462. Diverse probleme de geometrie.

by Virgil Nicula, Aug 3, 2018, 8:20 AM

P1. Let $\triangle ABC$ with the circumcircle $w=C(O,R)$ and with the incircle $C(I,r)$. Define the points $ \left\{\begin{array}{c}D\in (AB\ ,\ E\in (CB\\\\ AD = CE = CA\end{array}\right\|$. Prove that $ OI\perp DE$.

Proof. Denote the power $ p_{w}(X)$ of $X$ w.r.t. the circle $ w$. Thus, $ \left\{\begin{array}{c}p_{w}(D)\equiv OD^{2}-R^{2}=-b(c-b)\\\\ p_{w}(E)\equiv OE^{2}-R^{2}=-b(a-b)\end{array}\right\|$ $ \implies$ $ \boxed{OD^{2}-OE^{2}=b(a-c)}$.

The relations $p\cdot IA^{2}=bc(p-a)$ a.s.o. are well-known. Apply the Stewart's theorem to the rays $ (ID\ ,\ (IE$ in $ \triangle IAB\ ,\ \triangle IAC$ respectively :

$ \left\{\begin{array}{c}b\cdot IB^{2}+(c-b)\cdot IA^{2}=c\cdot ID^{2}+bc(c-b)\\\\ b\cdot IB^{2}+(a-b)\cdot IC^{2}=a\cdot IE^{2}+ab(a-b)\end{array}\right\|$ $ \implies$ $ \boxed{\ ID^{2}-IE^{2}=b(a-c)\ }$. Hence $ OD^{2}-OE^{2}=ID^{2}-IE^{2}$, i.e. $ OI\perp DE$.



P2 (IMO 2010). Let an interior $P$ of $\triangle ABC$. Lines $AP,BP,CP$ meet again the circumcircle $\Gamma$ at $K,L,M$ respectively. The tangent at $C$ to $\Gamma$ meets $AB$ at $S$. Show that $SC = SP\implies MK = ML$.

Proof. Consider the circle which is tangent to $\Gamma$ in $C$ and to $SP$ in $P$. Denote $\{X,Y\}=SP\cap \Gamma$ , where $X\in \mathrm{arc}\ AL$ . From the well-known property obtain $\widehat {MCX}\equiv\widehat {MCY}$ ,

i.e. $\mathrm{arc}\ MX=\mathrm{arc}\ MY$ . Since $SP^2=SC^2=SA\cdot SB$ obtain $SP^2=SA\cdot SB$ $\implies$ $\widehat {SPA}\equiv\widehat{SBP}$ (the line $SP$ is tangent to the circumcircle of $\triangle APB$) , i.e. $\overarc{XL}=\overarc{YK}$.

In conclusion, $\mathrm{arc}\ ML=\mathrm{arc}\ MX+\mathrm{arc}\ XL=\mathrm{arc}\ MY+\mathrm{arc}\ YK=\mathrm{arc}\ MK$ $\implies$ , $\mathrm{arc}\ ML=\mathrm{arc}\ MK$ , i.e. $ML=MK$ . Nice problem !


P3 (Balcan geo 2003). Let $\triangle  ABC$ and the tangent to the circumcircle of $\triangle  ABC$ at $ A$ meet $ BC$ at $ D$. The perpendicular to $ BC$ at $ B$ meets the perpendicular

bisector of $ AB$ at $ E$. The perpendicular to $ BC$ at $ C$ meets the perpendicular bisector of $ AC$ at $ F$. Prove that the points $ D\in EF$. (Valentin Vornicu).


Proof (Virgil NICULA). $ \left\|\ \begin{array}{c}
\frac {DB}{DC}=\frac {c^2}{b^2}\\\\
BE=\frac {c}{2\sin B}\\\\
CF=\frac {b}{2\sin C}\end{array}\ \right\|\ \Longrightarrow\ \frac {BE}{CF}=\frac {DB}{DC}\ \Longrightarrow\ D\in EF$ .


P4 (OME, 2009). Let $ABC$ be an acute triangle with the incircle $ C(I,r)$ and the circumcircle $ C(O,R)$ .

Denote $ D\in BC$ for which $ AD\perp BC$ and $ AD=h_a$ . Prove that $ \boxed {DI^2 = (2R - h_a)(h_a - 2r)}$ .


Proof. From the identity $ \boxed{a\cdot XA^2+b\cdot XB^2+c\cdot XC^2=(a+b+c)\cdot XI^2+abc}$ for $ X: =D$ obtain $ a\cdot DA^2+b\cdot DB^2+c\cdot DC^2=2s\cdot DI^2+abc$ .

Therefore, $ \underline{2s\cdot DI}^2=ah_a^2+b\cdot\left(c^2-h_a^2\right)+c\left(b^2-h_a^2\right)-abc$ $=2(s-a)bc-2(s-a)h_a^2=2(s-a)\left(2Rh_a-h_a^2\right)=$ $ \left(2sh_a-2ah_a\right)\left(2R-h_a\right)=$

$\left(2sh_a-4sr\right)\left(2R-h_a\right)$ $=\underline{2s\left(h_a-2r\right)\left(2R-h_a\right)}$ . In conclusion, $ 2s\cdot DI^2=2s\left(h_a-2r\right)\left(2R-h_a\right)$ , i.e. $ DI^2 = (2R - h_a)(h_a - 2r)$ .



Extension (Virgil NICULA). Let an acute $\triangle ABC$ with the incircle $ w = C(I,r)$ and the circumcircle $ C(O,R)$ . Let $ D\in BC$

so that $ AD\perp BC$ , $ X\in (AD)$ and $ AD = h_a$ , $ AX = x$ . Prove that $ \boxed {XI^2 = (2R - x)(h_a - 2r) - x(h_a - x)}$ .

Particular cases. $ \left\|\begin{array}{ccccc} x = R & \implies & IX^2 = R(R - 2r) & \implies & IX = IO \\
 \\
x = 0 & \implies & IA^2 = 2R(h_a - r) & \implies & IA^2 = \frac {bc(s - a)}{s}\end{array}\right\|$ what are evidently. Thus we

verified the upper identity ! Also we can find easily the points $ \{X,Y\}\subset (AD)$ for which $ IX = IY = r$ , i.e. $ AD\cap w$ .


Proof. Let $ P\in AD$ for which $ IP\perp AD$ . Apply the generalized Pythagoras' in $ \triangle AIX$ : $ XI^2 = AX^2 + AI^2 - 2\cdot AX\cdot AP= x^2 + \frac {bc(s - a)}{s} - 2x(h_a - r)$ $ = $ $sx^2 + bc(s - a) - xh_a(b + c)$ $ \implies$ $ s\cdot XI^2 = sx^2 - xh_a(b + c) + bc(s - a) - (s - a)h^2_a + (s - a)h^2_a =$ $ sx^2 - xh_a(b + c) + (s - a)h^2_a + (s - a)\left(bc - h^2_a\right) =$ $sx^2-xh_a(b + c) + (s - a)h^2_a + h_a(s - a)\left(2R - h_a\right) =$ $ \left[sx - (s - a)h_a\right]\left(x - h_a\right) + h_a(s - a)\left(2R - h_a\right) =$ $h_a(s - a)\left(2R - h_a\right) + sx\left(x - h_a\right) - h_a(s - a)\left(x - h_a\right) =$ $ h_a(s - a)(2R - x) - sx\left(h_a - x\right)$. Since $ h_a(s - a) = sh_a - ah_a = sh_a - 2sr = s\left(h_a - 2r\right)$ obtain $ XI^2 = (2R - x)(h_a - 2r) - x(h_a - x)$ .


P5 (USA TST 2006). Let $ABC$ be a triangle. Triangles $PAB$ and $QAC$ are constructed outside of triangle $ABC$ such that $AP = AB\ ,$

$AQ = AC$ and $\angle{BAP}= \angle{CAQ}$. Segments $BQ$ and $CP$ meet at $R$. Let $O$ be the circumcenter of triangle $BCR$. Prove that $AO \perp PQ.$

Proof. I"ll show that $OP^{2}-OQ^{2}=c^{2}-b^{2}$, i.e. $AO\perp PQ$. Let $2x=m(\widehat{BAP})$, the circumcircle $C(O,\rho )$ of $\triangle BRC$ and $S\in AR\cap BC$. Thus, $\left\{\begin{array}{c}AC=AQ\\\\ AP=AB\\\\ \widehat{CAP}\equiv\widehat{QAB}\end{array}\right\|$ $\implies$ $\triangle ACP\sim\triangle AQB$

$\implies$ $\left\{\begin{array}{c}CP=QB\\\\ \widehat{APC}\equiv\widehat{ABQ}\\\\ \widehat{ACP}\equiv\widehat{AQB}\end{array}\right\|$ $\implies$ $\left\{\begin{array}{c}\widehat{APR}\equiv\widehat{ABR}\\\\ \widehat{ACR}\equiv\widehat{AQR}\end{array}\right\|$ $\implies$ the quadrilaterals $APBR$, $AQCR$ are cyclically with the radical axis $AR$. Observe that $\left\{\begin{array}{c}m(\widehat{BRS})=m(\widehat{BPA})=90^{\circ}-x\\\\ m(\widehat{CRS})=m(\widehat{CQA})=90^{\circ}-x\\\\ m(\widehat{BRP})=m(\widehat{BAP})=2x\end{array}\right\|$ $\implies$ the

ray $[RS$ is the bisector of the angle $\widehat{BRC}$. Prove easily that $\left\{\begin{array}{c}m(\widehat{BOC})=4x\\\\ a=2\rho\sin 2x\end{array}\right\|$. Thus, $\left\{\begin{array}{c}PA=c\ ,\ QA=b\\\\ PB=2c\cdot\sin x\\\\ QC=2b\cdot \sin x\end{array}\right\|$ and $\left\{\begin{array}{c}m(\widehat{CBO})=m(\widehat{BCO})=90^{\circ}-2x\\\\ m(\widehat{PBO})=180^{\circ}+3x-B\\\\ m(\widehat{QCO})=180^{\circ}+3x-C\end{array}\right\|$. Apply the generalized Pythagoras'

to $\triangle POB$ , $\triangle QOC\ :\ \left\{\begin{array}{c}OP^{2}=BP^{2}+\rho^{2}-2\rho\cdot BP\cos \widehat{PBO}\\\\ OQ^{2}=CQ^{2}+\rho^{2}-2\rho\cdot CQ\cos \widehat{QCO}\end{array}\right\|$ $\implies$ $OP^{2}-OQ^{2}=$ $4\left(c^{2}-b^{2}\right)\sin^{2}x+4c\rho\sin x\cos (B-3x)-4b\rho \sin x\cos (C-3x)=$ $4\left(c^{2}-b^{2}\right)\sin^{2}x+$

$4c\rho \sin x(\cos B\cos 3x+\sin B\sin 3x)$ $-4b\rho \sin x(\cos C\cos 3x+\sin C\sin 3x)=$ $4\left(c^{2}-b^{2}\right)\sin^{2}x+4\rho\sin x\cos 3x$ $(c\cos B-b\cos C)+4\rho \sin x\sin 3x(c\sin B-b\sin C)=$

$4\left(c^{2}-b^{2}\right)\sin^{2}x+4\rho\sin x\cos 3x\left(\frac{a^{2}+c^{2}-b^{2}}{2a}-\frac{a^{2}+b^{2}-c^{2}}{2a}\right)=$ $4\left(c^{2}-b^{2}\right)\sin^{2}x+\frac{4\rho \left(c^{2}-b^{2}\right)}{a}\sin x\cos 3x=$ $\left(c^{2}-b^{2}\right)\left(4\sin^{2}x+\frac{2\sin x\cos 3x}{\sin 2x}\right)=c^{2}-b^{2}$.

I used the following simple identities $:\ c\sin B=b\sin C$ and $4\sin^{2}x+\frac{2\sin x\cos 3x}{\sin 2x}=1$.


P6. For $\triangle ABC$ and $M\in (AB)$ construct the parallelogram $AMPC$. Let $ N\in BC\cap MP$.

Prove that the circumcenter of $\triangle BMN$ belongs to the circumcircle of $ \triangle AMP\iff AB=AC$.


Proof.


P7 (France TST 2007). Let $\triangle ABC$ such that $C<A<\frac{\pi}{2}$. Let $D\in [AC]$ such that $BD=BA$. The incircle $w=C(I,r)$ of $\triangle ABC$

touches its sides in $K\in [AB]$ and $L\in [AC]$. Let $w_{1}=C(J,r_{1})$ be the incircle of $\triangle BCD$. Denote $T\in KL\cap AJ$. Prove that $TA=TJ$.


Proof.. The incircle $w_{1}$ touches $\triangle BCD$ in $U\in BD$, $V\in BC$ and $W\in BC$. Observe that $DC=AC-AD=b-2c\cdot\cos A=$ $\frac{b^{2}-(b^{2}+c^{2}-a^{2})}{b}$ $\implies$ $DC=\frac{a^{2}-c^{2}}{b}$. Thus,

$VC=\frac{1}{2}\cdot (BC+CD-BD)=\frac{1}{2}\cdot(a+\frac{a^{2}-c^{2}}{b}-c)\implies VC=\frac{p(a-c)}{b}$ . Since $VC=JC\cdot\cos \frac{C}{2}$ obtain that $\boxed{JC=\frac{p(a-c)}{b\cdot\cos\frac{C}2}}$. Denote $P\in KL\cap CI$. The property $PC\perp PB$

is well-known (see the lower remark). Thus, $APJW$ is cyclically. Analogously $P\in UV\cap CJ$, i.e. $\boxed{\ P\in KL\cap UV\ }$. Observe that $\boxed{PC=a\cdot \cos \frac{C}{2}}\implies$ $\frac{PC}{JC}=\frac{ab\cdot\cos^{2}\frac{C}{2}}{p(a-c)}=\frac{p-c}{a-c}$ $\implies$

$\frac{PC}{p-c}=\frac{JC}{a-c}=\frac{PJ}{p-a}$ $\implies$ $\boxed{\ \frac{PJ}{PC}=\frac{p-a}{p-c}\ }$. Apply the Menelaus' theorem to transversal $\overline{PTL}$ in $\triangle AJC$ : $\frac{PJ}{PC}\cdot\frac{LC}{LA}\cdot\frac{TA}{TJ}=1$ $\implies$ $\frac{p-a}{p-c}\cdot\frac{p-c}{p-a}\cdot\frac{TA}{TJ}=1$ $\implies TA=TJ$.

So $PC\perp PB$ $\Longleftrightarrow$ the quad. $PKIB$ is cyclically $\Longleftrightarrow$ $m(\widehat{PKB})=m(\widehat{PIB})=\frac{B+C}{2}$ or $m(\widehat{PKA})=m(\widehat{PIB})=\frac{B+C}{2}$



P8. Let $ ABC$ be a triangle with $ A = 60^{\circ}$ . Let $ AP$ bisect $ \widehat { BAC}$ and let $ BQ$ bisect $ \widehat {ABC}$ , where $ P\in BC$ and $ Q\in AC$ . If $ AB + BP = AQ + QB$ , then what are the angles of the triangle ?

Proof I (metric). Let $ l_b = BQ$ . Thus, $ l_b = \frac {2ac}{a + c}\cdot\cos\frac B2$ . Thus, $ AB + BP = AQ + QB$ $ \Longleftrightarrow$ $ c + \frac {ac}{b + c} = \frac {bc}{a + c} + l_b$ $\Longleftrightarrow$ $ c(c + a)(c + b) + ac(a + c) = bc(b + c) + 2ac(b + c)\cdot\cos\frac B2$

$ \Longleftrightarrow$ $ ab + (a + c)^2 - b^2 = 2a(b + c)\cdot\cos\frac B2$ $ \Longleftrightarrow$ $ ab + 4p(p - b) = 2a(b + c)\cdot\cos\frac B2$ $ \Longleftrightarrow$ $ ab + 4ac\cdot\cos^2\frac B2 = 2a(b + c)\cdot \cos\frac B2$ $ \Longleftrightarrow$ $ b\left(1 - 2\cdot\cos\frac B2\right) =$

$ 2c\cdot\cos\frac B2\cdot\left(1 - 2\cdot\cos\frac B2\right)$ $ \Longleftrightarrow$ $ b = 2c\cdot\cos\frac B2$ $ \Longleftrightarrow$ $ \sin B = 2\cdot\sin C\cdot\cos\frac B2$ $ \Longleftrightarrow$ $ 2\sin\frac B2\cos\frac B2 = 2\sin C\cos\frac B2$ $ \Longleftrightarrow$ $ \sin\frac B2 = \sin C$ $ \Longleftrightarrow$ $ B = 2C$ $ \Longleftrightarrow$

$ C = 40^{\circ}$ , $ B = 80^{\circ}$ because $ A = 60^{\circ}$ .

Proof II (trigonometric) Denote ${ x=m(\widehat ABQ})$ . I"ll apply the Sinus' theorem in the triangles $ ABP$ , $ ABQ$ : $ AB+BP=AQ+QB$ $ \Longleftrightarrow$ $ 1+\frac {BP}{BA}=\frac {AQ+QB}{AB}$ $ \Longleftrightarrow$

$ 1+\frac {\sin 30}{\sin (30+2x)}=\frac {\sin x+\sin 60}{\sin (60+x)}$ $ \Longleftrightarrow$ $ \sin (60+x)\left[\sin (30+2x)+\frac 12\right]=\sin (30+2x)(\sin x+\sin 60)$ $ \Longleftrightarrow$ $ \cos (x-30)-\cos (90+3x)+\cos (30-x)=$

$ \cos (x+30)-\cos (30+3x)+\cos (2x-30)-\cos (90+2x)$ $ \Longleftrightarrow$ $ \underline {\cos (x-30)}+\underline {\underline {\sin 3x}}+\underline {\underline {\underline {\cos (x-30)}}}=$ $ \underline {\underline {\underline {\cos (x+30)}}}-\underline {\underline {\cos (30+3x)}}+\cos (2x-30)+\underline {\sin 2x}$ $ \Longleftrightarrow$

$ [\cos (x-30)-\cos (90-2x)]+$ $[\sin 3x+\sin (60-3x)]=$ $ [\cos (x+30)-\cos (x-30)]+\cos (2x-30)$ $\Longleftrightarrow$ $ 2\sin \left(30-\frac x2\right)\sin\left(60-\frac {3x}{2}\right)+2\sin 30\cos (3x-30)=$

$\cos (2x-30)-2\sin 30\sin x$ $ \Longleftrightarrow$ $ \cos (3x-30)+2\sin\left(30-\frac x2\right)\sin \left(60-\frac {3x}{2}\right)=$ $\cos (2x-30)-\cos (90-x)$ $ \Longleftrightarrow$ $ \cos (3x-30)+$ $2\sin\left(30-\frac x2\right)\sin \left(60-\frac {3x}{2}\right)=$

$2\sin \left(30+\frac x2\right)\sin\left(60-\frac {3x}{2}\right)$ $ \Longleftrightarrow$ $ \sin (120-3x)=$ $2\sin\left(60-\frac {3x}{2}\right)\left[\sin\left(30+\frac x2\right)-\sin\left(30-\frac x2\right)\right]$ $\Longleftrightarrow$ $ 2\sin\left(60-\frac {3x}{2}\right)\cos\left(60-\frac {3x}{2}\right)=$

$2\sin\left(60-\frac {3x}{2}\right)\left[\sin\left(30+\frac x2\right)-\sin\left(30-\frac x2\right)\right]$ $ \Longleftrightarrow$ $ \sin\left(60-\frac {3x}{2}\right)=0\ \ \vee\ \ \cos\left(60-\frac {3x}{2}\right)=\sin\left(30+\frac x2\right)-\sin\left(30-\frac x2\right)$ .

Thus, $ \boxed {\ x=40\ }$ or $ \sin\left(30+\frac {3x}{2}\right)+\sin\left(30-\frac x2\right)=\sin\left(30+\frac x2\right)$ $ \Longleftrightarrow$ $ 2\sin\left(30+\frac x2\right)\cos x=\sin\left(30+\frac x2\right)$ $ \Longleftrightarrow$ $ x\in\emptyset$ .




Extension (Virgil NICULA). Let an acute $\triangle ABC$ with the incircle $ w = C(I,r)$ and the circumcircle $ C(O,R)$ . Let $ D\in BC$

so that $ AD\perp BC$ , $ X\in (AD)$ and $ AD = h_a$ , $ AX = x$ . Prove that $ \boxed {XI^2 = (2R - x)(h_a - 2r) - x(h_a - x)}$ .
This post has been edited 134 times. Last edited by Virgil Nicula, Mar 28, 2019, 1:43 PM

Comment

2 Comments

The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
The final blog post of Virgil Nicula. Don't know whether he has passed away or simply left AoPS, but we miss you :)

by OlympusHero, Apr 12, 2021, 5:03 AM

The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Yo OlympusHero i keep on seeing you when accessing outdated blogs

bruh i can't use my shout copypasta when you speak less than a month after I arrive here

by NathanTien, May 18, 2021, 5:26 AM

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a