC\cdot PA\sin B\ge 2S\\\\
PA^2\sin A+PB^2\sin B+PC^2\sin C\ge 2S\\\\
\frac {PA^3}{bc}+\frac {PB^3}{ca}+\frac {PC^3}{ab}\ge 3\cdot PG\end{array}\right\|$ , where $S=[ABC]$ .

Proof. Using the relations $a=2R\sin A$ a.s.o., where $R$ is the circumradius of $\triangle ABC$ , the inequalities is equivalently with $\left\{\begin{array}{c}
\sum a\cdot PB\cdot PC\ge abc\\\\
\sum a\cdot PA^2\ge abc\\\\
\sum a\cdot PA^3\ge3abc\cdot PG \end{array}\right\|$

respectively because $4RS=abc$ , i.e. $\left\{\begin{array}{c}
\sum\frac{PB \cdot PC}{bc}\ge 1\\\\
\sum\frac{PA^2}{bc}\ge 1\\\\
\sum\frac{PA^3}{bc}\ge 3\cdot PG\end{array}\right\|$ . Let $x$ , $y$ , $z$ be the complex affixes of $A$ , $B$ , $C$ respectively and set $P$

as the origin of the complex plane. Then we have $\left\{\begin{array}{ccccc}
\sum \frac{PB \cdot PC}{bc} & = & \sum\frac{|yz|}{|x-y||x-z|} & \ge & \left|\sum\frac{yz}{(x-y)(x-z)}\right| = 1\\\\
\sum \frac{PA^2}{bc} & = & \sum\frac{|x|^2}{|x-y||x-z|} & \ge & \left|\sum\frac{x^2}{(x-y)(x-z)}\right| = 1\\\\
\sum \frac{PA^3}{bc} & = & \sum\frac{|x|^3}{|x-y||x-z|} & \ge & \left|\sum\frac{x^3}{(x-y)(x-z)}\right| =|x+y+z|\end{array}\right\|$ as desired.



Proposed problem 4 (China Olympiad 1998). Let $P$ be an arbitrary point in the plane of triangle $[ABC]$ . Prove that

$PB\cdot PC\cdot BC+PC\cdot PA\cdot CA+PA\cdot PB\cdot AB\ge AB\cdot BC\cdot CA$ with equality iff $P$ is the orthocenter of $\triangle ABC$ .


Proof. Denote $X(x)$ - the point $X$ with affix $x\in\mathbb C$ . I"ll use the well-known identity $\sum_{\mathrm{cyc}} (b-c)(p-b)(p-c)=(a-b)(b-c)(c-a)$ .

Therefore, $\sum_{\mathrm{cyc}} BC\cdot PB\cdot PC=$ $\sum_{\mathrm{cyc}} |(b-c)(p-b)(p-c)|\ge$ $|\sum_{\mathrm{cyc}} (b-c)(p-b)(p-c)|=$ $|(a-b)(b-c)(c-a)| = AB\cdot BC\cdot CA $ .



Proposed problem 5 (Short List ONM 2002 Romania). For given $n\in \mathbb N^*$ ascertain $z\not\in\mathbb R$ for which $z^n\in\mathbb R$ and $(1+z)^n\in\mathbb R$ .

Proof. $\left\{z^n, (1+z)^n\right\}\subset\mathbb R\iff$ $\left\|\begin{array}{c}
z^n=\overline z^n\\\\
(1+z)^n=\left(1+\overline z\right)^n\end{array}\right\|\iff$ $\left\|\begin{array}{c}
\left(\frac {\overline z}{z}\right)^n=1\\\\
\left(\frac {1+\overline z}{1+z}\right)^n=1\end{array}\right\|\iff$ $(\exists )\ \{k,s\}\subset\overline {1,n-1}$ so that

$\left\|\begin{array}{c}
\overline z=z\cdot w^k\\\\
1+\overline z=(1+z)\cdot w^s\end{array}\right\|$ , where $w=\cos\frac {2\pi}{n}+i\cdot\sin\frac {2\pi}{n}$ and $w^n=1$ $\implies$ $z_{k,s}=\frac {w^s-1}{w^k-w^s}$ , where $k\ne s$ and $\{k,s\}\subset\overline {1,n-1}$ .



PP 6. Prove that $\{z_1 ,z_2\}\subset\mathbb C\ \ \wedge\ \ |z_1|=1\ \ \vee\ \ |z_2|=1\ \implies\ \left| {z_1  + 1} \right| + \left| {z_2  + 1} \right| + \left| {z_1 z_2  + 1} \right| \ge 2$ .

Proof. Suppose $|z_1|=1$ . Thus, $z_1\cdot\overline{z_1}=1\implies$ $|z_1  + 1| + | z_2  + 1| + | z_1 z_2  + 1| =$ $\left|\frac {1}{\overline{z_1}}  + 1\right| + | z_2  + 1| + \left|\frac {1}{\overline {z_1}}\cdot z_2  + 1\right| =$

$ |\overline{z_1}  + 1| + | z_2  + 1| + | \overline{z_1} + z_2| \ge$ $ |(\overline{z_1}  + 1) + ( z_2  + 1) - ( \overline{z_1} + z_2)| = 2$.
This post has been edited 46 times. Last edited by Virgil Nicula, Nov 22, 2015, 9:22 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a