406. Trigonometry in geometry (middle or high school) II.

by Virgil Nicula, Nov 19, 2014, 10:20 AM

P1. Let $A$-right $\triangle ABC$ , $D\in (AC)$ , $E\in (BC)$ so that $DE\perp BC$ and $2\cdot m\left(\widehat{ABD}\right)=m\left(\widehat{BDE}\right)=2\theta$ . Prove $2\cdot AB=BD+2\cdot DE\iff \theta =36^{\circ}$ .

Proof. $2\cdot AB=BD+2\cdot DE\iff$ $2\cdot\frac {AB}{BD}=1+2\cdot\frac {DE}{BD}\iff$ $2\cos\theta =1+2\cos 2\theta\iff$

$2\cos\theta =1+2\left(2\cos^2\theta -1\right)\iff$ $4\cos^2\theta -2\cos\theta -1=0\iff$ $\cos\theta =\frac {1+\sqrt 5}{4}\iff$ $\theta=36^{\circ}  $ .



P2 (Ruben Dario). Let an equilateral $\triangle ABC$ and an interior point $S$ so that $\left\{\begin{array}{ccc}
m\left(\widehat{SAC}\right) & = & x\\\
m\left(\widehat{SCB}\right) & = & 2x\\\
m\left(\widehat{SBA}\right) & = & 3x\end{array}\right\|$ , where $x\in \left(0,\frac {\pi}9\right)$ . Prove that $x=15^{\circ}$ .

Proof 1. Observe that $\left\{\begin{array}{ccc}
m\left(\widehat{SAB}\right) & = & 60^{\circ}-x\\\
m\left(\widehat{SCA}\right) & = & 60^{\circ}-2x\\\
m\left(\widehat{SBC}\right) & = & 60^{\circ}-3x\end{array}\right\|$ . Apply the trigonometrical form of the Ceva's theorem $:\ \frac {\sin\widehat{SAC}}{\sin\widehat{SAB}}\cdot\frac {\sin\widehat{SCB}}{\sin\widehat{SCA}}\cdot\frac {\sin\widehat{SBA}}{\sin\widehat{SBC}}=1\iff$

$\sin x\sin 2x\sin 3x=\sin\left(60^{\circ}-x\right)\sin\left(60^{\circ}-2x\right)\sin\left(60^{\circ}-3x\right)\iff$ $f(x)=0$ , where $\boxed{f(x)\equiv \sin x\sin 2x\sin 3x+\sin\left(x-60^{\circ}\right)\sin\left(2x-60^{\circ}\right)\sin\left(3c-60^{\circ}\right)}$

is an increasing $\left(\nearrow\right)$ function for which $\frac {\pi}{12}\in\left(0,\frac {\pi}9\right)$ and $ f\left(\frac {\pi}{12}\right)=0$ . In conclusion $\boxed{\ x=\frac {\pi}{12}\ }$ .

Proof 2. $f(x)=0\iff$ $8\tan x\tan 2x\tan 3x+\left(\tan x-\sqrt 3\right)\left(\tan 2x-\sqrt 3\right)\left(\tan 3x-\sqrt 3\right)=0$ . Denote $\boxed{\ \tan x=t\ }\ (*)$ . Thus $\left\{\begin{array}{ccc}
\tan 2x & = & \frac {2t}{1-t^2}\\\\
 \tan 3x & = & \frac {t\left(3-t^2\right)}{1-3t^2}\end{array}\right\|$

and our equation becomes $:\ 8t\cdot\frac {2t}{1-t^2}\cdot\frac {t\left(3-t^2\right)}{1-3t^2}+$ $\left(t-\sqrt 3\right)\left(\frac {2t}{1-t^2}-\sqrt 3\right)\left[\frac {t\left(3-t^2\right)}{1-3t^2}-\sqrt 3\right]=0\iff$ $\sqrt 3\left(t^6-3t^4-t^2+3\right)+$ $6t\left(t^4-2t^2-3\right)=0\iff$

$\left(t^2-3\right)\left(t^4-1\right)+$ $2\sqrt 3\cdot t\left(t^2+1\right)\left(t^2-3\right)=0\iff$ $\left(t^2-3\right)\left(t^4-1\right)+$ $2\sqrt 3\cdot t\left(t^2+1\right)\left(t^2-3\right)=0\iff$ $\left(t^2-1\right)+2t\sqrt 3=0\iff$ $t^2+2t\sqrt 3-1=0$ ,

where $\Delta'=3+1=4=2^2$ . In conclusion, $t\in\left\{-\sqrt 3\pm 2\right\}\ \stackrel{(t>0)}{\iff}\ t=$ $2-\sqrt 3\iff$ $\tan x=2-\sqrt 3\iff$ $\boxed{\ x=\frac {\pi}{12}\ }$ . Indeed, $\tan 15^{\circ}=\frac {\sin 30^{\circ}}{1+\cos 30^{\circ}}=$ $\frac {\frac 12}{1+\frac {\sqrt 3}2}=\frac 1{2+\sqrt 3}=2-\sqrt 3$

PP3 (Ruben Dario). Let a square $ABCD$ with $AB=a$ and the incenter $w=\mathbb C(I,r)$ . Prove that $(\forall )\ P\in w\ ,\ \left\{\begin{array}{ccc}
PA^2+PB^2+PC^2+PD^2 & = & 3a^2\\\\
4\left(PA^4+PB^4+PC^4+PD^4\right) & = & 13a^4\\\\
16\left(PA^6+PB^6+PC^6+PD^6\right) & = & 63a^6\end{array}\right\|$ .

Proof. Let the midpoints $(K,L,M,N)$ of the sides $[AB]\ ,\ [BC]\ ,\ [CD]\ ,\ [DA]$ respectively and suppose w.l.o.g. that $a=2$ and $P$ belongs to the small $\overarc[]{KL}$ . Let

the projections $(X,Y,Z,T)$ of the point $P$ on the sides $[AB]\ ,\ [BC]\ ,\ [CD]\ ,\ [DA]$ respectively and denote $\left\{\begin{array}{ccc}
KX=MZ=u & \implies & BX=PY=CZ=1-u\\\\
LY=TN=v & \implies & BY=PX=TA=1-v\end{array}\right\|$ .

Thus, $\left\{\begin{array}{ccccccc}
PA^2 & = & PT^2+PX^2 & = & (1+u)^2+(1-v)^2 & = & 3+2(u-v)\\\\
PB^2 & = & PY^2+PX^2 & = & (1-u)^2+(1-v)^2 & = & 3-2(u+v)\\\\
PC^2 & = & PY^2++PZ^2 & = & (1-u)^2+(1+v)^2 & = & 3-2(u-v)\\\\
PD^2 & = & PT^2+PZ^2 & = & (1+u)^2+(1+v)^2 & = & 3+2(u+v)\end{array}\right\|$ where $\boxed{u^2+v^2=1}\ (*)$ . Observe that $\left\{\begin{array}{ccc}
PA^2+PC^2 & = & 6\\\\
PB^2+PD^2 & = & 6\\\\
PA^2-PC^2 & = & 4(u-v)\\\\
PD^2-PB^2 & = & 4(u+v)\end{array}\right\|$ .

Hence $\left(PA^2+PC^2\right)\left(PB^2+PD^2\right)+$ $PA^2\cdot PC^2+PB^2\cdot PD^2=$ $36+\left[9-4(u-v)^2\right]+\left[9-4(u+v)^2\right]=$ $54-8\left(u^2+v^2\right)=54-8=46\implies$

$\boxed{\sum_{\mathrm{sym}}\left(PA^2\cdot PB^2\right)=46}\ (1)$ . In conclusion, $\sum PA^4=\left(\sum PA^2\right)^2-2\cdot \left[\left(PA^2+PC^2\right)\left(PB^2+PD^2\right)+PA^2\cdot PC^2+PB^2\cdot PD^2\right]=$ $144-2\cdot 46\implies$

$\boxed{\sum PA^4=52}$ , i.e. $\boxed{PA^4+PB^4+PC^4+PD^4=\frac {13}4\cdot a^4}$ . Thus, $\sum PA^6=\left(PA^2+PC^2\right)\left(PA^4-PA^2\cdot PC^2+PC^4\right)+$

$\left(PB^2+PD^2\right)\left(PB^4-PB^2\cdot PD^2+PD^4\right)=$ $6\left(\sum PA^4-PA^2\cdot PC^2-PB^2\cdot PD^2\right)=$ $6\left[52-9+4(u-v)^2-9+4(u+v)^2\right]=$

$6(52-18+8)=6\cdot 42=252=63\cdot 4\implies$ $\boxed{\sum PA^6=252=63\cdot 4}$ , i.e. $\boxed{PA^6+PB^6+PC^6+PD^6=\frac {63a^6}{16}}$ . Observe that $(PA\cdot PB\cdot PC\cdot PD)^2=$

$\left(PA^2\cdot PC^2\right)\cdot\left(PB^2\cdot PD^2\right)=$ $\left[9-4(u-v)^2\right]\cdot\left[9-4(u+v)^2\right]=$ $81-36\left[(u-v)^2+(u+v)^2\right]+16\left(u^2-v^2\right)^2=$ $81-72+16\left(u^2-v^2\right)^2\ge 9$ with equality

$\iff u=v=\frac {\sqrt 2}2$ . In conclusion, $\boxed{PA\cdot PB\cdot PC\cdot PD\ \mathrm{is\ minimum}\ \iff\ u=v\ \ \iff\ P\in AC\cup BD}$ and in this case the minimum of the product is $\frac {3a^4}{16}$ .



P4. Let $\triangle ABC$ , $\left\{\begin{array}{c}
M\in (BC)\ ;\ N\in (CA)\ ;\ P\in (AB)\\\\
X\in (NP)\ ;\ Y\in (PM)\ ;\ Z\in (MN)\end{array}\right\|$ and the sentencies $\left\{\begin{array}{ccc}
(1) & \blacktriangleright & AM\cap BN\cap CP\ne\emptyset\\\\
(2) & \blacktriangleright & MX\cap NY\cap PZ\ne\emptyset\\\\
(3) & \blacktriangleright & AX\cap BY\cap CZ\ne\emptyset\end{array}\right\|$ . Prove that $\left\{\begin{array}{ccc}
(1)\ \wedge\ (2) & \implies &  (3)\\\\
(1)\ \wedge\ (3) & \implies & (2)\\\\
(2)\ \wedge\ (3) & \implies & (1)\end{array}\right\|$ .

Proof. I"ll use the metrical form of the Ceva's theorem $\ \left\{\begin{array}{cccc}
AM\cap BN\cap CP\ne\emptyset & \iff & p(1)\equiv\frac {MB}{MC}\cdot\frac {NC}{NA}\cdot\frac {PA}{PB}=1 &  (1)\\\\
MX\cap NY\cap PZ\ne\emptyset & \iff & p(2)\equiv\frac {XN}{XP}\cdot\frac {YP}{YM}\cdot\frac {ZM}{ZN}=1 & (2)\end{array}\right\|$ and the trigonometrical form of same theorem $:$

$AX\cap BY\cap CZ\ne\emptyset\iff$ $p(3)\equiv \frac {\sin\widehat {XAN}}{\sin\widehat{XAP}}\cdot\frac {\sin\widehat{YBP}}{\sin\widehat{YBM}}\cdot\frac {\sin\widehat{ZCM}}{\sin\widehat{ZCN}}=1\ (3)$ . I"ll use now the well-known identities $\left\{\begin{array}{ccc}
\frac {XN}{XP} & = & \frac {AN}{AP}\cdot\frac {\sin\widehat{XAN}}{\sin\widehat{XAP}}\\\\
\frac {YP}{YM} & = & \frac {BP}{BM}\cdot\frac {\sin\widehat{YBP}}{\sin\widehat{YBM}}\\\\
\frac {ZM}{ZN} & = & \frac {CM}{CN}\cdot\frac {\sin\widehat{ZCM}}{\sin\widehat{ZCN}}\end{array}\right\|$ $\bigodot\implies$ $\frac {XN}{XP}\cdot \frac {YP}{YM}\cdot \frac {ZM}{ZN}=$ $\left[\frac {AN}{AP}\cdot \frac {BP}{BM}\cdot \frac {CM}{CN}\right]\cdot$ $\left[\frac {\sin\widehat{XAN}}{\sin\widehat{XAP}}\cdot \frac {\sin\widehat{YBP}}{\sin\widehat{YBM}}\cdot \frac {\sin\widehat{ZCM}}{\sin\widehat{ZCN}}\right]\implies$ $p(1)\cdot p(2)=p(3)$ , what means that the required implications are truly.



P5. Let $\triangle ABC$ with the incircle $w=\mathbb C(I,r)$ which touches given triangle at $D\in (BC)$ , $E\in (CA)$ and $F\in (AB)$

respectively. Prove that $(\forall )\ P\in w\ ,\ \left\{\begin{array}{cccc}
a\cdot PA^2+b\cdot PB^2+c\cdot PC^2 & = & 2sr(2R+r) & (1)\\\\
a\cdot PD^2+b\cdot PE^2+c\cdot PF^2 & = & 4sr^2 & (2)\end{array}\right\|$ .


Proof. I"ll use the well-known identity: $(\forall )\ X\ ,\ \boxed{\alpha\cdot XA^2+\beta\cdot XB^2+\gamma\cdot XC^2=XM^2-p_{\mathbb C}(M)}$ , where the given point $M$ has the barycentric coordinates

$(\alpha , \beta , \gamma )\ ,\ \alpha +\beta +\gamma =1$ w.r.t. the circumcircle $\mathbb C(O,R)$ of $\triangle ABC$ and $p_{\mathbb C}(M)$ is the power of $M$ w.r.t. the same circle. Indeed, for the $P\in w$ , where $I\left(\frac as,\frac bs,\frac cs\right)$ we have $:$

$a\cdot PA^2+b\cdot PB^2+c\cdot PC^2=2s\cdot PI^2+2s\cdot 2Rr=2sr^2+4sRr$ , i.e. $\boxed{\sum a\cdot PA^2=2sr(2R+r)}\ (*)$ . Stewart's relation to the cevians in the mentioned triangles $:$

$\left\{\begin{array}{ccccc}
PD/\triangle BPC\ : & (s-c)\cdot PB^2+(s-b)\cdot PC^2 & = & a\cdot PD^2+a(s-b)(s-c) & (3)\\\\
PE/\triangle CPA\ : & (s-a)\cdot PC^2+(s-c)\cdot PA^2 & = & b\cdot PE^2+b(s-c)(s-a) & (4)\\\\
PF/\triangle APB\ : & (s-b)\cdot PA^2+(s-a)\cdot PB^2 & = & c\cdot PF^2+c(s-a)(s-b) & (4)\end{array}\right\|$ $\bigodot\implies$ $\sum a\cdot PA^2=$

$\sum a\cdot PD^2+ \sum a(s-b)(s-c)\ \stackrel{(*)}{\implies}\ 2sr(2R+r)=\sum a\cdot PD^2+2sr(2R-r)\implies$ $\boxed{\sum a\cdot PD^2=4sr^2}$ .



P6. Prove that for any $x\in\mathbb R$ there are the identities $\left\{\begin{array}{ccccccccc}
S_2 & \equiv & \cos^2\left(60^{\circ}-x\right) & + & \cos^2x & + & \cos^2\left(60^{\circ}+x\right) & = & \frac 32\\\\
S_4 & \equiv & \cos^4\left(60^{\circ}-x\right) & + & \cos^4x & + & \cos^4\left(60^{\circ}+x\right) & = & \frac 98\end{array}\right\|$ .

Proof. Can prove easily the identities $\left\{\begin{array}{ccccccc}
E(a,b) & \equiv & \cos^2(a+b) & + & \cos ^2(a-b) & = & 1+\cos 2a\cos 2b\\\\
F(a,b) & \equiv & \cos^4(a+b) & + & \cos ^4(a-b) & = & \frac 14\cdot \cos 4a\cos 4b+\cos 2a\cos 2b+\frac 34\end{array}\right\|$ . In the case $a:=60^{\circ}$ and $b:=x$

obtain that $\left\{\begin{array}{ccc}
2E\left(60^{\circ},x\right) & = & 2-\cos 2x\\\\
8F\left(60^{\circ},x\right) & = & 3-4\cos 2x-\cos 4x\end{array}\right\|$ . In conclusion, $2S_2=2\cos^2x+2E\left(60^{\circ},x\right)=$ $1+\cos 2x+2-\cos 2x=3\implies$ $S_2=\frac 32$ . Obtain analogously that

$8S_4=8\cos^4x+8F\left(60^{\circ},x\right)=$ $2(1+\cos 2x)^2+6+2\cos240^{\circ}\cos 4x+8\cos 120^{\circ}\cos 2x=$ $2+4\cos 2x+(1+\cos 4x)+6-\cos 4x-4\cos 2x= 9\implies$ $S_2=\frac 98$ .


Application. Let an equilateral $\triangle ABC$ with $AB=l$ , its interior $\{P,Q\}$ and lengths $\{u,v,w\}$ of the projections of $[PQ]$ on the sides of $\triangle ABC$ . Then $\left\{\begin{array}{ccc}
u^2+v^2+w^2 & = & \frac {3l^2}2\\\\
u^4+v^4+w^4 & = & \frac {9l^4}8\end{array}\right\|$ .


P7 (Cristian Tello). Let an $A$-right $\triangle ABC$ with the circumcircle $w=\mathbb C(O,R)$ and $D\in BC\ ,\ AD\perp BC$ . The circle $w_1=\mathbb C\left(I_1,r_1\right)$ is tangent

to $AD$ , $DB$ and is interior tangent to $w$ . The circle $w_2=\mathbb C\left(I_2,r_2\right)$ is tangent to $AD$ , $DC$ and is interior tangent to $w$ . Prove that $\boxed{r_1\tan\frac B2=r_2\tan\frac C2}$ .


Proof. Suppose w.l.o.g. $R=1$ . Denote $x=m\left(\widehat{BAD}\right)=C$ and $\left\{\begin{array}{cc}
T_1\in BC\cap w_1\\\\
T_2\in BC\cap w_2\end{array}\right\|$ . Thus, $\left\{\begin{array}{ccc}

b=a\cos C=2\cos x & \implies &  DC=\frac {b^2}{a}=2\cos^2x=1+\cos 2x\\\\
c=a\sin C=2\sin x & \implies & DB=\frac {c^2}a=2\sin^2x=1-\cos 2x\end{array}\right\|$ .

Hence $b^2-c^2=2a\cdot OD\implies$ $OD=\cos^2x-\sin^2x\implies$ $\boxed{OD=\cos 2x}\implies$ $\left\{\begin{array}{ccccc}
DT_1=r_1 & \implies & OT_1=OD+DT_1 & \implies & OT_1=r_1+\cos 2x\\\\
DT_2=r_2 & \implies & OT_2=-OD+DT_2 & \implies & OT_2=r_2-\cos 2x\end{array}\right\|$ . Therefore,

$\blacktriangleright\ \triangle I_1T_1O\ :\ \implies$ $OI_1^2=T_1I_1^2+T_1O^2\implies$ $\left(1-r_1\right)^2=r_1^2+\left(r_1+\cos 2x\right)^2\implies$

$r_1^2+2r_1(1+\cos 2x)-\sin^22x=0\implies$ $r_1=-1-\cos 2x+2\cos x\implies\boxed{r_1=2\cos x(1-\cos x)}\ (1)$ .

$\blacktriangleright\ \triangle I_2T_2O\ :\ \implies$ $OI_2^2=T_2I_2^2+T_2O^2\implies$ $\left(1-r_2\right)^2=r_2^2+\left(r_2-\cos 2x\right)^2\implies$

$r_2^2+2r_2(1-\cos 2x)-\sin^22x=0\implies$ $r_2=-1+\cos 2x+2\sin x\implies \boxed{r_2=2\sin x(1-\sin x)}\ (2)$ .

In conclusion, $\frac {r_2}{r_1}=\tan x\cdot$ $\frac {1-\sin x}{1-\cos x}\ \stackrel{(t=\tan\frac x2)}{=}\ \frac {2t}{1-t^2}$ $\cdot\frac {1-\frac {2t}{1+t^2}}{1-\frac {1-t^2}{1+t^2}}=$ $\frac {2t(1-t)^2}{2t^2\left(1-t^2\right)}\iff$ $\frac {r_2}{r_1}=\frac {1-t}{t(1+t)}\iff$

$r_1\tan\left(45^{\circ}-\frac C2\right)=r_2\tan\frac C2\iff$ $\boxed{r_1\tan\frac B2=r_2\tan\frac C2}\iff$ $\boxed{\frac {r_1}{r_c}=\frac {r_2}{r_b}}$ . .

Otherwise. From the relations $(1)$ and $(2)$ obtain that $\frac {r_2-r_1}{r_2+r_1}=\frac {2(\cos x-\sin x)(\cos x+\sin x-1)}{2(\cos x+\sin x-1)}\implies$

$\boxed{\frac {r_2-r_1}{r_2+r_1}=\cos x-\sin x}\iff$ $\boxed{\sin 2x=\frac {4r_1r_2}{\left(r_1+r_2\right)^2}}$ . Prove easily that $\boxed{\frac {r_2-r_1}{r_2+r_1}=\frac {b-c}a}$ .

Remark. In the particular case $\frac {r_2}{r_1}=\frac 32$ obtain that $\frac {1-t}{t(1+t)}=\frac 32\iff$ $3t^2+5t-2=0\iff$ $\tan \frac C2=t=\frac 13\implies$ $\tan C=\frac {2t}{1-t^2}=\frac {2\cdot\frac 13}{1-\frac 19}=\frac 23\cdot\frac 98\implies$ $\tan C=\frac 34$ .



P8 (Claudiu Mandrila). Let an acute triangle $ABC$ with $BE\perp CF$ where $(F,E\}$ are the midpoints of the sides $[AB]$ , $[AC]$ . Prove that $\tan A\le \frac 34$ with equality iff $b=c$ .

Proof. I"ll use an well-known property (or prove easily) $\boxed{BE\perp CF\iff b^2+c^2=5a^2}\ (*)$ . From other well-known relation $4S=\left(b^2+c^2-a^2\right)\tan A$

where $S=[ABC]$ - the area of $\triangle ABC$ obtain with the relation $(*)$ that $\tan A=\frac S{a^2}=$ $\frac {bc\sin A}2\cdot \frac 5{b^2+c^2}\iff$ $\frac {\sin A}{\cos A}=\frac {5bc\sin A}{2\left(b^2+c^2\right)}\iff$

$\cos A=\frac {2\left(b^2+c^2\right)}{5bc}\ge$ $ \frac 45\iff A\le\arccos\frac 45=\arcsin\frac 35=$ $\arctan \frac 34\iff$ $\tan A\le\frac 34$ .



P9. Let an equilateral $\triangle ABC$ , $\{M,N\}\subset (BC)$ so that $M\in (BN)\ ,\ BN=a\ ,\ CM=b\ ,\ MN=x$ and $m\left(\widehat{MAN}\right)=30^{\circ}$ . Ascertain $x=f(a,b)$ .

Proof 1. Denote $\left\{\begin{array}{ccc}
m\left(\widehat{MAB}\right) & = & u\\\
m\left(\widehat{NAC}\right) & = & v\end{array}\right\|$ , where $u+v=30^{\circ}$ and $\left\{\begin{array}{ccc}
BM & = & a-x\\\
CN & = & b-x\end{array}\right\|$ . Thus,

$\left\{\begin{array}{ccccc}
\frac {MB}{MC}=\frac {AB}{AC}\cdot\frac{\sin\widehat{MAB}}{\sin\widehat{MAC}} & \implies &  \frac {a-x}b=\frac {\sin u}{\sin (60-u)}=\frac {2\tan u}{\sqrt 3-\tan u} & \implies & \tan u=\frac {\sqrt 3(a-x)}{2b+a-x}\\\\
\frac {NB}{NC}=\frac {AB}{AC}\cdot\frac{\sin\widehat{NAB}}{\sin\widehat{NAC}} & \implies &  \frac {a}{b-x}=\frac{\sin (60-v)}{\sin v}=\frac {\sqrt 3-\tan v}{2\tan v} & \implies & \tan v=\frac {\sqrt 3(b-x)}{2a+b-x}\end{array}\right\|$

Therefore, $u+v=30^{\circ}\iff\tan (u+v)=\frac 1{\sqrt 3}\iff$ $\sqrt 3(\tan u+\tan v)=1-\tan u\tan v\iff$ $3\left(\frac {a-x}{2b+a-x}+\frac {b-x}{2a+b-x}\right)=$ $1-\frac {a-x}{2b+a-x}\cdot \frac {b-x}{2a+b-x}\iff$

$3\left[(a-x)(2a+b-x)+(b-x)(2b+a-x)\right]=$ $(2a+b-x)(2b+a-x)-(a-x)(b-x)\iff$ $a(a-x)+b(b-x)+2(a-x)(b-x)=ab\iff$

$g(x)\equiv 2x^2-3x(a+b)+a^2+ab+b^2=0$ with $\Delta=a^2+10ab+b^2$ and $g(a+b)=-ab<0\implies$ $x_1<a+b<x_2\implies$ $\boxed{x=\frac {3(a+b)-\sqrt{a^2+10ab+b^2}}{4}}$ .

Proof 2 (Baris Altay). Let $P$ so that $BC$ separates $A\ ,\ P$ and $PA=AB\ ,\ PM=MB\ ,\ PN=NC$ . Thus, $m\left(\widehat{MPN}\right)=120^{\circ}$ . Apply the generalized Pythagoras' theorem

$PM^2+PN^2-2\cdot PM\cdot PN\cos \widehat{MPN}=MN^2\implies$ $(a-x)^2+(b-x)^2+(a-x)(b-x)=x^2\iff$ $2x^2-3x(a+b)+a^2+ab+b^2=0$ a.s.o.
Very nice proof !


An easy extension. Let an $A$-isosceles $\triangle ABC$ and $\{M,N\}\subset (BC)$ so that $M\in (BN)\ ,\ BN=a\ ,\ CM=b\ ,\ MN=x$ and

$m\left(\widehat{MAN}\right)=\phi$ . Prove that $\boxed{\left(\sin A+\cos A\tan\phi\right)x^2-(a+b)\left[\sin A+\left(1+\cos A\right)\tan\phi\right]x+\left(a^2+b^2+2ab\cos A\right)\tan\phi}$ $=0$ .



P10 Prove that $(\forall )$ $\triangle ABC$ there is the equivalence $\boxed{3a=b+c\iff\sin\frac A2=\sin\frac B2\sin\frac C2\iff \sin B\sin C=\frac {2r}R}\ (*)\ .$

Proof 1. Apply the identity $\tan\frac A2=\sqrt{\frac {(s-b)(s-c)}{s(s-a)}}\ .$ Therefore, $\sin\frac A2=\sin\frac B2\sin\frac C2\iff$ $\cos\frac {B+C}2=$ $\sin\frac B2\sin\frac C2\iff$ $\cos\frac B2\cos\frac C2-\sin\frac B2\sin\frac C2=$

$\sin\frac B2\sin\frac C2\iff$ $\boxed{2\tan \frac B2\tan\frac C2=1}\iff$ $2\sqrt{\frac {(s-a)(\cancel{s-c})}{s(\cancel{s-b})}\cdot\frac {(s-a)(\cancel{s-b})}{s(\cancel{s-c})}}=1\iff$ $2(s-a)=s\iff$ $s=2a\iff$ $b+c=3a\ .$ Remark. $2\tan \frac B2\tan\frac C2=1$

$\iff$ $2\cdot\frac r{s-b}\cdot\frac r{s-c}=1\iff$ $2sr^2=s(s-b)(s-c)\iff$ $2(s-a)(s-b)(s-c)=s(s-b)(s-c)\iff$ $2(s-a)=s\iff s=2a\iff b+c=3a\ .$

Proof 2. $\underline{\underline{\sin\frac A2=\sin\frac B2\sin\frac C2}}\ \left(\mathrm{multiply\ by}\ 4\cos\frac A2=4\sin\frac {B+C}2\right) \iff$ $2\sin A=2\sin\frac {B+C}2\left(\cos\frac {B-C}2-\cos\frac {B+C}2\right)\iff$

$2\sin A=(\sin B+\sin C)-\sin A\iff$ $3\sin A=\sin B+\sin C\iff$ $\underline{\underline{3a=b+c}}\ .$

Proof 3. Apply the well known identity $AI^2=\frac {bc(s-a)}s$ a.s.o. Thus, $\sin\frac A2=\sin\frac B2\sin\frac C2\iff$ $\frac {(s-b)(s-c)}{bc}=$

$\frac {(s-a)(s-c)}{ac}\cdot\frac {(s-a)(s-b)}{ab}\iff$ $a^2=(s-a)^2\iff$ $s=2a\iff$ $2s=4a\iff b+c=3a\ .$

Proof 4. Denote the second intersection $S$ of the line $AI$ with the circumcircle of $\triangle ABC\ .$ I"ll use the well known identities or prove easily that $SI=SB=SC=SI_a\ (*)\ ,$

$IA\cdot IS=2Rr$ and $\left\{\begin{array}{cccc}
\sin\frac A2 & = & \frac r{AI} & (1)\\\\
AI\cdot AI_a & = & bc & (2)\\\\
\prod IA & = & 4Rr^2 & (3)\end{array}\right\|\ .$ Therefore, $\sin\frac A2=\sin\frac B2\sin\frac C2\ \stackrel{(1)}{\iff}\ \boxed{r\cdot IA=IB\cdot IC}\ \stackrel{(3)}{\iff}\ r\cdot IA^2=\prod IA=4Rr^2\iff$

$\boxed{IA^2=4Rr}\iff$ $IA^2=2\cdot IA\cdot IS\iff$ $IA=2\cdot IS\iff$ $\boxed{IA=II_a}\iff$ $2\cdot IA=AI_a\ \stackrel{(2)}{\iff}\ 2\cdot IA^2=bc\iff$ $\frac {2bc(s-a)}s=bc\iff$

$2(s-a)=s\iff$ $s=2a\iff$ $2s=4a\iff$ $b+c=3a\ .$ Remark. $\triangle ABI_a\sim\triangle AIC\iff$ $\frac {AB}{AI}=\frac {AI_a}{AC}\iff$ $\frac c{AI}=\frac {AI_a}b\iff$ $\boxed{AI\cdot AI_a=bc}\ .$
This post has been edited 183 times. Last edited by Virgil Nicula, Sep 3, 2016, 3:37 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a