234. Some simple and nice problems from contests.

by Virgil Nicula, Mar 2, 2011, 8:03 AM

PP1. Let $a$ , $b$ be two real positive numbers for which $a^4\le b^3$ . Prove that doesn't exist $x\in \mathbb R$ so that $x^4+b=ax$ .

Proof. Denote $f(x)=x^4-ax+b$ , $x\in\mathbb R$ . Observe that $f(0)=b>0$ and $f(x)\ne 0$ for any $x\in \mathbb R\ \implies\ f(x)$ has

a constant sign, i.e. $f(x)>0$ for any $x\in\mathbb R$ . With other words, in the mentioned hypothesis is sufficient to prove $f>0$ ,

i.e $x\in\mathbb{R}\ \Longrightarrow\  x^4+b>ax$ . Observe easily that $\left\{\begin{array}{ccc}
(\forall )\ x\ge \sqrt[3] a & \Longrightarrow & x^4-ax+b=x\left(x^3-a\right)+b>0\\\\
(\forall )\ x\le \frac ba & \Longrightarrow & x^4-ax+b=x^4+(-ax+b)>0\end{array}\right\|$ $\implies$

$f(x)>0$ for any $x\in \left(-\infty , \frac ba\right)\cup\left(\sqrt [3]a,\infty\right)$ . Since $a^4\le b^3\Longleftrightarrow \sqrt[3] a\le \frac ba$ obtain in conclusion that $x^4-ax+b>0$ , $(\forall )\ x\in\mathbb R$ .



PP2. Ascertain the geometrical locus $\Lambda_k$ of the mobile interior point $L$ w.r.t. acute given triangle $ABC$ for which $\frac {\delta_{AB}(L)+\delta_{AC}(L)}{\delta_{BC}(L)}=k>0$ (constant) .

Show that the geometrical locus $\Lambda_k$ pass through a fixed point $F$ for any value of the constant $k$ . I denoted the distance $\delta_d(X)$ of the point $X$ to the line $d$ .



PP3. Prove that for the functions $f:[0,1]\rightarrow\mathbb R$ and $g:[0,1]\rightarrow\mathbb R$ exists $\{a,b\}\subset [0,1]$ so that $\left|f(a)+g(b)-ab\right|\ge\frac 14$ .

Proof. Suppose that $\left|f(a)+g(b)-ab\right|\ge\frac 14$ for any $\{a,b\}\subset [0,1]$ . Therefore,

$\left\{\begin{array}{ccc}
a=0\ \wedge\ b=1 & \implies & -\frac 14<f(0)+g(1)<\frac 14\\\\
a=1\ \wedge\ b=0 & \implies & -\frac 14<f(1)+g(0)<\frac 14\end{array}\right\|\bigoplus\implies$ $-\frac 12<f(0)+f(1)+g(0)+g(1)<\frac 12\ \ \ (1)$ .

$\left\{\begin{array}{ccc}
a=0\ \wedge\ b=0 & \implies & -\frac 14<f(0)+g(0)<\frac 14\\\\
a=1\ \wedge\ b=1 & \implies & \frac 34\ <f(1)+g(1)<\frac 54\end{array}\right\|\bigoplus\ \implies\ \frac 12<f(0)$ $+f(1)+g(0)+g(1)<\frac 32\ \ \ (2)$ .

From the relations $(1)$ , $(2)$ obtain that $-\frac 12<f(0)+f(1)+g(0)+g(1)<\frac 12<f(0)+f(1)+g(0)+g(1)<\frac 32$ , what is falsely.



PP4. Construct outside of the triangle $ABC$ the rhombus $ABDE$ , $ACFG$ . Denote $\left\{\begin{array}{c}
I\in CD\cap BF\\\
H\in AB\cap CD\\\
J\in AC\cap BF\end{array}\right\|$ . Prove that $[AHIJ]=[BIC]$ .

Proof. $\left\{\begin{array}{c}
AC=b\ ;\ AB=c\\\
AJ=x\ ;\ AH=y\end{array}\right\|$ $\implies$ $\left\{\begin{array}{ccccccc}
AJ\parallel GF & \implies & \frac {AJ}{GF}=\frac {BA}{BG} & \implies & \frac xb=\frac {c}{c+b} & \implies & x=\frac {bc}{b+c}\\\\
AH\parallel ED & \implies & \frac {AH}{ED}=\frac {CA}{CE} & \implies & \frac yc=\frac {b}{c+b} & \implies & y=\frac {bc}{b+c}\end{array}\right\|$ $\implies$ $x=y=\frac {bc}{b+c}$ .

Observe that $[AHIJ]=[BIC]\iff$ $[ABJ]=[BCH]\iff$ $\left\{\begin{array}{c}
cx=b(c-y)\\\
(x=y)\end{array}\right\|$ $\iff$ $x=y=\frac {bc}{b+c}$ , what is truly. Remark that $\boxed{\frac 1x=\frac 1b+\frac 1c}$ .



PP5. Let $\triangle ABC$ with incenter $I$ . Let $D$ , $E$ , $F$ be incenters of triangles $IBC$ , $ICA$ , $IAB$ respectively. Prove that $AD\cap BE\cap CF\ne\emptyset$ .

Proof (trigonometric). $\left\{\begin{array}{ccc}
\triangle ADB & \implies & \frac{DB}{DA}=\frac{sin\widehat{DAB}}{sin\frac {3B}{4}}\\\\
\triangle ADC & \implies & \frac{DA}{DC}=\frac{sin\frac {3C}{4}}{sin\widehat{DAC}}\\\\
\triangle BDC & \implies & \frac {DC}{DB}=\frac {\sin\frac B4}{\sin\frac C4}\end{array}\right\|\ \bigodot\ \implies\ \frac{sin\widehat{DAB}}{sin\widehat{DAC}}=\frac{sin\frac{C}{4}}{sin\frac{3C}{4}}.\frac{sin\frac{3B}{4}}{sin\frac{B}{4}}$ a.s.o.

In conclusion, using the trigonometric form of the Ceva's theorem obtain that $AD\cap BE\cap CF\ne\emptyset$ .



PP6. Let $ABC$ be a triangle. For two points $\{L,S\}\subset (BC)$ define $M\in (AC)$ , $N\in (AB)$ for which

$LM\parallel AB$ , $LN\parallel AC$ . Denote $X\in AS\cap LN$ and $Y\in AS\cap LM$ . Prove that $BX\parallel CY$ .


Proof. From the implications $\left\{\begin{array}{ccc}
XL\parallel AC & \implies & \frac {SX}{SA}=\frac {SL}{SC}\\\\
YL\parallel AB & \implies & \frac {SA}{SY}=\frac {SB}{SL}\end{array}\right\|$ obtain that $\frac {SX}{SY}=\frac {SB}{SC}$ , i.e. $BX\parallel CY$ .


PP7.Given are a rectangle $ MATE$ and two points $ S \in (ME)$ , $ R \in (MA)$ so that $ RS\perp MT$ , $ Q \in (RE)$ , $ MQ\perp RE$. Prove that $ QS\perp QT$.

Prove . Denote $ P\in MQ\cap AT$ . Observe that $ \left\|\begin{array}{ccc}
AMP\sim MER & \implies & AP=MR\cdot\frac {AM}{ME}\\\\
MRS\sim MEA & \implies & MS=MR\cdot \frac {MA}{ME}\end{array}\right\|\implies AP=MS$ $ \implies PS\perp ME$ .

$ \left\|\begin{array}{ccccc}
AP\perp RE & \implies & ARQP\ -\ \mathrm{ciclic} & \implies & MQ\cdot MP=MR\cdot MA\\\\
RS\perp AT & \implies & ARSE\ -\ \mathrm{ciclic} & \implies & MR\cdot MA=MS\cdot ME\end{array}\right\|$ $ \implies$ $ MQ\cdot MP=$ $ MS\cdot ME\implies PSQE\ -\ \mathrm{ciclic}$ .

Since $ PS\perp SE$ si $ TP\perp TE$ obtain that $ T$ , $ Q$ , $ S$ belong to the circle with the diameter $ PE$ . Since $ PE=ST$ obtain in conclusion that $ QS\perp QT$ .



PP8. Let $ ABC$ be a triangle with the incircle $ w=C(I)$ . Denote $ M\in BC\cap w$ . Consider the points $ D\in BC$ , $ E\in CA$ ,

$ F\in AB$ for which $ \frac {DB}{DC}=\frac {BF}{CE}$ . For a point $ P\in AI$ denote $ K\in DF\cap BP$ , $ L\in DE\cap CP$ . Show that $ KL\parallel EF$ .


Proof. Denote $ M\in AI\cap BC$ . From $ \left\|\begin{array}{c}
\frac {KF}{KD}=\frac {PA}{PM}\cdot\frac {BF}{BD}\cdot\frac {BM}{BA}\\\\
\frac {LE}{LD}=\frac {PA}{PM}\cdot \frac {CE}{CD}\cdot\frac {CM}{CA}\end{array}\right\|$ obtain $ \frac {KF}{KD}=\frac {LE}{LD}$ , i.e. $ KL\parallel EF$ because $ \frac {BF}{BD}=\frac {CE}{CD}$ and $ \frac {BM}{AB}=\frac {CM}{CA}$ .


PP9. Consideram un paralelogram $ ABCD$ . Notam cercul $ w$ circumscris triunghiului $ ABC$ si punctele $ \{A,E\} = AD\cap w$ ,

$ \{C,F\} = CD\cap w$ . Sa se arate ca centrul $ O$ al cercului circumscris triunghiului $ DEF$ apartine cercului $ w$ si $ OD\perp AC$ .


Proof.


PP10. Given an $A$- right triangle $ABC$ with $b\le c$ , where $h_a$ , $w_a$ , $m_a$ are its altitude, bisector and median from vertex $A$ respectively. Calculate $\lim_{b\rightarrow c}\frac{m_a-h_a}{w_a-h_a}$ .
Proof. From the relations $2m_a=a$ , $ah_a=bc$ and $w_a=\frac {2bc\cdot\cos\frac A2}{b+c}=\frac {bc\sqrt 2}{b+c}$ obtain that $\frac{m_a-h_a}{w_a-h_a}=\frac {2am_a-2ah_a}{2aw_a-2ah_a}=$ $\frac {a^2-2bc}{\frac {2abc\sqrt 2}{b+c}-2bc}=$

$\frac {(b^2+c^2-2bc)(b+c)}{2bc\cdot\left[\sqrt {2\left(b^2+c^2\right)}-(b+c)\right]}=$ $\frac {(b-c)^2(b+c)\left[\sqrt {2\left(b^2+c^2\right)}+(b+c)\right]}{2bc(b-c)^2}\stackrel{(b\ne c)}{=}$ $\frac {(b+c)\left[\sqrt {2\left(b^2+c^2\right)}+(b+c)\right]}{2bc}$ $\implies$

$\lim_{b\nearrow c}\frac{m_a-h_a}{w_a-h_a}\stackrel{(t=\frac bc)}{=}\lim_{t\nearrow 1}\frac {(t+1)\left[\sqrt {2\left(t^2+1\right)}+(t+1)\right]}{2t}=4$ .



PP11 (INMO 1995). Let $ABC$ be an acute triangle with $A = 30^{\circ}$ , the orthocenter $H$ and the midpoint $M$ of $[BC]$ .

Consider the reflection $T$ of $H$ w.r.t. $M$ , i.e. $M\in HT$ , $MH=MT$ . Prove that $AT = 2\cdot BC$ .


Proof. Observe that $BHCT$ is a parallelogram $\implies$ $\left\{\begin{array}{ccc}
CT\parallel BH\perp AC & \implies & CT\perp CA\\\
BT\parallel CH\perp AB & \implies & BT\perp BA\end{array}\right\|$ $\implies$ $[AT]$ is a diameter in the circumcircle $C(O,R)$

of $\triangle ABC$ . Since $m\left(\widehat{BOC}\right)=2\cdot A=60^{\circ}$ and $OB=OC$ obtain that $\triangle BOC$ is equilateral, i.e. $2\cdot BC=2\cdot OB=2R$ $\implies$ $2\cdot BC=AT$ .



PP12. Let $ABCD$ be a quadrilateral with $\left\{\begin{array}{c}
m\left(\widehat{BAC}\right) = 30^\circ\ ;\ m\left(\widehat{CAD}\right) = 20^\circ\\\\
m\left(\widehat{ABD}\right) = 50^\circ\ ;\ m\left(\widehat{DBC}\right) = 30^\circ\end{array}\right\|$ . Prove that $P\in AC\cap BD\implies PC = PD$ .

Here is a short trigonometrical proof of this easily and nice proposed problem.


PP13. Let $OAB$ be a triangle for which $OA=OB$ . For a mobile point $M\in OB$ define $N$ for which $NB\parallel OA$, $NM\parallel AB$ .

Denote the second intersection $Q$ of $AM$ with the circumcircle of $\triangle BMN$ . Prove that the line $NQ$ pass always through a fixed point.


Proof. Denote $R\in AO\cap NQ$ . Prove easily that $\widehat {MBA}\equiv\widehat {MQB}$ and $OMQR$ is cyclically. Therefore, $AB^2=AM\cdot AQ=$

$AO\cdot AR\implies $$\boxed{AR=\frac {AB^2}{AO}}$ (constant). If $m\left(\widehat {AOB}\right)=\phi$ , then $AR=4\cdot AO\cdot\sin^2\frac {\phi}{2}$ , i.e. $OR=OA\cdot |1-2\cdot \cos\phi |$ .



PP14. Solve in $\mathbb R$ the equation $\sqrt[5]{x^3+2x}=\sqrt[3]{x^5-2x}$ .

Proof. $\sqrt[5]{x^3+2x}=\sqrt[3]{x^5-2x}=t\iff$ $ x^3+2x=t^5$ and $x^5-2x=t^3\implies$ $x^5+x^3=t^5+t^3$ . Since the function $u\rightarrow u^5+u^3$

on pe $\mathbb {R}$ is increasing obtain that $t=x$ . Therefore, $x^5-x^3-2x=0$ $\iff$ $x(x^2-2)(x^2+1)=0$ with the solution $\left\{0,\pm\sqrt{2}\right\}$ .



PP15. Find all real solutions of the equation $x^2 - 19 \lfloor x \rfloor + 88 = 0$ .

Proof. Denote $\lfloor x \rfloor =z\iff z\in\mathbb Z\ \wedge\ z\le x< z+1$ . Thus, the given equation becomes $x^2=19z-88\iff$

$\boxed{x=\sqrt {19z-88} }\ (*)$ , where $z\in\mathbb Z$ and $5\le z\le \sqrt {19z-88}<z+1\iff$ $z^2\le 19z-88<(z+1)^2\iff$

$\left\{\begin{array}{c}
z\in \mathbb Z\ ,\ z\ge 5\\\
z^2-19z+88\le 0\\\
z^2-17z+89>0\end{array}\right\|$ $\iff$ $z\in\overline{8,11}\stackrel{(*)}{\iff}$ $x\in \left\{\sqrt {19z-88}\ |\ z\in\overline{8,11}\right\}\iff$ $x\in\left\{8,\sqrt {83},\sqrt {102},11\right\}$ . .



PP16. Find all values of $m\in\mathbb R$ such that the equation $ 4^{x^2 - 2x + 2} - m 2^{x^2 - 2x +3} + 3m -2 = 0$

have only four real zeroes such that there is the chain $ x_1 < -1 < x_2 < 1 < x_3 < 2 < x_4$ .


Proof.


PP17. Let $\triangle{ABC}$ be an acute triangle with the orthocenter $H$ . The circle $w$ with the diameter $[BC]$ intersects $AC$ and $AB$ at points $E$

and $F$ respectively, i.e. $H\in BE\cap CF$ . The tangents drawn to the circle $w$ through $E$ and $F$ intersect at $P$ . Show that $P\in AH$ .


Proof 1. Denote the orthocenter $H$ of $\triangle ABC$ , i.e. $H\in BE\cap CF$ and the midpoints $M$ , $N$ of the segments $[BC]$ , $[AH]$ respectively.

Thus, $\left\{\begin{array}{ccc}
NF=NH & \implies & m\left(\widehat{NFC}\right)=B\\\
NE=NH & \implies & m\left(\widehat{NEB}\right)=C\end{array}\right\|$ . Since $\left\{\begin{array}{c}
m\left(\widehat{PFC}\right)=B\\\
m\left(\widehat{PEB}\right)=C\end{array}\right\|$ obtain that $P\in FN\cap EN\implies$ $P\equiv N\in AH$ .

Proof 2. Apply the Pascal's theorem to the cyclical degenerated hexagon $BFFCEE$ and obtain that $\left\{\begin{array}{ccc}
A\in BF\cap CE\\\
P\in FF\cap EE\\\
H\in FC\cap EB\end{array}\right\|\implies P\in AH$ .

Proof 3. Let $L\in EF\cap BC$ and polar $l$ of $L$ $\iff$ $A\in l\ \wedge\ l\perp BC$ $\iff$ $l\equiv AH$ . Know that $EF$ is polar $p$ of $P$ and $L\in p$ $\iff$ $P\in l$ $\iff$ $P\in AH$ .

Proof 4. Denote the orthocenter $H$ of $\triangle ABC$ , i.e. $H\in BE\cap CF$ and the midpoints $M$ , $N$ of the segments $[BC]$ , $[AH]$ respectively. Observe that

the point $N$ belongs to the circumcircle of $\triangle EMF$ - the Euler's circle of $\triangle ABC$ with the diameter $[MN]$ and $\left\{\begin{array}{c}
m\left(\widehat{NFH}\right)=m\left(\widehat{NHF}\right)=B\\\
m\left(\widehat{NEH}\right)=m\left(\widehat{NHE}\right)=C\end{array}\right\|$ $\implies$

The line $NF$ is tangent in the point $F\in w$ to the circle $w$ with diameter $[BC]$ and the line $NE$ is tangent in the point $E\in w$ to the circle $w$ , i.e. $P\equiv N\in AH$ .



PP18. Let $p\in \mathbb C[X]$ be a polynomial of degree $n\in \mathbb N^*$ such that $p(k) = \frac{1}{k}$ for any $k\in\overline{1,n + 1}$ . Find $p (n + 2)$ .

Proof. Observe that the polynomial $Q(X)=X\cdot P(X)-1$ of degree $(n+1)$ has the roots $k\in\overline{1,n + 1}$ . Therefore we can write

$Q(X)=a\cdot (X-1)(X-2)\cdots(X-n)[X-(n+1)]$ . Thus, $-1=Q(0)=a(-1)^{n+1}(n+1)!$ , i.e. $a\cdot (n+1)!=(-1)^n$ .

In conclusion, $Q(n+2)=a(n+1)!=(-1)^n=(n+2)P(n+2)-1$ $\implies$ $P(n+2)=\frac {1+(-1)^n}{n+2}$ .



PP19. Let $w=C(O,r)$ be a circle and let $l$ be a line which is tangent in a fixed point $A\in w$ to the circle $w$ .

For a mobile point $R\in w$ denote its projection $Q$ to given line $l$ . Determine the maximum area of $\triangle PQR$ .


Proof 1. Denote $m\left(\widehat{POR}\right)=2\phi$ , where $0\le\phi \le\frac {\pi}{2}$ . Prove easily that $[PQR]=\frac 12\cdot PR\cdot PQ\cdot\sin\phi =$ $\frac 12\cdot 2r\sin\phi\cdot 2r\sin\phi\cos\phi\cdot\sin\phi\iff$

$\boxed{[PQR]=2r^2\sin^3\phi\cos\phi}$ . Thus, $[PQR]$ is maximum $\iff$ $\sin^3\phi\cos\phi$ is maximum on $\left[0,\frac {\pi}{2}\right]$ $\iff$ $\sin^6\phi\cos^2\phi$ is maximum $\iff$

$\frac {\sin^2\phi}{3}\cdot\frac {\sin^2\phi}{3}\cdot\frac {\sin^2\phi}{3}\cdot\cos^2\phi$ is maximum. Observe that $\frac {\sin^2\phi}{3}+\frac {\sin^2\phi}{3}+\frac {\sin^2\phi}{3}+\cos^2\phi =1$ (constant). Therefore, $[PQR]$ is maximum $\iff$

$\frac {\sin^2\phi}{3}=\cos^2\phi =\frac 14\iff$ $\boxed{\ \phi =\frac {\pi}{3}\ }$ and in this case the maximum value of the area $[PQR]$ is $\frac {3r^2\sqrt 3}{8}$ , i.e. $\boxed{\ [PQR]\le\frac {3r^2\sqrt 3}{8}\ }$ .

Proof 2. Denote $\{P,T\}=PO\cap w$ , $S\in PO$ for which $RS\perp PO$ and $SP=u$ , $ST=v$ , where $\boxed{u+v=2r}$ . Observe that

$[PQR]=$ $[PSR]=$ $\frac 12\cdot SP\cdot SR$ , i.e. $\boxed{[PQR]=\frac 12\cdot u\sqrt {uv}}$ . In conclusion, $[PQR]$ is maximum $\iff$ $u^3v$ is maximum $\iff$ $\frac u3\cdot\frac u3\cdot\frac u3\cdot v$

is maximum. Since $\frac u3+\frac u3+\frac u3+v=2r$ (constant) obtain that $[PQR]$ is maximum $\iff$ $\frac u3=v=\frac r2$ , i.e. $[PQR]\le \frac {3r^2\sqrt 3}{8}$ .

Remark. $3=\frac uv=\left(\frac {RP}{RT}\right)^2=\tan^2\widehat{PTR}=\tan^2\widehat {QPR}\implies$ $\tan\widehat{QPR}=\sqrt 3\iff$ $\phi =\frac {\pi}{3}$ (see the first proof).



PP20. $\triangle ABC\Longrightarrow \frac{1}{b+c} +\frac{1}{c+a} +\frac{1}{a+b} \le \frac{3(R+r)}{4S}$ .

Proof. From $(b+c)^2\ge 4bc$ obtain that $\sum\frac {1}{b+c}\le $ $\sum\frac {b+c}{4bc}=$ $\frac 14\cdot \sum\left(\frac 1b+\frac 1c\right)=$ $\frac 12\cdot\sum \frac 1a=$ $\frac{ab+bc+ca}{2abc}$ . Let's prove

that $ \frac{ab+bc+ca}{2abc}\le \frac{3(R+r)}{4S}$ . This is equivalent with $ \frac{s^2+r^2+4Rr}{8RS}\le $ $\frac{3(R+r)}{4S}$ $\Longleftrightarrow $ $s^2+r^2+4Rr\le$ $ 6R^2+6Rr$ $\Longleftrightarrow$

$ s^2+r^2\le 6R^2+2Rr$ . Using that $ s^2\le 4R^2+4Rr+3r^2$ $\implies$ $ s^2+r^2\le $ $4R^2+4Rr+4r^2$ . So we must prove that

$ 4R^2+4Rr+4r^2\le $ $6R^2+2Rr$ $\Longleftrightarrow $ $0\le R^2-Rr-2r^2$ $\Longleftrightarrow $ $0\le (R+r)(R-2r)$ which is true .



PP21. Let $ABCD$ be a parallelogram with $AD=a$ and let $E\in (BD)$ be a point for which denote

$\left\{\begin{array}{c}
F\in AE\cap BC\\\
G\in AE\cap CD\end{array}\right\|$ . Suppose that $\left\{\begin{array}{c}
AE=2\\\
CF=3\end{array}\right\|$ . Find the ratio $\frac {[ABE]}{[DEG]}$ .


Proof. Denote $EG=x$ . Observe that $\frac {EB}{ED}=\frac {EA}{EG}=\frac 2x$ and $\frac {GD}{GC}=\frac {AD}{CF}=\frac a3$ . Apply the Menelaus'

theorem
to the transversal $\overline{FGE}$ and $\triangle BCD\ :$ $\frac {FC}{FB}\cdot\frac {EB}{ED}\cdot\frac {GD}{GC}=1$ $\iff$ $\frac {3}{3+a}\cdot \frac 2x\cdot\frac a3=1\iff$

$x(a+3)=2a\iff$ $\boxed{x=\frac {2a}{a+3}}$ . In conclusion, $\frac {[ABE]}{[DEG]}=\left(\frac 2x\right)^2\implies$ $\frac {[ABE]}{[DEG]}=\left(\frac {a+3}{a}\right)^2$ .



PP22. If the triangles $BCM\ ,\ CDN$ are equilateral and are outside of the parallelogram $ABCD$ , then the triangle $AMN$ is equilateral.

Proof 1 (complex numbers). Denote $w=\cos\frac {\pi}{3}+i\cdot\sin\frac {\pi}{3}$ . Observe that $\left\{\begin{array}{c}
w^3=-1\ ,\ w^2-w+1=0\\\\
\overline w=1-w=\frac 1w=-w^2\end{array}\right|$ .

Thus, $A(a)$ , $B(b)$ , $C(c)$ , $D(d)$ and $M(m)$ , $N(n)$ so that $a+c=b+d$ and $\left\{\begin{array}{c}
m-c=w(b-c)\\\\
n-d=w(c-d)\end{array}\right|\ \implies$

$\left\{\begin{array}{c}
m=(1-w)c+wb\\\\
n=(1-w)d+wc\end{array}\right|\ (*)$ . Therefore, $\triangle MAN$ is equilateral $\iff$ $a-m=w(m-n)\iff$

$a=(1-w)m+wn\iff$ $b+d=c+m+w(n-m)\stackrel{(*)}{\iff}$ $\left(w^2-w+1\right)(b-2c+d)=0$ , what is truly.

Remark. $b-2c+d=0\iff$ the point $C$ is the midpoint of the diagonal $[BD]$ , what is falsely. In conclusion, $b+d\ne 2c$ .

Proof 2 (synthetic). Denote $\phi =m\left(\widehat{ABC}\right)$ . Observe that $\left\{\begin{array}{c}
AD=MB=MC\ ;\ DN=BA=CN\\\\
m\left(\widehat{ADN}\right)=m\left(\widehat{MBA}\right)=m\left(\widehat{MCN}\right)=\phi +60^{\circ}\end{array}\right|$ $\implies$

$\triangle ADN$ $\cong\triangle MBA\cong$ $\triangle MCN$ $\implies\ AN=MA=MN$ . In conclusion, the triangle $AMN$ is equilateral.



PP23. Solve the equation $(\sin x - 2\cos x)^4 + (\sin x - 2\cos x)(5 - 7\sin 2x + 4\cos ^2x)\cos x - \cos ^4x = 0$ .

Proof. $(\sin x - 2\cos x)^4 + (\sin x - 2\cos x)(5 - 7\sin 2x + 4\cos ^2x)\cos x - \cos ^4x = 0\iff$

$(\tan x - 2)^4+ (\tan x - 2)\cdot\frac {5 - 7\sin 2x + 4\cos ^2x}{\cos^2x} - 1 = 0\ (*)$ Observe that $\frac {5 - 7\sin 2x + 4\cos ^2x}{\cos^2x}=$

$\frac {5\left(\sin^2x+\cos^2x\right) - 14\sin x\cos x + 4\cos ^2x}{\cos^2x}=$ $\frac {5\sin^2x - 14\sin x\cos x + 9\cos ^2x}{\cos^2x}$ . Therefore,

$\frac {5 - 7\sin 2x + 4\cos ^2x}{\cos^2x}=5\tan^2x - 14\tan x + 9$ . Denote $\boxed{\tan x-2=t}$ . Thus, the equation $(*)$ becomes

$t^4+t\left[5(t+2)^2-14(t+2)+9\right]-1=0$ , i.e. $t^4+5t^3+6t^2+t-1=0\iff$ $(t+1)^2(t^2+3t-1)=0$ a.s.o.



PP24. Solve ${{\left( \dfrac{1+i}{\sqrt{2}} \right)}^{x}}+{{\left( \dfrac{1-i}{\sqrt{2}} \right)}^{x}}=\sqrt{2}\ ,\ x\in\mathbb Z\ .$

Proof. Observe that ${{\left( \dfrac{1+i}{\sqrt{2}} \right)}^{x}}\cdot {{\left( \dfrac{1-i}{\sqrt{2}} \right)}^{x}}=1$ and $\left( \dfrac{1\pm i}{\sqrt{2}} \right)^8=1$ . Thus, with the substitution ${{\left( \dfrac{1+i}{\sqrt{2}} \right)}^{x}}=y$ our equation becomes

$y+\frac 1y=\sqrt 2\implies $ $y^2-y\sqrt 2+1=0\implies$ $y\in \left\{\frac {1\pm i}{\sqrt 2}\right\}\implies$ ${{\left( \dfrac{1+i}{\sqrt{2}} \right)}^{x}}=\left\{\frac {1\pm i}{\sqrt 2}\right\}$ $\implies x\in \left|\left| 8k\pm 1\right| k\in\mathbb Z\right|$ .



PP25 (2012 Philippine Math Olympiad National Finals Oral Round). Solve the system

$(x+y)(z+1)=(x+z)(y+1)=(y+z)(x+1)=2a(a+1)$ .


Proof 1. The system is symmetrically. From the first equation get $x-z=y(x-z)$ , i.e. $x=z\ \vee\ y=1$ .

$\blacktriangleright$ Case $1$ . If $x=z$ the system becomes $(x+y)(x+1)=2x(y+1)=2a(a+1)$ ,

i.e. $x^2+y=xy+x\ \vee\ x(y+1)=a(a+1)\iff$ $x(x-y)=x-y\ \vee\ x(y+1)=a(a+1)$ . Thus,

$x=z=1$ and $y=a^2+a-1$ or $x=z=y$ and $x^2+x-a(a+1)=0\begin{array}{cc}
\nearrow & a\\\\
\searrow & -a-1\end{array}$ .

Therefore, in this case the solutions are $\left\|\begin{array}{ccc}
1 & a^2+a-1 & 1\\\\
a & a & a\\\\
-a-1 & -a-1 & -a-1\end{array}\right\|\ \ (*)$ .

$\blacktriangleright$ Case $2$ . If $y=1$ the system becomes $(x+1)(z+1)=2(x+z)=2a(a+1)$ , i.e. $\left\{\begin{array}{c}
x+z=a(a+1)\\\\
1+xz=x+z\end{array}\right\| \iff$

$z=a(a+1)-x$ and $x^2-a(a+1)x+a^2+a-1=0\begin{array}{cc}
\nearrow & a^2+a-1\\\\
\searrow & 1\end{array}$ .

So get $\left\|\begin{array}{ccc}
a^2+a-1 & 1 & 1\\\\
1 & 1 & a^2+a-1\end{array}\right\|$ . In conclusion, all solutions are $\left\|\begin{array}{ccc}
a^2+a-1 & 1 & 1\\\\
1 & a^2+a-1 & 1\\\\
1 & 1 & a^2+a-1\\\\
a & a & a\\\\
-a-1 & -a-1 & -a-1\end{array}\right\|$ .

Proof 2. Using the substitution $\left\{\begin{array}{c}
x+yz=u\\\
y+zx=v\\\
z+xy=w\end{array}\right\|$ obtain the system $u+v=v+w=w+u=2a(a+1)$ what has the solution

$u=v=w=a(a+1)$ , i.e. the initial system becomes $x+yz=y+zx=z+xy=a(a+1)$ which is equivalently with the

system $\left\{\begin{array}{c}
(x-y)=z(x-y)\\\
(y-z)=x(y-z)\\\
x+xz=a(a+1)\end{array}\right\|\iff$ $\left\|\begin{array}{c}
x=y\ \vee\ z=1\\\
y=z\ \vee\ x=1\\\
x+yz=a(a+1)\end{array}\right\|$ . In conclusion,

$\left\{\begin{array}{cc}
x=y & \begin{array}{cccccc}
\nearrow & y=z & \implies & x=y=z & \in & \{a,-(a+1)\}\\\\
\searrow & x=1 & \implies & x=y=1 & ; & z=a^2+a-1\end{array}\\\\
z=1 & \begin{array}{cccccc}
\nearrow & y=z & \implies & y=z=1 & ; & x=a^2+a-1\\\\
\searrow & x=1 & \implies & x=z=1 & ; & y=a^2+a-1\end{array}\end{array}\right\|$ $\implies\left\|\begin{array}{ccc}
a & a & a\\\\
-a-1 & -a-1 & -a-1\\\\
1 & 1 & a^2+a-1\\\\
a^2+a-1 & 1 & 1\\\\
1 & a^2+a-1 & 1\end{array}\right\|$ .



PP26. Let $x^2-ax+b=0$ be a equation with the roots $x_1$ and $x_2$ . Ascertain the relation $\mathrm R(a,b)$ so that $x_1^2=x_2+1\ \ \vee\ \ x_2^2=x_1+1$ . For $a=5$ find $b$ .

Proof 1 (directly). Observe that $x_1+x_2=a$ and $x_1x_2=b$ . Thus, $x_1^2=x_2+1\ \vee\ x_2^2=x_1+1\iff$ $x_1^2-x_2-1=0\ \vee\ x_2^2-x_1-1=0\iff$ $\left(x_1^2-x_2-1\right)\left(x_2^2-x_1-1\right)=0\iff$

$x_1^2x_2^2-\left(x_1^3+x_2^3\right)-\left(x_1^2+x_2^2\right)+x_1x_2+\left(x_1+x_2\right)+1=0\iff$ $b^2-\left(a^3-3ab\right)-\left(a^2-2b\right)+b+a+1=0\iff$ $\boxed{a^3+a^2-(1+3b)a=b^2+3b+1}$ .

For $a=5$ obtain that $150-5(3b+1)=b^2+3b+1\iff$ $b^2+18b-144=0\iff$ $b\in\{6,-24\}$ .

Proof 2 (common root). Observe that $x_1+x_2=a$ and $x_1x_2=b$ . Thus, $x_1^2=x_2+1\ \vee\ x_2^2=x_1+1\iff$ $x_1^2=a-x_1+1\ \vee\ x_2^2=a-x_2+1\iff$ $x_1^2+x_1-(a+1)=0$ or

$x_2^2+x_2-(a+1)=0\iff$ the equations $\left\{\begin{array}{c}
x^2-ax+b=0\\\\
x^2+x-(a+1)=0\end{array}\right|$ have at least a common root $\iff$ $\left|\begin{array}{cc}
1 & b\\\\
1 & -(a+1)\end{array}\right|^2=$ $\left|\begin{array}{cc}
1 & -a\\\\
1 & 1\end{array}\right|\cdot\left|\begin{array}{cc}
-a & b\\\\
1 & -(a+1)\end{array}\right|\iff$

$(a+b+1)^2=(a+1)\left(a^2+a-b\right)\iff$ $a^2+2a(b+1)+(b+1)^2=a(a+1)^2-b(a+1)\iff$ $\boxed{a^3+a^2-(1+3b)a=b^2+3b+1}$ .

Proof 3 ("brute force"). Eliminate $x_1$ and $x_2$ between the relations $\left\{\begin{array}{c}
x_1+x_2=a\\\\
x_1x_2=b\\\\
x_1^2=ax_1-b=x_2+1\end{array}\right|\implies$ $\left\{\begin{array}{ccc}
x_1x_2 & = & b\\\\
x_1+x_2 & = & a\\\\
ax_1-x_2 & = & b+1\end{array}\right|\implies$ $\left\{\begin{array}{ccc}
x_1x_2 & = & b\\\\
x_1 & = & \frac {a+b+1}{a+1}\\\\
x_2 & = & \frac {a^2-(b+1)}{a+1}\end{array}\right|\implies$

$\left[a+(b+1)\right]\cdot\left[a^2-(b+1)\right]=b(a+1)^2\iff$ $a^3-a(b+1)+a^2(b+1)-(b+1)^2=ba^2+2ba+b\iff$ $\boxed{a^3+a^2-(1+3b)a=b^2+3b+1}$ .
This post has been edited 145 times. Last edited by Virgil Nicula, Nov 22, 2015, 2:33 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a