431. Trigonometry in geometry II.

by Virgil Nicula, Nov 14, 2015, 3:55 PM

P1. Prove that in any $\triangle ABC$ with the incircle $w=\mathbb C(I,r)$ there is the identity $\boxed{IA^2\sin A+IB^2\sin B+IC^2\sin C=2S}$ .

Proof 1. I"ll use two well-known relations $\left\{\begin{array}{c}
s-a=IA\cos\frac A2\\\\
r=(s-a)\tan\frac A2\end{array}\right\|$ . Therefore, $\sum IA^2\sin A=$ $\sum\left(\frac {s-a}{\cos\frac A2}\right)^2\sin A=$ $2\sum(s-a)^2\tan\frac A2=$ $2r\sum (s-a)=$ $2sr=2S$ .

Proof 2. I"ll use the remarkable relations $\left\{\begin{array}{c}
bc\sin A=2S\\\\
IA^2=\frac {bc(s-a)}{s}\end{array}\right\|$ . Therefore, obtain that $\sum IA^2\sin A=$ $\sum \frac {bc(s-a)}{s}\cdot\sin A=$ $2S\cdot \frac {s-a}{s}=2S$ .

Proof 3. Let the tangent points $\left\{\begin{array}{c}
D\in BC\cap w\\\
E\in CA\cap w\\\
F\in AB\cap w\end{array}\right\|$ . Thus, $2S=2\sum [AFIE]=\sum AI\cdot EF=$ $\sum AI\cdot AI\sin A\implies$ $\sum AI^2\sin A=2S$ .

Remark. I"ll use identity $\sum a\cdot IA^2=abc$ . Indeed, $\frac {\sin A}{a}=\frac {\sin B}b=$ $\frac {\sin C}c=\frac 1{2R}\implies$ $\sum IA^2\sin A=\frac 1{2R}\cdot\sum a\cdot IA^2=$ $\frac {abc}{2R}=\frac {4RS}{2R}\implies$ $\sum a\cdot AI^2=2S$


P2. Let $\triangle ABC$ with the $A$-symmedian $AS$ , where $S\in BC$ . For a point $L\in (AS)$ denote $\left\{\begin{array}{cc}
X\in AB\ ,\ LX\perp AB\\\\
Y\in AC\ ,\ LY\perp AC\end{array}\right\|\implies \mathrm{pr}_{BC}(LX)=\mathrm{pr}_{BC}(LY)$ .

Proof. Is well-known that $\boxed{\frac {SB}{SC}=\frac {c^2}{b^2}}\ (*)$ . Thus, $\frac {\mathrm{pr}_{BC}(LX)}{\mathrm{pr}_{BC}(LY)}=$ $\frac {LX\sin B}{LY\sin C}=$ $\frac {\frac {[ABL]}{c}}{\frac {[ACL]}{b}}\cdot\frac bc=$ $\frac {[ABL]}{[ACL]}\cdot \frac {b^2}{c^2}=$ $\frac {SB}{SC}\cdot \frac {b^2}{c^2}\ \stackrel{(*)}{=}$

$\frac {c^2}{b^2}$ $\cdot\frac {b^2}{c^2}=1\implies$ $\mathrm{pr}_{BC}(LX)=\mathrm{pr}_{BC}(LY)$ . I used the notation $\mathrm{pr}_{d}(MN)$ - the projection on the line $d$ of the segment $[MN]$ .



P3. Let $\triangle ABC$ for which $A=90^{\circ}$ and there is $D\in (AC)$ so that $DC=2\cdot AB$ and $m\left(\widehat{DBC}\right)=2\cdot m\left(\widehat{DBA}\right)$ . Prove that $C=\frac {\pi}{8}$ .

Proof 1. Let $B=3x$ . Thus $3x+C=\frac {\pi}{2}$ and $CD= AC-AD=2\cdot AB\iff$ $\frac {AC}{AB}-\frac {AD}{AB}=2\iff$ $\tan 3x-\tan x=2\iff$

$\sin 2x=2\cos 3x\cos x\iff \sin x=\cos 3x\iff$ $3x+x=\frac {\pi}{2}\iff$ $C=x=\frac {\pi}{8}$ . Otherwise. Apply the theorem of Sines in $\triangle DBC\ :$

$\frac {2c}{\sin 2x}=$ $\frac {a}{\sin (90^{\circ
}+x)}\iff$ $\frac {2\cos 3x}{\sin 2x}=$ $\frac 1{\cos x}\iff$ $\cos 3x=\sin x\iff$ $C=x=\frac {\pi}{8}$ .

Proof 2. Let midpoint $M$ of $[DC]$ and the second intersection $S$ of the circumcircle of $\triangle DBC$ with

bisector of $\widehat{DBC}$ . Prove easily that $\triangle DMS\equiv BAD$ and $DS=BD\implies C=x=\frac {\pi}{8}$ .

Proof 3. Denote the midpoint $M$ of $[CD]$ and $N\in BC$ so that $NM\perp AC$ . Thus, $3x+C=\frac {\pi}{2}$ and $BD=\frac {c}{\cos x}\ ,\ NC=ND=\frac c{\cos C}$ . Apply the theorem of Sines to

$\triangle BDN\ :\ \frac {c}{\cos x\sin 2C}=\frac c{\cos C\sin 2x}\iff$ $\cos x\sin 2C=\cos C\sin 2x\iff$ $\sin C=\sin x\iff$ $C=x$ . Since $4x=3x+C=\frac {\pi}{2}$ obtain that $x=C=\frac {\pi}{8}$ .



P4 (Miguel Ochoa Sanchez). Let a trapezoid $ABCD$ with $AD\parallel BC$ , $P\in AC\cap BD$ and

midpoints $M$ , $N$ of $[AB]$ , $[CD]$ respectively. Prove that $\widehat{MPA}\equiv\widehat{NPD}\iff$ $AB=CD$


Proof. $\left\{\begin{array}{cc}
m\left(\widehat{MPA}\right)=x\ ; & \left(\widehat{NPD}\right)=y\\\\
m\left(\widehat{MPB}\right)=u\ ; & \left(\widehat{NPC}\right)=v\end{array}\right\|\implies$ $\left\{\begin{array}{c}
PB\cdot\sin u=PA\cdot\sin x\\\\
PC\cdot\sin v=PD\cdot\sin y\end{array}\right\|$ . Thus, $x=y\iff$ $PB\cdot PD=PA\cdot PC\iff$ $ABCD$ cyclic $\iff$ $AB=CD$ .


P5 (Ruben Dario Auqui). Let $\triangle ABC$ with $A$-bisector $AD$ where $D\in BC$ . Prove that

$\boxed{\frac 4{AD^2}=\left(\tan^2\frac A2+1\right)\cdot\left(\frac 1{m^2}+\frac 1{n^2}\right)+\left(\tan^2\frac A2-1\right)\cdot\frac 2{mn}}$ , where $DB=m$ , $DC=n$


Proof 1. Denote $AD=d$ and $A=2\phi$ . Observe that $a=2R\sin A\iff$ $m+n=2R\sin 2\phi\iff$ $\boxed{2R=\frac {m+n}{2\sin 2\phi}}$ . Apply the theorem of Sines in the triangles:

$\left\{\begin{array}{cccccccc}
\triangle ABD\ : & \frac {d}{\sin B}=\frac m{\sin\phi} & \implies & \sin B=\frac {d\sin\phi}{m} & ; & b=2R\sin B & \implies & \boxed{b=\frac {d(m+n)}{2m\cos\phi}}\\\\
\triangle ACD\ : & \frac {d}{\sin C}=\frac n{\sin\phi} & \implies & \sin C=\frac {d\sin\phi}{b} & ; & c=2R\sin C & \implies & \boxed{c=\frac {d(m+n)}{2n\cos\phi}}\end{array}\right\|$ . I"ll use an well-known relation $AD^2=bc-mn$ .

In conclusion, $d^2=\frac {d^2(m+n)^2}{4mn\cos^2\phi}-mn\iff$ $d^2\left[(m+n)^2-4mn\cos^2\phi\right]=4m^2n^2\cos^2\phi\iff$ $d^2\left[(m+n)^2\sin ^2\phi +(m-n)^2\cos^2\phi\right]=4m^2n^2\cos^2\phi\iff$

$d^2\left[(m+n)^2\tan^2\phi +(m-n)^2\right]=4m^2n^2\iff$ $\frac 4{d^2}=\frac {\left(m^2+n^2\right)\left(\tan^2\phi +1\right)+2mn\left(\tan^2\phi -1\right)}{m^2n^2}\iff$ $\frac 4{d^2}=\left(\tan^2\phi +1\right)\cdot\left(\frac 1{m^2}+\frac 1{n^2}\right)+\left(\tan^2\phi -1\right)\cdot\frac 2{mn}$ .

Proof 2. $\boxed{\frac {2\cos\phi}{d}=\frac 1b+\frac 1c}\implies$ $\frac {4\cos^2\phi}{d^2}=\frac {(b+c)^2\left(b^2+c^2-2bc\cos 2\phi\right)}{a^2b^2c^2}=$ $\left(\frac {b+c}{ac}\right)^2+\left(\frac {b+c}{ab}\right)^2-\frac{b+c}{ac}\cdot\frac {b+c}{ab}\cdot 2\cos 2\phi\implies$ $\frac {4\cos^2\phi}{d^2}=\frac 1{m^2}+\frac 1{n^2}-\frac {2\cos 2\phi}{mn}$ .

Particular cases. $\left\{\begin{array}{ccc}
A=90^{\circ} & \implies & \frac 2{d^2}=\frac 1{m^2}+\frac 1{n^2}\\\\
A=120^{\circ} & \implies & \frac 1{d^2}=\frac 1 {m^2}+\frac 1{n^2}+\frac 1{mn}\\\\
A=60^{\circ} & \implies & \frac 3{d^2}=\frac 1 {m^2}+\frac 1{n^2}-\frac 1{mn}\end{array}\right\|$ . Another cases: $\left\{\begin{array}{ccc}
A=30^{\circ} & \implies & \frac {2+\sqrt 3}{d^2}=\frac 1 {m^2}+\frac 1{n^2}-\frac {\sqrt 3}{mn}\\\\
A=75^{\circ} & \implies & \frac {2-\sqrt 3}{d^2}=\frac 1 {m^2}+\frac 1{n^2}+\frac {\sqrt 3}{mn}\\\\
A=\frac {\pi}{8} & \implies & \frac {2+\sqrt 2}{d^2}=\frac 1 {m^2}+\frac 1{n^2}-\frac {\sqrt 2}{mn}\\\\
A=\frac {3\pi}{8} & \implies & \frac {2-\sqrt 2}{d^2}=\frac 1 {m^2}+\frac 1{n^2}+\frac {\sqrt 2}{mn}\end{array}\right\|$ .

Remark. The relation $(*)$ can write as $\boxed{\frac {4\cos^2\phi}{d^2}=\frac 1{m^2}+\frac 1{n^2}-\frac {2\cos 2\phi}{mn}}\ (1)$ .



P6. Let $\triangle ABC$ with incircle $w=C(I,r)$ . Let $\left\{\begin{array}{ccccc}
D\in (AI) & ; & E\in (BI) & ; & F\in (CI)\\\\
EF\parallel BC & ; & FD\parallel CA & ; & DE\parallel AB\end{array}\right\|$

and midpoints $M$ , $N$ , $P$ of $[EF]$ , $[FD]$ , $[DE]$ . Prove that $AM\cap BN\cap CP\ne\emptyset$ .


Proof. Let length $\rho$ of inradius of $\triangle DEF$ , $x=r-\rho$ , $X\in AM\cap BC$ and $U\in EF\cap AB$ , $V\in EF\cap AC$ and $X\in AM\cap BC$ , $Y\in BN\cap CA$ , $Z\in CP\cap AB$ . Thus

$\triangle DEF\sim\triangle ABC\implies$ $\frac {EF}{BC}=\frac {\rho}r$ , i.e. $\boxed{EF=\frac {a\rho}{r}}$ . Thus, $\frac {XB}{XC}=\frac {MU}{MV}=$ $\frac {UE+\frac {EF}2}{VF+\frac {EF}2}=$ $\frac {\frac {x}{\sin B}+\frac {a\rho}{2r}}{\frac {x}{\sin C}+\frac {a\rho}{2r}}=$ $\frac cb\cdot \frac {2xr+a\rho\sin B}{2xr+a\rho\sin C}=$ $\frac{xrc+\rho S}{xrb+\rho S}\implies$ $\boxed{\frac {XB}{XC}=\frac{xc+\rho s}{xb+\rho s}}\ (*)$ .

Show analogously that $\frac {YC}{YA}=\frac {xa+\rho s}{xc+\rho s}$ and $\frac {ZA}{ZB}=\frac {xb+\rho s}{xa+\rho s}$ . Therefore, $\frac {XB}{XC}\cdot\frac {YB}{YA}\cdot\frac {ZA}{ZB}=$ $\frac{xc+\rho s}{xb+\rho s}\cdot \frac {xa+\rho s}{xc+\rho s}\cdot \frac {xb+\rho s}{xa+\rho s}=1$ , i.e. $AM\cap BN\cap CP\ne\emptyset$ .



P7 (Sunken Rock). Let isosceles trapezoid $ABCD$ with $O\in AC\cap BD,$ $BC\parallel AD,$ $P\in CD,$ $C\in (PD),$ $PC=AB$ and $\left\{\begin{array}{c}
m\left(\widehat{ABD}\right)=40^{\circ}\\\\
m\left(\widehat{CAD}\right)=30^{\circ}\end{array}\right\|$ . Find $m\left(\widehat{CPO}\right).$

P7 bis (equivalent enunciation).Take $M$ on the side $[AD]$ of the rhombus $ABCD$ with $\angle DAB=40^\circ$ so that $\angle DBM=30^\circ$ . Find $m(\widehat{DCM})$.


Proof 1. $MA=MB$ and $\widehat{MCA}\equiv\widehat{MCD}\iff$ $\frac {MA}{MD}=\frac {CA}{CD}\iff$ $\frac {MB}{MD}=\frac {CA}{AB}\iff$ $\frac {\sin\widehat{MDB}}{\sin\widehat{MBD}}=\frac {\sin\widehat{ABC}}{\sin\widehat{ACB}}\iff$

$\frac{\sin 70^{\circ}}{\sin 30^{\circ}}=\frac {\sin 140^{\circ}}{\sin 20^{\circ}}\iff$ $2\cos 20^{\circ}=\frac {\sin 40^{\circ}}{\sin 20^{\circ}}$ , what is true. So $m\left(\widehat{DCM}\right)=10^{\circ}$ .

Proof 2. Thus $MA=MB$ . Let $N\in CD$ for which $MN\parallel AC$ . Prove easily that $\triangle AMN$ is an equilateral $\implies$

$\triangle AMN$ is isosceles and $I\in MC\cap BD$ is incenter of $\triangle ACD$ $\implies m\left(\widehat{DCM}\right)=10^{\circ}$ .

Remark. Let a rhombus $ABCD$ and $M\in [AD]$ so that $MA=MB$ . Prove similarly that the ray $[CM$ is $C$-bisector of $\triangle ACD\iff$ $m\left(\widehat{BAD}\right)=40^{\circ}$ .



P8. Let $\triangle ABC$ with $c<b$ and the incircle $w=C(I,r)$ . Denote $E\in AC\cap w$ and $F\in AB\cap w$ , Consider a point $M\in w$ so that $EF$ separates $M$ and $I$ . Observe that

$\phi=m\left(\widehat {EIM}\right)\in \left(0,\pi -A\right)$ . Let $x$ , $y$ , $z$ be the distancies from $M$ to the sidelines $BC$ , $CA$ , $AB$ respectively. Prove that $\sqrt x\cdot\cos \frac A2=\sqrt y\cdot\cos\frac B2+\sqrt z\cdot\cos\frac C2$ .


Proof. $\left\{\begin{array}{ccc}
x=r+r\sin \left[\pi-\phi-\left(\frac {\pi}{2}-C\right)\right] & \implies & x=2r\cos^2\frac {\phi -C}{2}\\\\
y=r-r\cos\phi & \implies & y=2r\sin^2\frac {\phi}{2}\\\\
z=r-r\cos (\pi-A-\phi ) & \implies & z=2r\cos^2\frac {A+\phi}{2}\end{array}\right\|\implies$ $\sqrt x\cdot\cos \frac A2=\sqrt y\cdot\cos\frac B2+\sqrt z\cdot\cos\frac C2\iff$ $\cos \frac {\phi-C}{2}\cos\frac A2=$

$\sin\frac {\phi}{2}\cos\frac B2+\cos\frac {A+\phi}{2}\cos\frac C2\iff$ $\cos \frac {A+\phi -C}{2}+\underline{\cos \frac {A+C-\phi}{2}}=$ $\underline{\sin\frac {B+\phi}{2}}-\underline{\underline{\sin \frac {B-\phi }{2}}}+$ $\underline{\underline{\cos \frac {A+C+\phi}{2}}}+\cos \frac {A+\phi-C}{2}$

what is truly because $\left\{\begin{array}{ccc}
\frac {A+C-\phi}{2}+\frac {B+\phi}{2}=\frac {\pi}{2} & \implies & \cos \frac {A+C-\phi}{2}=\sin\frac {B+\phi}{2}\\\\
 \frac {A+C+\phi}{2}+\frac {B-\phi}{2}=\frac {\pi}{2} & \implies & \cos \frac {A+C+\phi}{2}=\sin \frac {B-\phi }{2}\end{array}\right\|$ .



P9 (Carrasco's lemma). Let $\triangle ABC$ and $\{M,N\}\subset (BC)$ so that $M\in (BN)\ ,\ MB=NC$ and $\widehat{MAB}\equiv\widehat{NAC}$ . Prove that $AB=AC$ and $AM=AN$ .

Proof 1. Let $D\in BC$ so that $AD\perp BC$ and $AD=h_a$ . I"ll apply the relation $bc=2Rh_a$ . The triangles $ABM$ and $ACN$ have same circumradius $R_1$ and common

$A$-altitude. Therefore, $AB\cdot AM=2R_1h_a=AC\cdot AN\implies$ $\boxed{\frac {AM}{AN}=\frac {AC}{AB}}\ (1)$ . The triangles $ABN$ and $ACM$ have same circumradius $R_2$ and a common $A$-altitude.

Therefore, $AB\cdot AN=2R_2h_a=AC\cdot AM$ $\implies$ $\boxed{\frac {AM}{AN}=\frac {AB}{AC}}\ (2)$ . In conclusion, from the relations $(1)$ and $(2)$ obtain that $\frac {AB}{AC}=\frac {AC}{AB}\implies$ $AB=AC\ \wedge\ AM=AN$ .

Proof 2. Denote $m\left(\widehat{MAB}\right)=m\left(\widehat{MAB}\right)=\phi$ and $m\left(\widehat{MAN}\right)=\beta$ . Apply an well-known relations $\left\{\begin{array}{c}
\frac {MB}{MN}=\frac {AB}{AN}\cdot\frac {\sin \phi}{\sin \beta}\\\\
\frac {NM}{NC}=\frac {AM}{AC}\cdot\frac {\sin \beta}{\sin \phi}\end{array}\right\|\bigodot\implies$

$\frac {AB}{AN}\cdot \frac {AM}{AC}=1\implies$ $\left\{\begin{array}{c}
\frac {AM}{AN}=\frac {AC}{AB}\\\\
\widehat{CAM}\equiv\widehat{BAN}\end{array}\right\|\implies$ $\triangle AMC\sim\triangle ANB\implies$ $\frac {AM}{AN}=\frac {AC}{AB}=\frac {MC}{NB}=1\implies$ $AB=AC\ \wedge\ AM=AN$ .

Proof 3. I"ll use same notations. The circumcircles of $\triangle ABM$ and $\triangle ACN$ are equivalently. Thus, $\frac {AM}{AN}=\frac {\sin B}{\sin C}$ . Apply theorem of Sines in $\triangle MAN\ :\ \frac {AM}{AN}=$ $\frac {\sin(C+\phi)}{\sin (B+\phi)}$ .

Thus, $\frac {\sin B}{\sin C}=\frac {\sin(C+\phi)}{\sin (B+\phi)}\iff$ $\sin B\sin (B+\phi)=\sin C\sin (C+\phi )\iff$ $\cos (2B+\phi)=\cos (2C+\phi)\iff$ $B=C\iff$ $AB=AC\ \wedge\ AM=AN$ .



P10. Let a convex $ABCD$ with $AB=BC=CD$ and $E\in AC\cap BD$ . Prove that $AE=DE\Longleftrightarrow BC\parallel AD\ \ \vee\ \ A+D= 120\ .$

Proof. $\left\{\begin{array}{c}m(\widehat{DAC})=x\ ,\ m(\widehat{BDA})=y\\\\ AB=BC\Longleftrightarrow m(\widehat{CAB})=m(\widehat{BCA})=\alpha\\\\ BC=CD\Longleftrightarrow m(\widehat{DBC})=m(\widehat{CDB})=\beta\\\\ A+B+C+D=360^{\circ}\end{array}\right\|$ $\implies$ $\left\{\begin{array}{c}m(\widehat{ABD})=180^{\circ}-(x+y+\alpha )\\\\ m(\widehat{ACD})=180^{\circ}-(x+y+\beta )\\\\ x+y=\alpha+\beta\ ,\ \boxed{A+D=2(x+y)}\end{array}\right\|$ . Apply an well-known relation in $ABCD\ :$

$\sin\widehat{ABD}\cdot\sin \widehat{DAC}\cdot\sin \widehat{CDB}\cdot\sin \widehat{BCA}=$ $\sin \widehat{DBC}\cdot\sin \widehat{CAB}\cdot\sin \widehat{BDA}\cdot\sin \widehat{ACD}$ $\iff$ $\sin (x+y+\alpha )\cdot\sin x=\sin y\cdot\sin (x+y+\beta )\ .$

Thus, $EA=ED$ $\iff$ $x=y$ $\iff$ $\left\{\begin{array}{c}\alpha+\beta =2x\\\\ \sin (\alpha+2x)=\sin (\beta+2x)\end{array}\right\|$ $\Longleftrightarrow$ $\left\{\begin{array}{c}\alpha+\beta =2x\\\\ \alpha =\beta \ \ \vee\ \ \alpha+\beta+4x=\pi\end{array}\right\|$ $\Longleftrightarrow$ $\alpha =\beta =x\ \ \vee\ \ x=\frac{\pi}{6}$.

Therefore, $EA=ED$ $\Longleftrightarrow$ $\left\{\begin{array}{cc}1\blacktriangleright & \alpha =\beta\Longleftrightarrow \boxed{\ BC\parallel AD\ }\\\\ 2\blacktriangleright & \alpha \ne\beta\Longleftrightarrow\begin{array}{cc}\nearrow & x=y=\frac{\pi}{6}\ ,\ \alpha+\beta =\frac{\pi}{3}\\\\ \searrow & A+D=120^{\circ}\end{array}\end{array}\right\|$ $\Longleftrightarrow$ $\boxed{\ BC\parallel AD\ \ \vee\ \ A+D=120^{\circ}\ }$.

Remark. Denote $\boxed{\ \beta-\alpha =\delta\ }$. Thus, $\sin x\cdot\sin (x+y+\alpha )=\sin y\cdot\sin (x+y+\beta )$ $\Longleftrightarrow$ $\cos (y+\alpha )-\cos (2x+y+\alpha )=\cos (x+\beta )-\cos (x+2y+\beta )$ $\Longleftrightarrow$

$\cos (y+\alpha )-\cos (x+\beta )=\cos (2x+y+\alpha )-\cos (x+2y+\beta )$ $\Longleftrightarrow$ $\sin\frac{(x+y)+(\alpha+\beta )}{2}\cdot\sin \frac{x-y+\delta}{2}=\sin\frac{3(x+y)+(\alpha+\beta )}{2}\cdot\sin\frac{y-x+\delta }{2}$ $\Longleftrightarrow$

$\sin (x+y)\cdot\sin \frac{x-y+\delta }{2}=\sin 2(x+y)\cdot\sin \frac{y-x+\delta }{2}$ $\Longleftrightarrow$ $\boxed{\ \sin\frac{x-y+\delta }{2}=2\cos (x+y)\cdot\sin\frac{y-x+\delta }{2}\ }$.

Therefore, $EA=ED$ $\Longleftrightarrow$ $x=y$ $\Longleftrightarrow$ $\sin\frac{\delta}{2}=2\cos 2x\cdot\sin\frac{\delta}{2}$ $\Longleftrightarrow$ $\delta =0\ (\alpha =\beta )\ \ \vee\ \ x=\frac{\pi}{6}$ a.s.o.



P11 (TST Peru, IMO 2007). Let $\triangle ABC$ so that $a\ne b$ with circumcircle $\alpha =C(O,R)$ and incircle $w=\mathbb C(I,r)$ . Let $\left\{\begin{array}{c}
A_{1}\in BC\cap w_a\\\\
B_{1}\in AC\cap w_b\\\\\
\{C,P\}=CI\cap\alpha\end{array}\right\|$ and $Q\in AB$ so that $PQ\perp PC$ . Prove that $IQ\parallel A_{1}B_{1}$ .

Proof 1. Suppose w.l.o.g. $a>b$. Denote the diameters $[CC']$, $[PP']$ of $\alpha$ and $\left\{\begin{array}{c}K\in CI\cap AB\ ,\ S\in C'P'\cap AB\\\\ U\in CB\cap IQ\ ,\ V\in CA\cap IQ\end{array}\right\|$.

$1\blacktriangleright$ At first I"ll find the position of $Q\in AB$, i.e. the ratio $\frac{QA}{QB}$. Thus, $\left\{\begin{array}{c}P'C'\parallel CP\implies C'S\perp C'Q\\\\ P'A=P'B\implies \widehat{AC'S}\equiv\widehat{BC'S}\end{array}\right\|$ $\implies$ the division $(A,B,S,Q)$

is harmonically, i.e. $\frac{QA}{QB}=\frac{SA}{SB}=$ $\frac{C'A}{C'B}=\frac{2R\sin\widehat{ACC'}}{2R\sin\widehat{BCC'}}=$ $\frac{\sin(90^{\circ}-B)}{\sin(90^{\circ}-A)}=$ $\frac{\cos B}{\cos A}$ $\implies$ $\boxed{\frac{QA}{\cos B}=\frac{QB}{\cos A}}=\frac{c}{\cos B-\cos A}$.

$2\blacktriangleright$ At second I"ll find the positions of $U\in CB$, $V\in CA$ and I"ll value the ratio $\frac{CV}{CU}$. Observe that $\boxed{\frac{CB_{1}}{CA_{1}}=\frac{p-a}{p-b}}$ and $QK=QB+BK=\frac{c\cdot\cos A}{\cos B-\cos A}+\frac{ca}{a+b}=$

$c\cdot\frac{(a+b)\cos A+a(\cos B-\cos A)}{(a+b)(\cos B-\cos A)}=$ $c\cdot\frac{b\cos A+a\cos B}{(a+b)(\cos B-\cos A)}=$ $\frac{(b^{2}+c^{2}-a^{2})+(a^{2}+c^{2}-b^{2})}{2(a+b)(\cos B-\cos A)}$ $\implies$ $\boxed{QK=\frac{c^{2}}{(a+b)(\cos B-\cos A)}}$ $\implies$

$\left\{\begin{array}{c}\frac{QA}{QK}=\frac{c\cos B}{\cos B-\cos A}\cdot\frac{(a+b)(\cos B-\cos A)}{c^{2}}\implies \frac{QA}{QK}=\frac{(a+b)\cos B}{c}\\\\ \frac{QB}{QK}=\frac{c\cos A}{\cos B-\cos A}\cdot\frac{(a+b)(\cos B-\cos A)}{c^{2}}\implies \frac{QB}{QK}=\frac{(a+b)\cos A}{c}\end{array}\right\|$. Apply the Menelaus' theorem to the transversal $\overline{QUIV}$ in:

$\left\{\begin{array}{cccccc}
\triangle ACK\ : & \frac{QA}{QK}\cdot\frac{IK}{IC}\cdot\frac{VC}{VA}=1 & \implies & \frac{(a+b)\cos B}{c}\cdot \frac{c}{a+b}\cdot \frac{VC}{VA}=1 & \implies & \frac{VA}{\cos B}=\frac{VC}{1}=\frac{b}{1+\cos B}\\\\
\triangle BCK\ : & \frac{QB}{QK}\cdot\frac{IK}{IC}\cdot\frac{UC}{UB}=1 & \implies & \frac{(a+b)\cos A}{c}\cdot\frac{c}{a+b}\cdot\frac{UC}{UB}=1 & \implies & \frac{UB}{\cos A}=\frac{UC}{1}=\frac{a}{1+\cos A}\end{array}\right\|$ $\implies$ $\frac{CV}{CU}=\frac{b}{a}\cdot\frac{1+\cos A}{1+\cos B}=$ $\frac{b}{a}\cdot\frac{2\cos^{2}\frac{A}{2}}{2\cos^{2}\frac{B}{2}}=$

$\frac{b}{a}\cdot\frac{p(p-a)}{bc}\cdot\frac{ac}{p(p-b)}$ $\implies$ $\boxed{\frac{CV}{CU}=\frac{p-a}{p-b}}$. In conclusion, $\frac{CV}{CU}=\frac{CB_{1}}{CA_{1}}$ $\implies$ $\triangle CVU\sim\triangle CB_{1}A_{1}$ $\implies$ $UV\parallel A_{1}B_{1}$ $\implies$ $\boxed{IQ\parallel A_{1}B_{1}}$.

Proof 2. $L\in AB\cap w\implies$ $ILPQ$ is inscribed in the circle with the diameter $[IQ]\implies$ $\widehat{IPL}\equiv\widehat{IQL}\implies$ $\left\{\begin{array}{c}
\widehat{APL}\equiv \widehat{API}-\widehat{IPL}\equiv \widehat{ABC}-\widehat{IQL}\equiv\widehat{CUV}\\\\
\widehat{BPL}\equiv \widehat{BPI}+\widehat{IPL}\equiv \widehat{BAC}+\widehat{IQL}\equiv\widehat{CVU}\end{array}\right\|$ .

In conclusion, $\frac{CA_1}{CB_1}=\frac {s-b}{s-a}=$ $\frac{LB}{LA}=\frac {PB}{PA}\cdot \frac{\sin\widehat{LPB}}{\sin\widehat{LPA}}=$ $\frac{\sin\widehat{CVU}}{\sin\widehat{CUV}}=\frac{CU}{CV}\implies$ $\frac{CA_1}{CB_1}=\frac{CU}{CV}$ $\implies$ $A_1B_1\parallel UV$ $\implies$ $A_1B_1\parallel IQ$ . Very nice proof!



P12. Fie $A$-right $\triangle ABC$ si punctele $\{X,Y\}\subset [BC]$ astfel incat $\widehat {BAX}\equiv\widehat {XAY}\equiv\widehat {YAC}\ .$ Sa se arate ca $\left\{\begin{array}{ccc}
 a\cdot XY & = & 2\cdot XB\cdot YC\\\\
 BX\cdot CY & \ge & bc\left(2-\sqrt 3\right)\\\\\
 XY & \le & a\left(2-\sqrt 3\right)\end{array}\right\|\ .$

Generalizare 1 Fie $\triangle ABC$ si punctele $\{X,Y\}\subset BC$ astfel incat $\widehat {BAX}\equiv\widehat {XAY}\equiv\widehat {YAC}\ .$ Sa se arate ca $\left\|\begin{array}{ccc}
a\cdot XY & = & XB\cdot YC\cdot\left(4\cos^2\frac A3-1\right)\\\\
BX\cdot CY & \ge &  2bc\left(1-\cos\frac A3\right)\\\\
XY & \le & a\cdot\frac {2\cos\frac A3-1}{2\cos\frac A3+1}<\frac a3\end{array}\right\|\ .$

Se poate arata ca $\boxed{\frac {2bc\left(1-\cos\frac A3\right)\left(4\cos^2\frac A3-1\right)}{a}\ \le\ XY\ \le\ a\cdot\frac {2\cos\frac A3-1}{2\cos\frac A3+1}}\ .$ Observatie. $\left(1-\cos\frac A3\right)\left(2\cos\frac A3+1\right)^2=1-\cos A$ si $\frac {2bc}{a}\le\frac {a}{1-\cos A}\ .$


Generalizare 2. $\left\{\begin{array}{c}
\{X,Y\}\subset (BC)\ ;\ X\in (BY)\\\\
\widehat{BAX}=x\ ;\ \widehat{XAY}=y\ ;\ \widehat{YAC}=z\end{array}\right\|$ $\Longrightarrow$ $\frac{2bc\cdot\sin(A-x)\sin(A-z)}{1+\cos y} \le BY\cdot CX \le a^2 \cdot \frac{\sin(A-x)\cdot\sin(A-z)}{\left[\sqrt{\sin x\cdot \sin z}+\sqrt{\sin(A-x)\cdot\sin(A-z)}\right]^2}\ .$

$2h_a\ \cdot\ \tan\frac y2 \le XY \le $ $\cdot \frac{\sqrt{\sin(A-x)\sin(A-z)}-\sqrt{\sin x\cdot\sin z}}{\sqrt{\sin(A-x)\sin(A-z)}+\sqrt{\sin x\cdot\sin z}}\ \blacktriangleleft\ \bullet\ \blacktriangleright\ \frac{2}{1+\cos y}\ \cdot\ h_a^2 \le$ $ AX\cdot AY \le bc \cdot \frac{\sin^2 A}{\left[\sqrt{\sin x\cdot \sin z}+\sqrt{\sin(A-x)\cdot\sin(A-z)}\right]^2}\ .$

$2bc\cdot\frac{\sin x\cdot\sin z}{1+\cos y}\le BX\cdot CY \le a^2\cdot \frac{\sin x\cdot\sin z}{\left[\sqrt{\sin x\cdot \sin z}+\sqrt{\sin(A-x)\cdot\sin(A-z)}\right]^2}\ \blacktriangleleft\ \bullet\ \blacktriangleright\ \left\{\begin{array}{c}
a\cdot XY=BX\cdot CY\cdot\frac{\sin y\cdot \sin A}{\sin x\cdot \sin z}\\\\
\frac{BX\cdot CY}{BY\cdot CX}=\frac{\sin x\cdot\sin z}{\sin(A-x)\cdot\sin(A-z)}\end{array}\right\|\ .$


P13 Prove that in any triangle $ABC$ there is the equivalence $\frac A3=\frac B2\iff \left(a^2-b^2\right)\left(a^2-b^2+ac\right)=b^2c^2\ (*)\ .$

Proof 1 (own). Denote $X\in (BC)$ so that $m\left(\widehat{CXA}\right)=A$ and denote $CX=m.$ Thus, $\triangle CXA\sim\triangle CAB$ $\iff$ $\frac {CX}{CA}=\frac {XA}{AB}=$ $\frac {CA}{CB}\iff$ $\frac mb=\frac {XA}c=\frac ba\implies$

$m=\frac {b^2}a,$ i.e. $ XB=a-m$ $\implies$ $\boxed{XB=\frac {a^2-b^2}a}\ (1)$ and $\boxed{XA=\frac {bc}a}\ (2).$ Apply an well-known property in $\triangle ABX,$ where $m\left(\widehat{ABX}\right)=2\cdot m\left(\widehat{BAX}\right)$ $\iff$

$AX^2=XB^2+XB\cdot AB\ \stackrel{1\wedge 2}{\implies}\ \left(\frac {bc}a\right)^2=\left(\frac {a^2-b^2}a\right)^2+\frac {a^2-b^2}a\cdot c\iff$ $b^2c^2=\left(a^2-b^2\right)^2+ac\left(a^2-b^2\right)\iff$ $\left(a^2-b^2\right)\left(a^2-b^2+ac\right)=b^2c^2.$

Proof 2 (own). Let $D\in AC$ so that $A\in (CD)$ and $2\cdot  m\left(\widehat{ADB}\right)=m\left(\widehat{ABC}\right),$ where denote $AD=n$ and $BD=m.$ Thus, $\triangle CAB\sim \triangle CBD\iff$

$\frac ba=\frac cm=\frac a{b+n}\iff$ $\left\{\begin{array}{ccc}
mb=ac & \iff & m=\frac {ac}b\\\\
b(b+n)=a^2 & \iff & n=\frac {a^2-b^2}b\end{array}\right\|\ (1).$ Now apply an well-known property in $\triangle ABD,$ where $m\left(\widehat{ADB}\right)=2\cdot m\left(\widehat{ABD}\right)$ $\iff$

$AB^2=AD(AD+BD)\iff$ $\boxed{c^2=n(n+m)}\ (2).$ From the relations $(1)$ and $(2)$ get that $c^2=\frac {a^2-b^2}b\cdot\left(\frac {a^2-b^2}b+\frac {ac}b\right)\iff$ $\left(a^2-b^2\right)\left(a^2-b^2+ac\right)=b^2c^2\ (*)\ .$

Proof 3 (own). Construct the isosceles trapezoid $ACDB,$ where $CD\parallel AB$ and denote $CD=p.$ Thus, $BD=AC=b,$ $m\left(\widehat{BCD}\right)=m\left(\widehat{ABC}\right)=2\cdot m\left(\widehat{CBD}\right).$

Apply an well-known property in $\triangle BCD\ :\ m\left(\widehat{BCD}\right)=2\cdot m\left(\widehat{CBD}\right)\iff$ $\boxed{b^2=p^2+ap}\ (1).$ Denote the midpoint $M$ of $[AB]$ and the projection $H$ of $C$ on $AB.$

Therefore, in $\triangle ABC$ there is the remarkable relation $CB^2-CA^2=2\cdot AB\cdot MH, $ i.e. $a^2-b^2=2c\cdot \frac p2\iff$ $\boxed{p=\frac {a^2-b^2}c}\ (2).$ From the relations $(1)$ and $(2)$ obtain

that $b^2=\left(\frac {a^2-b^2}c\right)^2+a\cdot \frac {a^2-b^2}c\iff$ $\left(a^2-b^2\right)^2+ac\left(a^2-b^2\right)=b^2c^2\iff$ $\left(a^2-b^2\right)\left(a^2 -b^2+ac\right)=b^2c^2.$

Proof 4. Exists $k\in\left(0,\frac {\pi}5\right)$ so that $\frac A3=\frac B2=k\ ,$ i.e. $\left\{\begin{array}{ccc}
A & = & 3k\\\
B & = & 2k\\\
C & = & \pi -5k\end{array}\right\|\ .$ I"ll use the theorem of Sines $\boxed{\frac a{\sin A}=\frac b{\sin B}=\frac c{\sin C}=2R}$

and the well known trigonometrical identity $\boxed{\sin^2\alpha -\sin^2\beta =\sin (\alpha -\beta )\sin (\alpha +\beta )}\ .$ Therefore, $\left(a^2-b^2\right)\left(a^2-b^2+ac\right)=b^2c^2\iff$

$\left(\sin^2 3k-\sin^2 2k\right)\left(\sin^2 3k-\sin^2 2k+\sin 3k \sin 5k\right)=\sin^22k\sin^25k\iff$ $\sin k  \cancel{\sin 5k}(\sin k \cancel{\sin 5k}+\sin 3k \cancel{\sin 5k})=\sin^22k \cancel{\sin^25k}\iff$

$\sin k(\sin k+\sin 3k)=\sin^22k\iff$ $\sin k\cdot 2\sin 2k\cos k=\sin^22k\iff$ $2\sin k\cos k\cdot\sin 2k=\sin^22k\iff$ $\sin 2k\cdot \sin 2k=\sin^22k$ O.K.

Proof 5. $\boxed{\left(a^2-b^2\right)\left(a^2-b^2+ac\right)=b^2c^2}\iff$ $\left(\sin^2A-\sin^2B\right)\left(\sin^2A-\sin^2B+\sin A\sin C\right)=\sin^2B\sin^2C\ \stackrel{\sin (A+B)=\sin C}{\iff}$

$\sin (A-B)\cancel{\sin C}[\sin (A-B)\cancel{\sin C}+\sin A\cancel{\sin C}]=$ $\sin^2B\sin C\iff$ $\sin (A-B)[\sin (A-B)+\sin A]=\sin^2B\iff$ $\sin (A-B)\sin A=$

$\sin^2B-\sin^2(A-B)\iff$ $\sin (A-B)\cancel{\sin A}=$ $\sin (2B-A)\cancel{\sin A}\iff$ $\sin (A-B)=\sin (2B-A)\iff$ $\boxed{2A=3B}\ .$ Remark. $E=\sin^2x-\sin^2y\implies$

$2E=(1-\cos 2x)-(1-\cos 2y)=\cos 2y-\cos 2x=2\sin (x+y)\sin (x-y)\implies$ $\boxed{E=\sin^2x-\sin^2y=\sin (x+y)\sin (x-y)}\ .$

Proof 6 (Ruben Dario). Let $D\in BC$ so that $m\left(\widehat{CAD}\right)=B,$ $AD=m,\ BD=n$ i.e. $CD=a-n.$ Apply the well-known property to $\triangle ABD\ :$

$2\cdot m\left(\widehat{BAD}\right)=B$ $\iff$ $AD^2=BD\cdot (BD+AB)\iff$ $\boxed{m^2=n(n+c)}\ (1).$ Thus, $\widehat {CAD}\equiv\widehat{CBA}\iff$ $\triangle ACD\sim\triangle BCA\iff$

$\frac {AC}{BC}=\frac {CD}{CA}=\frac {AD}{BA}\iff$ $\frac ba=\frac {a-n}b=\frac mc\iff$ $\left\{\begin{array}{ccc}
am & = & bc\\\\
an & = & a^2-b^2\end{array}\right\|\ (2).$ From the relations $(1)$ and $(2)$ obtain that

$\left(\frac {bc}a\right)^2=\left(\frac {a^2-b^2}a\right)^2+c\cdot\left(\frac{a^2-b^2}a\right)\iff$ $\left(a^2-b^2\right)^2+ac\left(a^2-b^2\right)=b^2c^2\iff$ $\left(a^2-b^2\right)\left(a^2 -b^2+ac\right)=b^2c^2.$

Proof 7 (M.O. Sanchez). Construct the $A$-isosceles $\triangle CAE$ outside of $\triangle ABC,$ where denote $D\in CE\cap AB$ and $DE=DA=n.$ Apply Stewart's relation in particular case for $:$

$\left\{\begin{array}{ccccc}
\triangle BCD\ : & a^2 & = & b^2+nc & (1)\\\\
\triangle CAE\ : & b^2 & = & n(n+a) & (2)\end{array}\right\|\ .$ From $(1)$ and $(2)$ eliminate $n\ :\ n=\frac {a^2-b^2}c\implies$ $b^2=\frac {a^2-b^2}c\cdot\left(\frac {a^2-b^2}c+a\right)\implies$ $\left(a^2-b^2\right)\left(a^2 -b^2+ac\right)=b^2c^2.$



P14. Let a square $ABCD$ with $AB=1,$ the circle $w=C(I,r)$ where $I\in (AC),$ the distance $\delta_{BC}(I)=r$ where $r\in\left(0,\frac 12\right].$

Let $T\in w$ so that $AT$ is tangent to $w\ ,$ $m\left(\widehat{TAB}\right)=\phi$ and $AT=t\in\left[\frac 12,\sqrt 2\right).$ Prove that $\tan\phi =\frac {1-t^2+t\sqrt{t^2+2}}{2t-1}.$


Proof. Denote $m\left(\widehat{IAT}\right)=\alpha\ .$ Prove easily that $\boxed{IA=(1-r)\sqrt 2}\ .$ Thus, $IA^2=TI^2+TA^2\implies$ $2(1-r)^2=r^2+t^2\implies$ $r^2-4r+2=t^2\implies$ $(2-r)^2=t^2+2\implies$

$\boxed{\sqrt{t^2+2}=2-r}\ (1)\ .$ Therefore, $\tan\alpha =\frac {TI}{TA}=\frac rt\implies$ $\tan\alpha =\frac {2-\sqrt{t^2+2}}{t}\ .$ In conclusion, $\tan\phi =\tan \left(45^{\circ}+\phi\right)=$ $\frac {1+\tan\phi}{1-\tan\phi}\implies$ $\tan\phi =\frac {2+t-\sqrt{t^2+2}}{t-2+\sqrt{t^2+2}}=$

$\frac {\left(2+t-\sqrt{t^2+2}\right)\left(2-t+\sqrt{t^2+2}\right)}{\left(t-2+\sqrt{t^2+2}\right)\left(2-t+\sqrt{t^2+2}\right)}=$ $\frac{2\left(1-t^2\right)+2t\sqrt{t^2+2}}{2(2t-1)}\implies$ $\boxed{\tan\phi =\frac {1-t^2+t\sqrt{t^2+2}}{2t-1}}\ .$ Particular case. If $AT=AB,$ then $t=1,$ $\tan\phi =\sqrt 3\ ,$ i.e. $\phi =60^{\circ}.$



P15. Let $ABCD$ be a rectangle and $P$ be the its interior point for which $\frac {m\left(\widehat{PAB}\right)}4=$ $\frac {m\left(\widehat{PBC}\right)}1=$ $\frac {m\left(\widehat{PCD}\right)}6=$ $\frac {m\left(\widehat{PDC}\right)}3=x<15^{\circ}\ .$ Find $x$ and the ratio $\frac {BP}{AD}\ .$

Proof 1 (trigonometric). Theorem of SINES in $PAB\ ,$ $PBC\ ,$ $PCD$ and $PDA\ :\ \frac {PA}{PB}\cdot\frac {PB}{PC}\cdot\frac {PC}{PD}\cdot\frac {PD}{PA}=1\iff$ $\frac {\sin\widehat{PBA}}{\sin\widehat{PAB}}\cdot\frac {\sin\widehat{PCB}}{\sin\widehat{PBC}}\cdot\frac {\sin\widehat{PDC}}{\sin\widehat{PCD}}\cdot\frac {\sin\widehat{PAD}}{\sin\widehat{PDA}}=1\iff$

$\frac {\cos x}{\sin 4x}\cdot\frac {\cos 6x}{\sin x}\cdot\frac {\sin 3x}{\sin 6x}\cdot\frac {\cos 4x}{\cos 3x}=1\iff$ $\boxed{\tan 4x\tan x\tan 6x=\tan 3x}\ (*)\ .$ In conclusion, $\cos x\cos 6x\sin 3x\cos 4x=$ $\sin 4x\sin x\sin 6x\cos 3x\iff$

$2\cos x\sin 3x\cdot 2\cos 6x\cos 4x=$ $2\sin x\cos 3x\cdot 2\sin 4x\sin 6x\iff$ $(\sin 4x+\sin 2x)(\cos 10x+\cos 2x)=$ $(\sin 4x-\sin 2x)(\cos 2x-\cos 10x)\iff$

$\sin 4x\cos 10x+\sin 2x\cos 2x=0\iff$ $\sin 4x\cdot (2\cos 10x+1)=0\ \stackrel{\left(\ x<15^{\circ}\ \right)}{\iff}\ \cos 10x=-\frac 12\iff$ $10x=120\iff \boxed{\ x=12^{\circ}\ }\ .$

Hence $\frac{BP} {AD} =\frac  {BP}{BC}=$ $\frac  {\sin\widehat{BCP}}{\sin\widehat{BPC}}=$ $\frac  {\sin \left(90^{\circ}-6x\right)}{\sin\left[x+\left(90^{\circ}-6x\right)\right]}=$ $\frac {\cos 6x}{\cos 5x}=\frac {\cos 72^{\circ}}{\cos 60^{\circ}}=$ $2\sin 18^{\circ}=\frac {\sqrt 5 -1}2\implies$ $\boxed{\frac {BP}{AD}=\frac {-1+\sqrt 5}2}\ .$



P16. Let $\triangle ABC\ ,$ $D\in (BC)$ and the circumcircles $w_b=\mathbb C \left(O_b,R_b\right)\ ,$ $w_c=\mathbb C\left(O_c,R_c\right)$ of the triangles $ADB\ ,$ $ADC$ respectively. Prove that $AB=AC\iff R_b=R_c\ .$

Proof 1. Observe that $m\left(\widehat{ADB}\right)+m\left(\widehat{ADC}\right)=180^{\circ}\iff \boxed{\sin\widehat{ADB}=\sin\widehat{ADC}}\ (*)\ .$ In conclusion, $AB=AC\iff 2R_b \sin\widehat{ADB}=2R_c\sin\widehat{ADC}\ \stackrel{(*)}{=}\ R_b=R_c\ .$

Proof 2. $R_b=R_c\iff$ $AO_bDO_c$ is a rhombus $\iff$ $\widehat{AO_bD}\equiv\widehat{AO_cD}\iff$ $2\cdot m\left(\widehat{ABD}\right)=2\cdot m\left(\widehat{ACD}\right)$ $\iff$ $\widehat{ABD}\equiv \widehat{ACD}\iff$ $\widehat{ABC}\equiv\widehat{ACB}\iff$ $AB=AC\ .$



P17 (Ruben Dario). Let $ABCD$ be a trapezoid with $AD\parallel BC$ so that the semicircle with the diameter $[AB]$ is tangent to

the side $[CD]$ at $M.$ Denote $m\left(\widehat{ADC}\right)=\phi$ and $m\left(\widehat{AID}\right)=\theta ,$ where $I\in AC\cap BD.$ Prove that $3\sin\phi\tan\theta =4.$


Proof (Cristian Tello). Denote $:\ m\left(\widehat{IAB}\right)=\alpha$ and $m\left(\widehat{IBA}\right)=\beta\ ;\ DM=DA=a\ ,$ $CM=CB=b\ ,$ i.e. $CD=a+b\ ;\ AB=2R.$

Thus, prove easily that $\boxed{R^2=ab}\ (1)$ and $\boxed{\sin \phi=\frac {2R}{a+b}}\ (2).$ From $\theta =\alpha +\beta$ obtain that $\tan\theta =\tan(\alpha +\beta)=$ $\frac {\tan\alpha +\tan\beta}{1-\tan\alpha\tan\beta}=$ $\frac {\frac b{2R}+\frac a{2R}}{1-\frac {ab}{4R^2}}=$

$\frac {2R(a+b)}{4R^2-ab}\ \stackrel{(1)}{=}\ \boxed{\tan\theta =\frac {2R(a+b)}{3ab}}\ (3).$ In conclusion, $3\sin\phi\tan\theta\ \stackrel{(2\wedge 3)}{=}\ \cancel 3\cdot \frac {2R}{\cancel{a+b}}\cdot \frac {2R(\cancel{a+b})}{\cancel 3ab}=\frac {4\cancel{R^2}}{\cancel{ab}}\ \stackrel{(1)}{=}\ 4\implies$ $3\sin\phi\tan\theta =4.$


P18 (Ruben Dario). Let a convex quadrilateral $ABCD$ so that $AB=BC=CD$ and $DA=2\cdot AB.$ Prove that $\boxed{2(\cos A+\cos D)=\cos (A+D)+\frac 52}\ (*)\ .$

Proof. Suppose w.l.o.g. $AB=1.$ Let the midpoint $M$ of the side $[AD]$ and $\left\{\begin{array}{ccc}
A=2x & \implies & MB=2\sin x\\\
D=2y & \implies & MC=2\sin y\end{array}\right\|\ .$ Therefore, $m\left(\widehat{BMC}\right)=x+y$ and apply the generalized

Pythagoras' theorem to $[BC]/\triangle BMC\ :\ BC^2=MB^2+MC^2-2\cdot MB\cdot MC\cdot\cos\widehat{BMC}\iff$ $1=4\sin^2x+4\sin^2y-8\sin x\sin y\cos(x+y)\iff$

$1+4\cos (x+y)[\cos (x-y)-\cos (x+y)]=2(1-\cos 2x)+2(1-\cos 2y)\iff$ $4\cos^2(x+y)+3=2(\cos 2x+\cos 2y)+4\cos (x-y)\cos (x+y)\iff$

$3+2[1+\cos (2x+2y)]=2(\cos 2x+\cos 2y)+2(\cos 2x+\cos 2y)\iff$ $5+2\cos (2x+2y)=4(\cos 2x+\cos 2y)\iff$ $2(\cos A+\cos D)=\cos (A+D)+\frac 52\ .$



P19 (Mehmet Sahin).Let $:$ an acute $\triangle ABC$ with $a>b>c\ ;$ the midpoints $M\ ,$ $N\ ,$ $P$ of the $[BC]\ ,$ $[CA]\ ,$ $[AB]$ respectively $;$ the projections $D\ ,$ $E\ ,$ $F$

of $A\ ,$ $B\ ,$ $C$ on the opposite sides $.$ Denote $m\left(\widehat{MAD}\right)=\alpha\ ,$ $m\left(\widehat{NBE}\right)=\beta$ and $m\left(\widehat{PCF}\right)=\gamma\ .$ Prove that $\boxed{\tan\alpha +\tan\gamma =\tan \beta}\ (*)\ .$


Proof 1. Apply generalized Pythagoras' theorem to $\triangle ABM\ :\ c^2=m_a^2+\frac {a^2}4-2\cdot\frac a2\cdot DM\iff$ $4c^2=2\left(b^2+c^2\right)-a^2+a^2-a\cdot DM\iff$ $\boxed{DM=\frac {b^2-c^2}{2a}}$ and

$\tan\alpha =\frac {b^2-c^2}{2ah_a}\implies$ $\boxed{\tan\alpha =\frac {b^2-c^2}{4S}}\ ,$ $S=[ABC]$ a.s.o. Thus, $4S=\frac{\tan\alpha}{b^2-c^2}=$ $\boxed{\frac{\tan\beta}{a^2-c^2}}=$ $\frac{\tan\gamma}{a^2-b^2}=$ $\frac {\tan\alpha +\tan\gamma}{\left(\cancel{b^2}-c^2\right)+\left(a^2-\cancel{b^2}\right)}=$ $\boxed{\frac {\tan\alpha +\tan\gamma}{a^2-c^2}}$ $\implies$ $\tan\alpha +\tan\gamma =\tan\beta\ .$

Proof 2. $AD\perp CM\iff$ $AC^2-AM^2=DC^2-DM^2=(DC-DM)(DC+DM)=MC(MC+2\cdot DM)\iff$ $AC^2-AM^2=CM^2+2\cdot MC\cdot DM\iff$

$b^2-m_a^2=\frac {a^2}4+a\cdot DM\iff$ $4b^2-4m_a^2=a^2+a\cdot DM\iff$ $4b^2-2\left(b^2+c^2\right)+\cancel{a^2}=\cancel{a^2}+4a\cdot DM\iff$ $2\left(b^2-c^2\right)=4a\cdot DM\iff$ $\boxed{\ DM=\frac {b^2-c^2}{2a}\ }$ a.s.o.
This post has been edited 245 times. Last edited by Virgil Nicula, Nov 30, 2017, 3:39 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404400
  • Total comments: 37
Search Blog
a