226. Some inequalities from Calculus (Real Analysis).

by Virgil Nicula, Feb 19, 2011, 11:03 AM

PP 1. Show that $~$ $\cos x<\left(\frac{\sin x}{x}\right)^{3}$ for any $0<x<\frac{\pi}{2}$ .
Method 1. $\cos x<\left(\frac{\sin x}{x}\right)^{3}\iff \tan x\sin^2 x -x^3>0\  \forall\ x\in\left(0,\frac {\pi}{2}\right)$ . Denote $f(x)\equiv \tan x\sin^2 x -x^3\  \forall\ x\in\left[0,\frac {\pi}{2}\right)$ . Therefore,

$f'(x)=\tan^2 x+2\sin^2 x -3x^2$ $\implies$ $ f''(x)=2\tan x\sec^2x+2\sin 2x -6x$ $\implies f'''(x)=2\sec^4x+4\tan^2 x\sec^2x+4\cos 2x -6\implies$

$f''''(x)=16\sec^4x\tan x+8\tan^3x\sec ^2x-8\sin 2x=$ $16\sin x(\sec^5 x-\cos x)+8\tan^3x\sec ^2x>0\  \forall\ x\in\left[0,\frac {\pi}{2}\right)$ $\implies  f'''(x)$ is strictly

increasing also $f'''(0)=0$ $\implies $ $ f'''(x)>0\  \forall\ x\in\left(0,\frac {\pi}{2}\right)$ $\implies  f''(x)$ is strictly increasing also $f''(0)=0$ $\implies  f''(x)>0\  \forall\ x\in\left(0,\frac {\pi}{2}\right)$ $\implies  f'(x)$ is

strictly increasing also $f'(0)=0$ $\implies  f'(x)>0\  \forall\ x\in\left(0,\frac {\pi}{2}\right)$ $\implies  f(x)$ is strictly increasing also $f(0)=0$ $\implies  f(x)>0\  \forall\ x\in\left(0,\frac {\pi}{2}\right)$ , i.e

$\tan x\sin^2 x -x^3>0\  \forall\ x\in\left(0,\frac {\pi}{2}\right)$ $\implies\boxed {\cos x<\left(\frac{\sin x}{x}\right)^{3}\  \forall\ x\in\left(0,\frac {\pi}{2}\right)}$ . See
here another problems.

Method 2. $f(x)=\frac{\sin x}{\sqrt[3]{\cos x}}-x\ ,\ x\in\left(0,\frac {\pi}{2}\right)\implies$ $f'(x)=\frac{1+2\cos^2x-3\sqrt[3]{\cos^4x}}{3\sqrt[3]{\cos^4x}}>0$ by $\mathrm{A.M.\ge G.M.}\implies$ $f(x)>f(0)=0$ .
.

Application. Prove that $\left(\frac{\sin x}{x}\right)^{2p}+\left(\frac{\tan x}{x}\right)^{p} >2$ for any $p\geq 0$ and $x\in\left(0, \frac{\pi}{2}\right)$ (Murray Klamkin, Crux Mathematicorum).

Remark. This inequality is a particular case of the inequality from
here.

Proof. From $\mathrm{A.M.\ge G.M.}$ obtain that $\left(\frac {\sin x}x\right)^{2p}+$ $\left(\frac {\tan x}x\right)^p\ge$ $2\sqrt{\left(\frac {\sin^2x\tan x}{x^3}\right)^p}$ .

Remain to show that $\sin^2x\tan x\, >\, x^3$ , i.e. $\left(\frac {\sin x}x\right)^3\ge\cos x$ for any $x\in\left(0,\frac {\pi}2\right)$ , what is
here.


PP 2. Ascertain $\mathrm{Im\ (f)}$ , where $I=\left(0,\frac {\pi}{2}\right]$ and the correspondence is $f(x)=\frac{\sin x-x\cos x}{x-\sin x}\ ,\ x\in I$ .

Proof. I"ll study the monotony of $f(x)=\frac{\sin x-x\cos x}{x-\sin x}$ . Thus $ f'(x)\ .s.s.\ x\sin x(x-\sin x)-(1-\cos x)(\sin x-x\cos x)\ .s.s.$

$(\sin x)\cdot x^2-(1-\cos x)\cdot x-\sin x(1-\cos x)\ .s.s.$ $\left[x-(1-\cos x)\cdot \frac{1+\sqrt{5+4\cos x}}{2\sin x}\right] \equiv\ g(x)$ .

Observe that $g(0)=0$ and $g'(x)\ .s.s.\ (2\sin^2 x+$ $\cos x-1)\cdot \sqrt{5+4\cos x}-(1-\cos x)(5+4\cos x)$ $+2\sin^2 x (1-\cos x)\ .s.s.$

$(1+2\cos x)\cdot \sqrt{5+4\cos x}-(2\cos^2 x+4\cos x+3)\ .s.s.$ $(1+2\cos x)^2\cdot (5+4\cos x)-(2\cos^2 x+4\cos x+3)^2\ .s.s.$

$-4(\cos^4 x-2\cos^2 x+1)=-4\sin^4 x<0$ . Thus, $g\searrow$ and $f\searrow$ . In conclusion, $\boxed {\ \frac {2}{\pi -2}\ <\ \frac {\sin x-x\cos x}{x-\sin x}\ \le\ 2\ }$ for any $x\in \left(\ 0\ ,\ \frac {\pi}{2}\ \right]$ .



PP3. Prove that for any positive numbers $x$ , $y$ and for any $n\in \mathbb N^*$ exists the inequality $\sum_{k=1}^n \frac{1}{{x + ky}}\le \frac{n}{{\sqrt {x\left( {x + ny} \right)} }}$ .

Proof. Suppose w.l.o.g. that $y=1$ . Thus, need to prove that for any $x>0$ and for any $n\in \mathbb N^*$ exists the relation $\sum_{k=1}^n\frac{1}{{x + k}}\le\frac{n}{\sqrt {x\left(x + n\right)}} $ . Indeed, $\sum_{k=1}^n\frac{1}{x + k}<\int\limits_x^{x+n}\frac{1}{x}dx\iff$

$\sum_{k=1}^n\frac{1}{x + k}<\ln\left(1+\frac{n}{x}\right)$ . Let $1+\frac{n}{x}=t$. Hence, it remains to prove that $f(t)\ge 0$ for $t\ge 1$, where $f(t)=\sqrt{t}-\frac{1}{\sqrt t}-\ln t$, which is true because $f'(t)=\frac{(\sqrt t-1)^2}{2t\sqrt{t}}\ge 0$ .

See
here
This post has been edited 31 times. Last edited by Virgil Nicula, Jan 7, 2018, 5:02 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a