182. Another two nice problems with complex numbers (own).

by Virgil Nicula, Dec 2, 2010, 9:59 AM

Quote:
Proposed problem 1 (own). Ascertain $\lambda \in\mathbb R$ so that exist $\left\{z_1,z_2,z_3\right\}\subset\mathbb C$ for which

$\left|z_1\right|=\left|z_2\right|=\left|z_3\right|=1$ and $z_1^3+z_2^3+z_3^3+3\cdot \overline{z_1+z_2+z_3}=12-4\lambda\cdot (1+i)$ .

Proof. $\left\{\begin{array}{c}
\sum z_1^3+3\cdot \overline{\sum z_1}=12-4\lambda\cdot (1+i)\\\\
\sum \overline z_1^3+3\cdot\sum z_1=12-4\lambda\cdot (1-i)\end{array}\right\|\ \implies$ $\left\{\begin{array}{ccc}
\oplus &  : &\sum \left(z_1+\overline {z_1}\right)^3=24-8\lambda\\\\
\ominus & : & \sum \left(z_1-\overline {z_1}\right)^3=-8\lambda\cdot i\end{array}\right\|$ . Denote $z_k=x_k+y_k\cdot i$ , where $k\in\overline{1,3}$ .

Therefore, $\left\{\begin{array}{c}
\sum x_k^3=3-\lambda\\\\
\sum y_k^3=\lambda\end{array}\right\|$ $\implies$ $3=\sum\left(x_k^3+y_k^3\right)\le\sum\left(x_k^2+y_k^2\right)=3$ because for any $k\in\overline {1,3}$ we have $x_k^3+y_k^3\le x_k^2+y_k^2=\left|z_k\right|^2=1$ .

In conclusion, for any $k\in\overline {1,3}\ ,\ x_k^3+y_k^3=x_k^2+y_k^2$ $\iff$ $0\le x_k^2\left(1-x_k\right)+y_k^2\left(1-y_k\right)=0$ $\iff$ $\left\{z_1,z_2,z_3\right\}\subset \{1,i\}$ $\implies$ $\boxed{\ \lambda\in\overline{0,3}\ }$ .

Quote:
Proposed problem 2 (own). Consider the complex number $w=-\frac 12+\frac {\sqrt 3}{2}\cdot i$ . For each $z\in\left\{1,w,w^2\right\}$ define the set $M(z)$ of all ordered third

form $(a,b,c)\in \mathbb C^3$ which verify relations $\left\{\begin{array}{c}
0\not\in \{a,b,c\}\\\
a+b+c=0\\\
a^2+b^2z+c^2z^2=0\end{array}\right\|$ . Prove that $M(w)\cap M\left(w^2\right)=\emptyset$ and $M(w)\cup M\left(w^2\right)=M(1)$ .

Proof. Observe that $\left\|\begin{array}{c}
w^3=1\ ,\ \overline w=\frac 1w=w^2\\\\
w^2+w+1=0\end{array}\right\|$ . Suppose that $M(w)\cap M\left(w^2\right)\ne\emptyset$ , i.e. exists $(a,b,c)\in\mathbb C^3$ so that $\left\|\begin{array}{c}
a+b+c=0\\\
a^2+b^2w+c^2w^2=0\\\
a^2+b^2w^2+c^2w=0\end{array}\right\|$ .

Then $\left\|\begin{array}{ccc}
\left(a^2+b^2w+c^2w^2\right)+\left(a^2+b^2w^2+c^2w\right)=0 & \implies & 2a^2=b^2+c^2\\\
\left(a^2+b^2w+c^2w^2\right)-\left(a^2+b^2w^2+c^2w\right)=0 & \implies & b^2=c^2\end{array}\right\|$ $\implies$ $a=b=c=0$ , absurd. I used that $a+b+c=0$

and $w^2+w+1=0$ . In conclusion, $\boxed{\ M(w)\cap M\left(w^2\right)=\emptyset\ }$ . Consider $(a,b,c)\in \mathbb C^3$ for which $(a,b,c)\in M(w)\cup M\left(w^2\right)$ ,

i.e. $a+b+c=0$ and $\left(a^2+b^2w+c^2w^2\right)\cdot\left(a^2+b^2w^2+c^2w\right)=0$ $\iff$ $a+b+c=0$ and $a^4+b^4+c^4=a^2b^2+b^2c^2+c^2a^2$ .

Observe that $a^2+b^2+c^2=(a+b+c)^2-2(ab+bc+ca)$ , i.e. $a^2+b^2+c^2=-2(ab+bc+ca)$ and $\sum a^4=\sum b^2c^2$ $\iff$

$\left(\sum a^2\right)^2=3\sum b^2c^2$ . Therefore, $4(ab+bc+ca)^2=3\sum b^2c^2$ $\iff$ $\sum b^2c^2+8abc\sum a=0$ $\iff$ $\sum b^2c^2=0$ $\implies$ $\sum a^2=0$ $\implies$

$(a,b,c)\in M(1)$ . Thus, $\boxed{\ M(w)\cup M\left(w^2\right)\subset M(1)\ }$ . Consider $(a,b,c)\in\mathbb C^3$ for which $(a,b,c)\in M(1)$ , i.e. $\sum a=0$ and $\sum a^2=0$ $\implies$

$\sum a=0$ and $\sum bc=0$ $\implies$ $\sum b^2c^2=\left(\sum bc\right)^2-2abc\sum a=0$ and $\sum a^4=\left(\sum a^2\right)^2-3\sum b^2c^2=0$ $\implies$ $\sum a^4=\sum b^2c^2$ $\iff$

$\left(a^2+b^2w+c^2w^2\right)\cdot\left(a^2+b^2w^2+c^2w\right)=0$ $\iff$ $(a,b,c)\in M(w)\cup M\left(w^2\right)$ , i.e. $\boxed {M(1)\subset M(w)\cup M\left(w^2\right) \ }$ .

In conclusion, $\boxed {M(1)= M(w)\cup M\left(w^2\right) \ }$ .
This post has been edited 33 times. Last edited by Virgil Nicula, Nov 22, 2015, 6:29 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a