350. Another (easy) integrals.

by Virgil Nicula, Jul 18, 2012, 6:07 PM

PP1. Ascertain $\int\frac {1}{x\left(x^p+a\right)}\ \mathrm{dx}$ where $p\in\mathcal N^*$ and $a\in\mathcal R^*$ .

Proof. $\int\frac {1}{x\left(x^p+a\right)}\ \mathrm{dx}=$ $\frac 1p\cdot \int\frac {\left(x^p\right)'}{x^p\left(x^p+a\right)}\ \mathrm{dx}=$ $\frac 1p\cdot F\left(x^p\right)+\mathcal C$ where $t=x^p$ and $F=\int\frac {1}{t(t+a)}\ \mathrm {dt}=$

$\frac 1a\int\left(\frac 1t-\frac {1}{t+a}\right)\ \mathrm{dt}=$ $\frac 1a\cdot\ln\left|\frac {t}{t+a}\right|+\mathrm C$ . In conclusion, $\boxed{\int\frac {1}{x\left(x^p+a\right)}\ \mathrm{dx}=\frac {1}{pa}\cdot\ln\left|\frac {x^p}{x^p+a}\right|+\mathrm C}$ .



PP2. Ascertain $\int\frac {\sin^3x}{a+\cos x}\ \mathrm{dx}$ where $a\in\mathbb R\ ,\ |a|>1$ .

Proof. $\int\frac {\sin^3x}{a+\cos x}\ \mathrm{dx}=$ $-\int\frac {\left(1-\cos^2x\right)(\cos x)'}{a+\cos x}\ \mathrm{dx}=$ $\int\frac {\left(\cos^2x-1\right)(\cos x)'}{a+\cos x}\ \mathrm{dx}=$ $F(\cos x)+\mathcal C$ where $t=\cos x$

and $F=\int\frac {t^2-1}{t+a}\ \mathrm {dt}=$ $\int\frac {\left(t^2-a^2\right)+\left(a^2-1\right)}{t+a}\ \mathrm{dt}=$ $\int\left(t-a+\frac {a^2-1}{t+a}\right)\ \mathrm {dt}=$ $\frac {t^2}{2}-at+\left(a^2-1\right)\ln|t+a|+\mathcal C$ .

In conclusion, $\boxed{\int\frac {\sin^3x}{a+\cos x}\ \mathrm{dx}=\frac 12\cdot \cos^2 x-a\cos x+\left(a^2-1\right)\ln|a+\cos x|+\mathcal C}$ .



PP3. Ascertain $\int\frac {1}{\cos x}\ \mathrm{dx}$ .

$\blacktriangleright\ \frac {1-\sin x}{\cos x}=$ $\frac {\cos x}{1+\sin x}$ $\implies$ $\frac {1}{\cos x}=\frac {\sin x}{\cos x}+\frac {\cos x}{1+\sin x}\implies$ $\frac {1}{\cos x}=-\frac {(\cos x)'}{\cos x}+\frac {(1+\sin x)'}{1+\sin x}\implies$ $\int\frac {1}{\cos x}\ \mathrm{dx}\implies$ $\boxed{\int\frac {1}{\cos x}\ \mathrm{dx}=\ln\left|\frac {1+\sin x}{\cos x}\right|+\mathrm C}$ .

$\blacktriangleright\ \int\frac {1}{\cos x}\ \mathrm{dx}=$ $\int\frac {\cos x}{1-\sin^2x}\ \mathrm{dx}=$ $- \int\frac {(\sin x)'}{\sin^2-1}\ \mathrm{dx}=$ $-F(\sin x)+\mathrm C$ where $t=\sin x\ ,\ F=\int\frac {1}{t^2-1}\ \mathrm{dt}=$ $\frac 12\cdot\ln\left|\frac {1-t}{1+t}\right|+\mathrm C\implies$

$\int\frac {1}{\cos x}\ \mathrm {dx}=$ $\frac 12\cdot\ln\left|\frac {1+\sin x}{1-\sin x}\right|+\mathrm C=$ $\frac 12\cdot \ln\left|\frac {(1+\sin x)^2}{1-\sin^2x}\right|+\mathrm C=$ $\frac 12\cdot\ln\left|\frac {1+\sin x}{\cos x}\right|^2+\mathrm C\implies$ $\boxed{\int\frac {1}{\cos x}\ \mathrm{dx}=\ln\left|\frac {1+\sin x}{\cos x}\right|+\mathrm C}$ .

Remark. $\frac {1+\sin x}{\cos x}=\frac {\left(\cos\frac x2+\sin\frac x2\right)^2}{\cos^2\frac x2-\sin^2\frac x2}=$ $\frac {\cos\frac x2+\sin\frac x2}{\cos\frac x2-\sin\frac x2}=$ $\frac {1+\tan\frac x2}{1-\tan\frac x2}=\tan\left(\frac {\pi}{4}+\frac x2\right)\implies$ $\boxed{\int\frac {1}{\cos x}\ \mathrm{dx}=\ln\left|\frac {1+\sin x}{\cos x}\right|+\mathrm C=\ln\left|\tan\left(\frac {\pi}{4}+\frac x2\right)\right|+\mathrm C}$ .

Prove similarly that $\boxed{\int\frac {1}{\sin x}\ \mathrm{dx}=\ln\left|\frac {\sin  x}{1+\cos x}\right|+\mathrm C=\ln\left|\tan\frac x2\right|+\mathrm C}$ .



PP4. Ascertain $\int x^p(x^p+a)\sqrt[p]{x^p+2a}\ \mathrm{dx}$ where $p\in\mathbb N^*$ and $a\in\mathbb R^*$ .

Proof. $\int x^p(x^p+a)\sqrt[p]{x^p+2a}\ \mathrm{dx}=$ $\frac {1}{2p}\cdot\int \left(2px^{2p-1}+2apx^{p-1}\right)\sqrt [p]{x^{2p}+2ax^p}\ \mathrm{dx}=$ $\frac {1}{2p}\int \left(x^{2p}+2ax^p\right)'\left(x^{2p}+2ax^p\right)^{\frac 1p}\ \mathrm{dx}=$ $\frac {1}{2(p+1)}\left(x^{2p}+2ax^p\right)^{1+\frac 1p}+\mathcal C\implies$

$\boxed{\ \int x^p(x^p+a)\sqrt[p]{x^p+2a}\ \mathrm{dx}=\frac {1}{2(p+1)}x^p\left(x^{p}+2a\right)\sqrt [p]{x^p+2a}+\mathcal C\ }$ . Very nice exercise !



PP5. Ascertain $I(\alpha )=\int\frac {x^{3\alpha -1}}{1+x^{4\alpha}}\ \mathrm{dx}$ .

Proof. $I(\alpha )=\int\frac {x^{3\alpha -1}}{1+x^{4\alpha}}\ \mathrm{dx}=$ $\frac {1}{\alpha }\cdot\int \frac {x^{2\alpha }}{1+x^{4\alpha }}\cdot \left(x^{\alpha }\right)'\ \mathrm{dx}\stackrel{\left(y=x^{\alpha }\right)}{\ =\ }$ $\frac {1}{\alpha }\cdot\int\frac {y^2}{1+y^4}\ \mathrm {dy}$ . See $J_k\ ,\ k\in\overline{0,3}$ from PP1.

Remark. This problem was given at one from the contests of O.J.M. Romania.



PP6. If $p(x) = 2x^6+4x^5+3x^4+5x^3+3x^2+4x+2$. Let $I_{k} = \int_{0}^{\infty}\frac{x^k}{p(x)}$, Where $0<k<5$ . Then find value of $k$ for which $I_{k}$ is smallest.

Proof. Note that $x^6P(x^{-1}) = P(x)$. Also, $x^k \ge 0$ and $P(x) \ge 0$ for all $x \ge 0$ . So, $I_k = \int_{0}^{\infty}\dfrac{x^k}{P(x)}\,dx$ $= \int_{0}^{1}\dfrac{x^k}{P(x)}\,dx + \int_{1}^{\infty}\dfrac{x^k}{P(x)}\,dx$

$= \int_{0}^{1}\dfrac{x^k}{P(x)}\,dx - \int_{1}^{0}\dfrac{u^{-k}}{P(u^{-1})}u^{-2}\,du$ $= \int_{0}^{1}\dfrac{x^k}{P(x)}\,dx + \int_{0}^{1}\dfrac{u^6u^{-(k+2)}}{u^6P(u^{-1})}\,du$ $= \int_{0}^{1}\dfrac{x^k}{P(x)}\,dx + \int_{0}^{1}\dfrac{u^{4-k}}{P(u)}\,du$ $= \int_{0}^{1}\dfrac{x^k+x^{4-k}}{P(x)}\,dx$ .

By AM-GM, $x^{k}+x^{4-k} \ge 2\sqrt{x^{k}x^{4-k}} = 2x^2$ with equality iff $k = 2$ . Thus, $I_k = \int_{0}^{1}\dfrac{x^k+x^{4-k}}{P(x)}\,dx \ge \int_{0}^{1}\dfrac{2x^2}{P(x)}\,dx = I_2$ with equality iff $k = 2$ .



PP7. Calculati $I=\int\frac 1{\cos^3x}\ \text{d}x$ , unde $x\in\left(0\, ,\, \frac {\pi}2\right)$ .

Solutie. $I_1=\int\frac {1}{\cos x}\ \mathrm{dx}=$ $\int\frac {\cos x}{\cos^2x}\ \mathrm{dx}=$ $-\int\frac {(\sin x)^{\prime}}{\sin^2x-1}\ \mathrm{dx}=$ $\frac 12\cdot \ln\frac {1+\sin x}{1-\sin x} +\mathbb C=$ $\ln\left|\frac {\sin\frac x2+\cos\frac x2}{\sin\frac x2-\cos\frac x2}\right|+\mathbb C=$ $\ln\left|\frac{1+\tan\frac x2}{1-\tan\frac x2}\right|+\mathbb C=$ $\ln\left|\tan\left(\frac {\pi}{4}+\frac x2\right)\right|+\mathbb C$ .

$I_3=\int\frac {1}{\cos^3x}\ \mathrm{dx}=$ $\int\frac {\sin^2x+\cos^2x}{\cos^3x}\ \mathrm{dx}=$ $I_1+\int\sin x\cdot \frac {\sin x}{\cos^3x}\ \mathrm{dx}=$ $I_1+u(x)v(x)-\int u^{\prime}(x)v(x)\ \mathrm{dx}$ , where $\left\|\begin{array}{ccc}
u(x)=\sin x & \Longrightarrow & u^{\prime}(x)=\cos x\\\
 v^{\prime}(x)=\frac {\sin x}{\cos^3x} & \Longrightarrow & v(x)=\frac {1}{2\cos^2x}\end{array}\right\|$ .

Therefore, $I_3=I_1+\frac 12\cdot \left(\frac {\sin x}{\cos^2x}-I_1\right)\Longrightarrow$ $I_3=\frac 12\cdot I_1+\frac {\sin x}{2\cos^2x}\Longrightarrow$ $\overline{\underline{\left\|I_3=\frac 12\cdot\ln\left|\tan\left(\frac {\pi}{4}+\frac x2\right)\right|+\frac {\sin x}{1+\cos 2x}+\mathbb C\ \right\|}}$.

Problema propusa. Determinati o relatie de recurenta pentru $I_n=\int\frac 1{\cos^nx}\ \text{d}x$ , unde $x\in\left(0\, ,\, \frac {\pi}2\right)$ and $n\in\mathbb N$ .
This post has been edited 7 times. Last edited by Virgil Nicula, May 1, 2016, 6:34 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404398
  • Total comments: 37
Search Blog
a