460. Working page VI.

by Virgil Nicula, Oct 27, 2017, 7:17 PM

P1 (Vasile MASGRAS). Let $ABCD$ be a square with the circumcircle $w$ and the point $M$ which belongs to the little arc $\overarc{AD}\ .$ Prove that $\frac {MA\cdot MD+MB\cdot MC}{MB\cdot MD+MA\cdot MC}=\sqrt 2\ .$ (See here).

Proof 1 (metric). Supppose w.l.o.g. $AB=1\ ,$ i.e. $AC=BD=\sqrt 2$ and apply Ptolemy's theorem to cyclic quadrilaterals $:\ \left\{\begin{array}{cc}
MBCD\ : & MD+MB=MC\sqrt 2\\\\
MACD\ : & MC-MA=MD\sqrt 2\end{array}\right|\begin{array}{ccc}
\odot & MA & \searrow\\\\
\odot & MB & \nearrow\end{array}\bigoplus\implies$

$MA\cdot MD+MB\cdot MC=(MA\cdot MC+MB\cdot MD)\cdot\sqrt 2\implies$ $\frac {MA\cdot MD+MB\cdot MC}{MB\cdot MD+MA\cdot MC}=\sqrt 2\ .$ Very nice problem !

Proof 2 (trigonometric). Denote $\left\{\begin{array}{ccc}
m\left(\widehat{MBD}\right) & = & \alpha\\\\
m\left(\widehat{MBA}\right) & = & \beta\end{array}\right\|\ ,$ where $\boxed{\ \alpha +\beta =90^{\circ}\ }\ .$ Thus, $\frac {MA\cdot MD+MB\cdot MC}{MB\cdot MD+MA\cdot MC}=$ $\frac {\frac {MA}{AC}\cdot \frac {MD}{BD}+\frac {MB}{BD}\cdot\frac {MC}{AC}}{\frac{MB}{BD}\cdot \frac {MD}{BD}+\frac {MA}{AC}\cdot\frac {MC}{AC}}=$

$\frac {\sin\beta \sin\alpha +\cos\alpha\cos\beta}{\cos\alpha \sin\alpha +\sin\beta \cos\beta}=$ $ \frac {2\cos (\alpha -\beta)}{\sin 2\alpha +\sin 2\beta}=$ $\frac {\cancel 2\cancel {\cos (\alpha -\beta )}}{\cancel 2\sin (\alpha +\beta )\cancel{\cos (\alpha -\beta)}}=\frac 1{\sin 45^{\circ}}=\sqrt 2\implies$ $\frac {MA\cdot MD+MB\cdot MC}{MB\cdot MD+MA\cdot MC}=\sqrt 2\ .$


Extension. Let $ABCD$ be a rectangle with the circumcircle $w=\mathbb C(O)$ and $ m\left(\widehat{AOB}\right)=\phi\ .$ Prove that $\frac {MA\cdot MD+MB\cdot MC}{MB\cdot MD+MA\cdot MC}=\frac 1{\cos\frac{\phi}2}\ ,$ where $M\in\overarc{AD}$ so that $(OM)\cap (AD)\ne\emptyset\ .$

Generalizare (Vasile MASGRAS). Prove that in any cyclic pentagon $ABCDE$ there is the identity $\boxed{\ AB\cdot AE\cdot CD+AC\cdot AD\cdot BE=AB\cdot AD\cdot CE+AC\cdot AE\cdot BD\ }$



P2 (British Mathematical Olympiad). Prove that $ (\forall )\ \triangle ABC$ there is the following equivalence $:\ a^2+b^2+c^2=8R^2\ \iff\ 90^{\circ}\in\{A,B,C\}$ (standard notations).

Proof 1 (trig). $\underline{\underline{\sum a^2=8R^2}}\iff$ $\sum\left(\cancel{2R}\sin A\right)^2=2\cdot \cancel{4R^2}\iff$ $\sum\sin^2A=2\stackrel{\odot 2}{\iff}\ \sum(1-\cos 2A)=4\iff$ $1+\sum\cos 2A=0\iff$ $2\cos^2A-2\cos (B-C)\cos A=0\iff$

$2\cos A[\cos A-\cos (B-C)]=0\iff$ $\cos A[\cos (B+C)+\cos (B-C)]=0\iff$ $2\cos A\cos B\cos C=0\iff$ $\cos A\cos B\cos C=0\iff$ $\underline{\underline{90^{\circ}\in\{A,B,C\}}}\ .$

Remark. Prove easily that $\boxed{\sum\cos 2A=-1-4\cdot\prod\cos A=3-\frac {a^2+b^2+c^2}{2R^2}}\ .$ Hence $\sum a^2=8R^2\iff$ $3-\frac {a^2+b^2+c^2}{2R^2}=-1\iff$ $1-4\prod\cos A=-1\iff$ $\prod\cos A=0\ .$

Proof 2 (metric). $\sin^2A+\cos^2A=1\iff$ $(2R\sin A)^2+(2R\cos A)^2 =4R^2\iff$ $\boxed{\ a^2+AH^2=4R^2\ }$ a.s.o. Thus, $\sum a^2=8R^2\iff$

$8R^2+\sum AH^2=$ $\sum \left(AH^2+a^2\right)=$ $\sum\left(4R^2\right)=12R^2\iff$ $\sum AH^2=4R^2\iff$ $HB^2+HC^2=$ $BC^2\iff$ $HB\perp HC\iff H\equiv A\ .$

Remark. Prove easily that $f(t)=st^3-(4R+r)t^2+st-r=0\begin{array}{ccc}
\nearrow & t_1=\tan\frac A2 & \searrow\\\\
\rightarrow & t_2=\tan \frac B2 & \rightarrow\\\\
\searrow & t_3=\tan\frac C2 & \nearrow\end{array}\odot$ Thus, $90^{\circ}\in\{A,B,C\}\iff f(1)=0\iff$ $s-(4R+r)+s-r=0\iff$ $\boxed{s=2R+r}\ (*)\ .$

In conclusion, $8R^2=\sum a^2\iff$ $8R^2=$ $(\sum a)^2-2\sum bc=4s^2-2\left(s^2+r^2+4Rr\right)=2\left(s^2-r^2-4Rr\right)\iff$ $s^2-r^2-4Rr=4R^2\iff 4R+r=s\ ,$ i.e. the equivalence $(*)\ .$



P3 (C. V. Durrel). Prove that $(\forall )\ \triangle\ ABC$ there is the equivalence $\boxed{\ a+b=2c\iff \cot\frac A2+\cot\frac B2=2\cot\frac C2\ }\ (*)$ (standard notations).

Proof 1 (metric). I"ll use the well-known identities $\boxed{\ (s-a)\tan\frac A2=(s-b)\tan\frac B2=(s-c)\tan\frac C2=r\ }\ (*)\ .$ Therefore, $\underline{\underline{a+b=2c}}\iff$ $c=2(s-c)\iff$

$(s-a)+(s-b)=2(s-c)\iff$ $\frac{s-a}r+\frac{s-b}r=2\cdot\frac{s-c}r\iff$ $\underline{\underline{\cot\frac A2+\cot\frac B2=2\cot\frac C2}}\ .$ Remark. Prove that $1\ \ge\ \boxed{\ \cos\frac {B-C}2\ge\sqrt{\frac {2r}R}\ }$ with equality $\iff b+c=2a\ .$

Proof 2 (trigonometric). I"ll use the well-known identity $\boxed{\ \sum\tan\frac B2\tan\frac C2=1\ }\ (*)\ .$ Thus, $a+b=2c\iff \sin A+\sin B=2\sin C\iff$ $\cancel 2\cancel{\sin\frac {A+B}2}\cos\frac {A-B}2=\cancel 2\cdot 2\sin\frac C2\cancel{\cos\frac C2}\iff$

$\cos\frac {A-B}2=2\cos\frac {A+B}2\ \stackrel{(:)\ \sin\frac A2\sin\frac B2}{\iff}\ \cot\frac A2\cot\frac B2+1=2\left(\cot\frac A2\cot\frac B2-1\right)\iff$ $\cot\frac A2\cot\frac B2=3\iff$ $3\tan\frac A2\tan\frac B2=1\ \stackrel{(*)}{\iff}\ 3\tan\frac A2\tan\frac B2=\sum\tan\frac B2\tan\frac C2\iff$

$2\tan\frac A2\tan\frac B2=\tan\frac C2\cdot\left(\tan\frac A2+\tan\frac B2\right)\iff$ $\frac 2{\tan\frac C2}=
\frac {\tan\frac A2+\tan\frac B2}{\tan\frac A2\tan\frac B2}\iff$ $\cot\frac A2+\cot\frac B2=2\cot\frac C2\ .$ Remark. Prove that $st^3-(4R+r)t^2+t-r=0\begin{array}{ccccc}
\nearrow & t_1=\tan\frac A2 & \searrow\\\\
\rightarrow & t_2=\tan\frac B2 & \rightarrow\\\\
\searrow & t_3=\tan\frac C2 & \nearrow\end{array}\odot$

Remark. Prove that $(\forall )\ \triangle ABC$ there are the following equivalencies: $\boxed{\ \begin{array}{cccccccc}
b+c & = & 2a & \iff & GI\parallel BC & \iff & \cos\frac {B-C}2=\sqrt{\frac {2r}R} & (1)\\\\
b+c & = & 3a & \iff & GI\perp BC & \iff & \cos A=1-\frac r{2R} & (2)\end{array}\ }$ , where $G$-centroid and $I$-incenter of $\triangle ABC\ .$



P4 (Vadym MITROFANOV). Prove that for any $\triangle ABC$ there is the inequality $\boxed{\ \frac {3S}{R}\le r_a\sin A+r_b\sin B+r_c\sin C\le \frac {3\sqrt 3}2\cdot (2R-r)\ }$ (standard notations).

Proof. I"ll use identity $\boxed{ar_a=s\left(r_a-r\right)}\ (*)\ ,$ theorem of Sines $\boxed{\ \frac a{\sin A}=\frac b{\sin B}=\frac c{\sin C}=2R\ }\ (1)$ and remarkable inequalities $\boxed{\ 3r\sqrt 3\le s\le \frac {3R\sqrt 3}2\ }\ (2)\ ,\ \boxed{\ s^2\ge 3r(4R+r)\ }\ (3)\ .$ Hence $:$

$\blacktriangleright\ \sum r_a\sin A\stackrel{(1)}{=}$ $\sum \frac {ar_a}{2R}\ \stackrel{(*)}{=}\ \sum \frac {s\left(r_a-r\right)}{2R}=$ $\frac s{2R}\cdot \left[(4R+r)-3r\right]=$ $\frac s{2R}\cdot (4R-2r)=\frac sR\cdot (2R-r)\ \stackrel{(2)}{\le}\ \frac {3\sqrt 3}2\cdot (2R-r)\ .$ Hence $\sum r_a\sin A\le \frac {3\sqrt 3}2\cdot (2R-r)\ .$

$\blacktriangleright\ \sum r_a\sin A=\sum\frac {\sin^2A}{\frac {\sin A}{r_a}}\ \stackrel{C.B.S}{\ge}\ \frac {\left(\sum\sin A\right)^2}{\sum\frac {\sin A}{r_a}}=$ $\frac {\left(\frac sR\right)^2}{\sum \frac a{2Rr_a}}=$ $\frac {2s^2}{R\sum\frac a{r_a}}=$ $\frac {2s^2}{R\sum\frac {a(s-a)}S}=$ $\frac {2s^2S}{R\sum a(s-a)}=$ $\frac {\cancel 2S\cdot s^2}{R\cdot \cancel 2r(4R+r)}=$ $\frac {3S}R\cdot\frac {s^2}{3r(4R+r)}\ \stackrel{(3)}{\ge}\ \frac {3S}R$ In conclusion, $\sum r_a\sin A\ge \frac {3S}R\ .$



P5 (Van Khea). Prove that for any $\triangle ABC$ there is the identity $OI^2+OI_a^2+OI_b^2+OI_c^2=12R^2$ (standard notations).

Proof. Are well-known or prove easily the identities $:\ \boxed{\ OI^2+2Rr=OI_a^2-2Rr_a=OI_b^2-2Rr_b=OI_c^2-2Rr_c=R^2\ }\ .$ Therefore, $OI^2+\sum OI_a^2=$

$\left(R^2-2Rr\right)+\sum\left(R^2+2Rr_a\right)=$ $4R^2+2R\left[\left(r_a+r_b+r_c\right)-r\right]=4R^2+2R\left[\left(4R+\cancel r\right)-\cancel r\right]=4R^2+8R^2=12R^2\ ,$ i.e. $OI^2+\sum OI_a^2=12R^2\ .$



P6 (Kadir ALTINTAS). Prove that $(\forall )\ \triangle\ ABC$ there are the equivalencies $:\ a^2+c^2=2b^2\iff 2\cot B=\cot A+\cot C\iff 2\cos 2B=\cos 2A+2\cos 2C\ .$

Proof.

$1.\blacktriangleright$ I"ll use well-known identities $\boxed{\ \frac {\cot A}{b^2+c^2-a^2}=\frac {\cot B}{c^2+a^2-b^2}=\frac {\cot C}{a^2+b^2-c^2}=\frac 1{4S}\ }\ (*)\ ,$ i.e. $\left(\cot A,\cot B,\cot C\right)$ are directly proportional to $\left(b^2+c^2-a^2,c^2+a^2-b^2,a^2+b^2-c^2\right)\ .$

Thus, $\underline{\underline{2\cot B=\cot A+\cot C}}\iff 2\left(c^2+a^2-b^2\right)=\left(b^2+\cancel{c^2}-\cancel{a^2}\right)+\left(\cancel{a^2}+b^2-\cancel{c^2}\right)=2b^2\iff$ $\underline{\underline{a^2+c^2=2b^2}}\ .$ Hence $\boxed{2\cot B=\cot A+\cot C\iff a^2+c^2=2b^2}\ .$

$2.\blacktriangleright$ I"ll use the identities $\boxed{\ \frac a{\sin A}=\frac b{\sin B}=\frac c{\sin C}=2R\ }\ (*)\ ,$ i.e. $(a,b,c)$ are directly proportional to $(\sin A,\sin B,\sin C)\ .$ Thus, $\underline{\underline{2b^2=a^2+c^2}}\iff 2\cdot 2\sin^2B=$ $2\sin^2A+2\sin^2C\iff$

$2(1-\cos 2B)=(1-\cos 2A)+(1-\cos 2C)\iff $ $\underline{\underline{2\cos 2B=\cos 2A+\cos 2C}}\ .$ Hence $\boxed{\ a^2+c^2=2b^2\iff 2\cos 2B=\cos 2A+\cos 2C\ }\ .$



P7 (Adil Abdullayev). Prove that $(\forall )\ \triangle\ ABC$ there is the identity $\frac {4R}r=\left(\frac {r_a}r-1\right)\left(\frac {r_b}r-1\right)\left(\frac {r_c}r-1\right)$ (standard notations).

Proof 1. I"ll use the well known identities $:\ \boxed{\ abc=4RS\ }\ (0)\ ,\ \boxed{\ s\left(r_a-r\right)=ar_a\ }\ (1)$ and $\boxed{\ rr_ar_br_c=S^2\ }\ (2)\ .$ Indeed, $\frac {r_a}r-1=\frac {r_a-r}r=\frac {s\left(r_a-r\right)}{sr}\ \stackrel{(1)}{=}\ \frac {ar_a}S\implies$

$ \boxed{\frac {r_a}r-1=\frac {ar_a}S}\ .$ Hence $\prod\left(\frac {r_a}r-1\right)=$ $\prod\frac {ar_a}S=$ $\frac {abc\cdot r_ar_br_c}{S^3}\ \stackrel{(0\wedge 2)}{=}\ \frac {4RS}{S^3}\cdot\frac {S^2}r=\frac {4R}r\ .$ In conclusion, $\prod\left(\frac {r_a}r-1\right)=\frac {4R}r\ .$ Remark. $1+\prod\left(\frac {r_a}r-1\right)=\sum\frac {r_a}r\ .$

Proof 2. I"ll use the well known identities $:\ \boxed{\ abc=4Rrs\ }\ (1)\ ,\ \boxed{\ \prod (s-a)=sr^2\ }\ (2)$ and $S=sr=r_a(s-a)\ ,$ i.e. $\boxed{\ \frac {r_a}r=\frac s{s-a}\ }\ (3)\ .$ Hence $\frac {r_a}r-1\ \stackrel{(3)}{=}\ \frac {s}{s-a}-1=$

$\frac {s-(s-a)}{s-a}=\frac a{s-a}\ ,$ i.e. $\boxed{\frac {r_a}r-1=\frac a{s-a}}\ .$ In conclusion, $\prod \left(\frac {r_a}r-1\right)=\prod \frac a{s-a}=\frac {abc}{(s-a)(s-b)(s-c)}\ \stackrel{(1\wedge 2)}{=}\ \frac {4Rsr}{sr^2}=\frac {4R}r\implies$ $\prod \left(\frac {r_a}r-1\right)=\frac {4R}r\ .$



P8 (Hung Nguyen Viet). Prove that $(\forall )$ an acute $\triangle\ ABC$ there is the inequality $\sqrt{\cos A}+\sqrt {\cos B}+\sqrt{\cos C}\le\frac 12\cdot\sqrt{\frac {a^2+b^2+c^2}{Rr}}\le \frac32\cdot \sqrt{\frac Rr}$ (standard notations).

Proof. I"ll use the well known identities $\boxed{\cos A+\cos B+\cos C=1+\frac rR\ }\ (1)\ ,\ \boxed{\ a^2+b^2+c^2=2\left[s^2-r(4R+r)\right]\ }\ (2)$ and the inequalities $\boxed{\ \left(\sum\sqrt{\cos A}\right)^2\le 3\sum\cos A\ }\ (3)\ ,$

$\boxed{\ a^2+b^2+c^2\le 9R^2\ }\ (4)$ and $\boxed{\ s^2\ge 16Rr-5r^2\ }\ (5)\ .$ Thus, $\left(\sum\sqrt{\cos A}\right)^2\ \stackrel{(3)}{\le}\ 3\sum\cos A\ \stackrel{(1)}{=}\ 3\left(1+\frac rR\right)$ and $\frac 1{\cancel 2}\cdot\sqrt{\frac {a^2+b^2+c^2}{Rr}}\le \frac3{\cancel 2}\cdot \sqrt{\frac Rr}\ \stackrel{(4)}{\iff}\ \sqrt{\frac {9R\cancel{^2}}{\cancel Rr}}\le $ $3\cdot \sqrt{\frac Rr}\ ,$

what is true. Remain to prove $3\left(1+\frac rR\right)\le \frac {a^2+b^2+c^2}{4Rr}\ \stackrel{(2)}{=}\ \frac {s^2-r^2-4Rr}{2Rr}$ i.e. $6r(R+r)\le s^2-r^2-4Rr\iff$ $s^2\ge 10Rr+7r^2\ .$ But $s^2\ \stackrel{(5)}{\ge}\ 16Rr-5r^2\ge 10Rr+7r^2$ because is true.



P9 (Dũng Nguyễn Tiến, Viet). Prove that $(\forall )\ \triangle\ ABC$ there is the equivalence $\boxed{\ DE=DF\iff \frac {m_a+m_b+m_c}{a+c+b}=\frac {\sqrt 3}2\ }\ (*)\ ,$

where $(D,E,F)$ are the projections of the centroid $G$ on $(BC,CA,AB)$ respectively (standard notations).


Proof. $[BG]\ ,$ $[CG]$ are the diameters of the cyclical quadrilaterals $BDGF\ ,$ $CDGE$ respectively $\implies\odot\begin{array}{ccccc}
\nearrow & DF=BG\cdot\sin B & \implies & DF=\frac {2m_c}3\cdot\frac b{2R} & \searrow\\\\
\searrow & DE=CG\cdot\sin C & \implies & DE=\frac {2m_b}3\cdot\frac c{2R} & \nearrow\end{array}\odot\implies$ $\frac {DE}{DF}=\frac {cm_c}{bm_b}\ .$ Therefore,

$DE=DF\iff $ $\boxed{\ bm_b=cm_c\ }\ (1)\ \iff$ $b^2\cdot 4m_b^2=c^2\cdot 4m_c^2\iff$ $2a^2\left(b^2-c^2\right)=$ $b^4-c^4\ \stackrel{(b\ne c)}{\iff}\ \boxed{\ b^2+c^2=2a^2\
 }\ (2)\ \iff$ $4m_a^2=2\cdot 2a^2-a^2\iff$ $4m_a^2=3a^2\iff$

$\boxed{\ 2m_a=a\sqrt 3\ }\ (3)\ ,\ \odot \begin{array}{cccccccc}
\nearrow & 4m_b^2=2\left(a^2+c^2\right)-b^2\ \stackrel{(2)}{=}\ \left(b^2+c^2\right)+\left(2c^2-b^2\right) & \implies & 4m_b^2=3c^2 & \implies & 2m_b=c\sqrt 3 & (4) & \searrow\\\\ \searrow & 4m_c^2=2\left(a^2+b^2\right)-c^2\ \stackrel{(2)}{=}\ \left(b^2+c^2\right)+\left(2b^2-c^2\right) & \implies & 4m_c^2=3b^2 & \implies & 2m_c=b\sqrt 3 & (5) & \nearrow\end{array}\odot$ The sum of the relations $(3)\
 ,$ $(4)$ and $(5)$ $\implies (*)\ .$



P10 (Boris COLAKOVIC, Serbia). Prove that $(\forall )\ \triangle\ ABC$ there is the relation $\frac r{h_a}\in\left[\sqrt 2-1\ ,\ \frac 12\right)$ (standard notations).

Proof. Observe that $\frac {h_a}r=\frac {ah_a}{ar}=\frac {2s\cancel r}{a\cancel r}=\frac {2s}a=\frac {a+b+c}a=1+\frac {b+c}a\implies$ $\boxed{\ \frac {h_a}r=1+\frac {b+c}a\ }\ (*)$ and $(b+c)^2\le 2\left(b^2+c^2\right)=2a^2\implies$

$b+c\le a\sqrt 2\implies $ $\boxed{\ \frac {b+c}a\le \sqrt 2\ }\ .$ Thus, $\frac {b+c}a\in \left(1,\sqrt 2\right]\iff$ $1+\frac {b+c}a\in \left(2,1+\sqrt 2\right]\ \stackrel{(*)}{\iff}\ \frac {h_a}r\in \left(2,1+\sqrt 2\right]\iff$ $\frac r{h_a}\in \left[\sqrt 2 -1,\frac 12\right)\ .$



P11. Prove that $(\forall )\ \triangle ABC$ there is the following relations identity $:\ \boxed{\ \sum b^2c^2\sin 2A=2S\left(a^2+b^2+c^2\right)}\ (*)\ ;$

the chain of the inequalities $\boxed{12r(2R-r)\le a^2+b^2+c^2\le 4\left(2R^2+r^2\right)\ }\ (1)$ (standard notations).


Proof. $\underline{\underline{b^2c^2\sin 2A}}=$ $abc\cdot\frac {\sin 
 A}a\cdot 2bc\cos A=$ $4RS\cdot \frac 1{2R}\cdot\left(b^2+c^2-a^2\right)= \underline{\underline{2S\cdot\left(b^2+c^2-a^2\right)}}\implies$ $\sum b^2c^2\sin 2A=2S\cdot\left(a^2+b^2+c^2\right)\ .$

I"ll use the well known identity $\boxed{\ a^2+b^2+c^2=2\left(s^2-r^2-4Rr\right)\ }$ and the remarkable bilateral inequality $\boxed{\ 16Rr-5r^2\le s^2\le 4R^2+4Rr+3r^2\ }\ .$



$\boxed{\ \mathrm{Lemma\ (Leo\ GIUGIUC).\ Prove\ that\ the\ identity}\ 2\cdot \sum a^4+16\cdot\prod (s-a)=8abcd+\left(\sum a^2\right)^2\ ,\ \mathrm{where}\ \{a,b,c,d\}\subset \ \mathbb C\ \mathrm{and}\ a+b+c+d=2s }$


P12 (own). Prove that $(\forall )\ \triangle ABC$ there is the inequality $\boxed{\ \left(4-\frac {2r}R\right)^2\le \left(\frac {a^2}{b^2}+\frac {b^2}{c^2}+\frac {c^2}{a^2}\right)\left(\frac {a^2}{c^2}+\frac {b^2}{a^2}+\frac {c^2}{b^2}\right)\ }$ (standard notations).

Proof. $\left(\frac {a^2}{bc}+\frac {b^2}{ca}+\frac {c^2}{ab}\right)^2=$ $\left(\frac ab\cdot\frac ac+\frac bc\cdot \frac ba+\frac ca\cdot\frac cb\right)^2\ \stackrel{C.B.S}{\le}\ \left(\frac {a^2}{b^2}+\frac {b^2}{c^2}+\frac {c^2}{a^2}\right)\left(\frac {a^2}{c^2}+\frac {b^2}{a^2}+\frac {c^2}{b^2}\right)\implies$ $\boxed{\ \left(\frac {a^2}{bc}+\frac {b^2}{ca}+\frac {c^2}{ab}\right)^2\le\left(\frac {a^2}{b^2}+\frac {b^2}{c^2}+\frac {c^2}{a^2}\right)\left(\frac {a^2}{c^2}+\frac {b^2}{a^2}+\frac {c^2}{b^2}\right)\ }\ (1)\ .$ Prove easily

the inequality $\boxed{\ a^2\ge 4(s-b)(s-c)\ }\ (2)$ a.s.o. and the identity $\boxed{\ \sum a(s-b)(s-c)=2S(2R-r)\ }\ (3)\ .$ Thus, $\frac {a^2}{bc}\ \stackrel{(2)}{\ge}\ \frac {4(s-b)(s-c)}{bc}=$ $\frac {4a(s-a)(s-b)(s-c)}{abc(s-a)}=$ $\frac {\cancel 4a\cancel Sr}{\cancel 4R\cancel S(s-a)}=$

$\frac {ar}{R(s-a)}$ $\implies$ $\boxed{\ \frac {a^2}{bc}\ge \frac {r}{R}\cdot\frac {a}{s-a}\ }\ (4)$ a.s.o. Therefore, $\sum \frac {a^2}{bc}\ \stackrel{(4)}{\ge}\ \frac r{R}\cdot \sum\frac a{s-a}=$ $\frac r{R}\cdot\frac{\sum a(s-b)(s-c)}{sr^2}\ \stackrel{(3)}{=}\ \frac {\cancel r}{R}\cdot \frac{2\cancel S(2R-r)}{\cancel S\cancel r}=$ $\frac {2(2R-r)}{R}=4-\frac {2r}R\implies$ $\boxed{\ \sum\frac {a^2}{bc}\ge 4-\frac {2r}R\ }\ .$

In conclusion, $\left(4-\frac {2r}R\right)^2\le$ $\left(\frac {a^2}{bc}+\frac {b^2}{ca}+\frac {c^2}{ab}\right)^2\ \stackrel{(1)}{\le}\ \left(\frac {a^2}{b^2}+\frac {b^2}{c^2}+\frac {c^2}{a^2}\right)\left(\frac {a^2}{c^2}+\frac {b^2}{a^2}+\frac {c^2}{b^2}\right)\implies$ $\left(4-\frac {2r}R\right)^2\le$ $\left(\frac {a^2}{b^2}+\frac {b^2}{c^2}+\frac {c^2}{a^2}\right)\left(\frac {a^2}{c^2}+\frac {b^2}{a^2}+\frac {c^2}{b^2}\right)\ .$



P13. Let $\triangle ABC$ with $\frac A3=\frac B2$ and $BC=2\cdot AB\ .$ Prove that $A=90^{\circ}$ (standard notations).

Proof 1. Remark that $\frac A3=\frac B2=x<60^{\circ}\ ,$ i.e. $\boxed{\ A=3x\ ,\  B=2x\ }$ and $\boxed{\ a=2c\ }\ .$ Apply the theorem of Sines $:\ \frac a{\sin 3x}=\frac c{\sin 5x}\iff$ $\frac {2\cancel c}{\sin 3x}=\frac {\cancel{c}}{\sin 5x}\iff$ $\boxed{\ 2\sin 5x=\sin 3x\ }\iff$

$2\sin x\cdot 2\sin 5x=2\sin x\cdot \sin 3x\iff$ $2(\cos 4x-\cos 6x)=\cos 2x-\cos 4x\iff$ $\boxed{\ 2\cos 6x-3\cos 4x+\cos 2x=0\ }\ (*)\ .$ Denote $\boxed{\cos 2x=t>-\frac 12\ }\ .$ The relation $(*)$ becomes

$2t\left(4t^2-3\right)-3\left(2t^2-1\right)+t=0\iff$ $8t^3-6t^2-5t+3=0\iff$ $(t-1)(2t-1)(4t+3)=0\ \stackrel{t\not\in\{-\frac 34,1\}}{\iff}\ t=\frac 12\iff$ $\cos 2x=\frac 12\iff$ $2x=60^{\circ}\iff x=30^{\circ}\iff$ $A=90^{\circ}\ .$



P14. Let $\triangle ABC$ with centroid $G ,$ midpoint $M$ of $[AC]$ and $\left\{\begin{array}{ccc}
E\in (AB) & F\in (AM) & EF\parallel BM\\\\
\ AF=a & FM=b & N\in EG\cap AC\end{array}\right\|\ .$ Prove that $\boxed{\ NC=\frac {a^2-b^2}{a-\frac b2}\ }\ .$

Proof. Denote $MN=y$ and $NC=x\ .$ Observe that $MC=MA\iff \boxed{\ x+y=a+b\ }\ (1)$ and $EF\parallel BM\iff\frac {EA}{EB}=\frac {FA}{FM}\ ,$ i.e. $\boxed{\ \frac {EA}{EB}=\frac ab\ }\ (*)\ .$ Apply the Menelaus' theorem to

the transversal $\overline{EGN}/\triangle ABM\ :\ \frac{NM}{NA}\cdot\frac {EA}{EB}\cdot\frac {GB}{GM}=1\ \stackrel{(*)}{\iff}\ \frac y{y+a+b}\cdot\frac ab\cdot \frac 21=1\iff$ $\boxed{\ y(2a-b)=b(a+b)\ }\ (2)\ .$ From the relations $(1)$ and $(2)$ obtain easily the required relation.



P15. In $\triangle ABC$ denote $:\ \left\{\begin{array}{ccc}
P\in w_a\cap AB\ ;\ Q\in w_a\cap AC & \wedge & L\in PQ\ ;\ CL\perp PQ\\\\\
M\in w_b\cap AB\ ;\ N\in w_b\cap BC & \wedge & K\in MN\ ;\ CK\perp MN\end{array}\right\|\ .$ Prove that $MKLP$ is cyclically (standard notations).

Proof. Denote $S\in KM\cap LP$ . Observe that $AM=BP=s-c$ , $MP=a+b$ and $\left\{\begin{array}{c}
m\left(\widehat{PMS}\right)=90^{\circ}-\frac B2\\\\
m\left(\widehat{MPS}\right)=90^{\circ}-\frac A2\\\\
m\left(\widehat{MSP}\right)=90^{\circ}-\frac C2\end{array}\right\|$ . Apply the theorem of Sines in $\triangle MPS\ :\ \frac {a+b}{\cos\frac C2}=$ $\frac {SM}{\cos \frac A2}=\frac {SP}{\cos \frac B2}\implies$

$SM^2-SP^2=\frac {(a+b)^2}{\cos^2\frac C2}\cdot\left(\cos ^2\frac A2-\cos^2\frac B2\right)=$ $\frac {ab(a+b)^2}{2s(s-c)}\cdot(\cos A-\cos B)=$ $\frac {ab(a+b)^2}{2s(s-c)}\cdot\frac {2(b-a)s(s-c)}{abc}\implies$ $\boxed{SM^2-SP^2=\frac {(a+b)(b^2-a^2)}{c}}$ . Apply the theorem of Cosines

in the triangles $CAM$ and $CBM\ :\ \left\{\begin{array}{c}
CM^2=(s-c)^2+b^2+2b(s-c)\cos A\\\\
CP^2=(s-c)^2+a^2+2a(s-c)\cos B\end{array}\right\|\implies$ $CM^2-CP^2=b^2-a^2+2(s-c)(b\cos A-a\cos B)$ . Observe that $b\cos A-a\cos B=$ $\frac {b^2-a^2}{c}$

and $CM^2-CP^2=$ $b^2-a^2+2(s-c)\cdot \frac {b^2-a^2}{c}=\left(b^2-a^2\right)\cdot\left(1+\frac {a+b-c}{c}\right)\implies$ $\boxed{CM^2-CP^2=\frac {(a+b)(b^2-a^2)}{c}}$ . In conclusion, $SM^2-SP^2=CM^2-CP^2=$

$\frac {(b-a)(a+b)^2}{c}$ $\implies$ $SC\perp AB$ . Let $R\in SC\cap AB$ . Since $RMKC$ and $RPLC$ are cyclically obtain that $\left\{\begin{array}{c}
SC\cdot SR=SK\cdot SM\\\\
SC\cdot SR=SL\cdot SP\end{array}\right\|\implies$ $SK\cdot SM=SL\cdot SP\implies$ $MKLP$ is cyclically.



P16 and its proof (Đỗ Hữu Đức Thịnh). We can try to use the well known Ptolemy's inequality in a convex quadrilateral $ABCD\ :\ \boxed{\ AC\cdot BD\le AB\cdot CD+AD\cdot BC\ }\ .$

For example, $a\cdot OI_a\le Rr_a\left(\sec\frac C2+\sec\frac B2\right)$ a.s.o. $\implies$ $\sum a\cdot OI_a\le  R\cdot\sum r_a\left(\sec\frac C2+\sec\frac B2\right)\ \le\ ......\ \le 6R^2\sqrt 3\ .$



P17 (Nguyen Viet Hung - Vietnam). $\boxed{\ \begin{array}{c}
\mathrm{Prove\ that}\ (\forall )\ \triangle ABC\ \mathrm{there\ is\ the\ chain\ of\ the\ inequalities\ :}\\\\
\frac {2s}{2R-r}\le 2\sqrt 3\le 2\sqrt{\frac {2(2R-r)}R}\le\ \boxed{\ \frac {2(4R+r)}{s}=\frac a{r_a}+\frac b{r_b}+\frac c{r_c}\ }\ \le \frac {2s}{3r}\ \mathrm{(standard\ notations)}.\end{array}\ }$

Proof.

$\blacktriangleright$ Prove easily that $4R^2+4Rr+3r^2\le 3\left(2R-r\right)^2\ (1)\ \iff$ $2r\le R$ (Euler's inequality), what is true. Hence and the inequality $(1)$ is also true. From the

inequality $(1)$ and the Gerretsen's inequality $s^2\le 4R^2+4Rr+3r^2\ (*)$ obtain that $s^2\le 3(2R-r)^2\ ,$ i.e. $s\le (2R-r)\sqrt 3\iff$ $\boxed{\ \frac {2s}{2R-r}\le 2\sqrt 3\ }\ .$

$\blacktriangleright$ Prove easily that $2\sqrt 3\le2\sqrt {\frac {2(2R-r)}R}\iff 3R\le 2(2R-r)\iff 2r\le R\ ,$ what is true. In conclusion, and inequality $\boxed{\ 2\sqrt 3\le2\sqrt {\frac {2(2R-r)}R}\ }$ is true.

$\blacktriangleright\ \cancel 2\sqrt{\frac {2(2R-r)}R}\le\frac {\cancel 2(4R+r)}{s}\iff$ $\boxed{\ s^2\le \frac {R(4R+r)^2}{2(2R-r)}\ }\ ,$ what is the Blundon's inequality. In conclusion, and the inequality $\boxed{\ 2\sqrt{\frac {2(2R-r)}R}\le\ \frac {2(4R+r)}{s}\ }$ is true.

$\blacktriangleright\ \sum\frac a{r_a}=\sum\frac {a(s-a)}S=$ $\frac 1S\cdot \sum \left(as-a^2\right)=$ $\frac 1S\cdot \left(s\sum a-\sum a^2\right)=$ $\frac 1{sr}\cdot \left[\cancel{2s^2}-2\left(\cancel{s^2}-r^2-4Rr\right)\right]=$ $\frac {2\cancel r(4R+r)}{s\cancel r}=\frac {2(4R+r)}{s}\implies $ $\boxed{\ \frac {2(4R+r)}{s}=\frac a{r_a}+\frac b{r_b}+\frac c{r_c}\ }\ .$

$\blacktriangleright\ \frac {\cancel 2(4R+r)}{s}=\frac a{r_a}+\frac b{r_b}+\frac c{r_c}\le\frac {\cancel 2s}{3r}\iff$ $s^2\ge 3r(4R+r)\ .$ Prove easily that $16Rr-5r^2\ge 3(4R+r)\iff$ $4Rr\ge 8r^2\iff R\ge 2r\ ,$ what is true.

Hence and the inequality $16Rr-5r^2\ge 3(4R+r)$ is true. From the well known inequality $s^2\ge 16Rr-5r^2$ obtain that $s^2\ge 3r(4R+r)\ ,$ i.e. $\boxed{\ \frac a{r_a}+\frac b{r_b}+\frac c{r_c}\le \frac {2s}{3r}\ }\ .$

Remarks.

$\blacktriangleright\ \sum \frac a{r_a}=$ $\sum\frac {a^2}{ar_a}\ \stackrel{C.B.S}{\ge}\ \frac {4s^2}{\sum ar_a}=$ $\frac {4s^{\cancel 2}}{\cancel s\sum\left(r_a-r\right)}=$ $\frac {4s}{(4R+r)-3r}=\frac {2s}{2R-r}\implies$ $\boxed{\ \sum \frac a{r_a}\ge \frac {2s}{2R-r}\ }\ .$

$\blacktriangleright$ Observe that $a\le b\le c\iff \frac 1{r_a}\ge \frac 1{r_b}\ge \frac 1{r_c} .$ Hence can apply the Chebyshev's inequality $\sum\frac a{r_a}=\sum \left(a\cdot \frac 1{r_a}\right)\le\frac 13\cdot \sum a\cdot\sum\frac 1{r_a}=\frac 13\cdot (2s)\cdot\frac 1r=\frac {2s}{3r}\implies\boxed{\ \sum\frac a{r_a}\le \frac {2s}{3r}\ }\ .$

$\blacktriangleright\ \frac 13\cdot\sum\frac a{r_a}\ge\sqrt [3]{\prod\frac a{r_a}}=\sqrt [3]{\frac {abc\cdot r}{r_ar_br_c\cdot r}}=\sqrt [3]{\frac {4R\cancel Sr}{S^{\cancel 2}}}=\sqrt [3]{\frac {4R}s}\ \stackrel{2s\le 3R\sqrt 3}{\ge}\ \sqrt [3]{\frac{4\cdot 2}{3\sqrt 3}}=\sqrt[3]{\left(\frac 2{\sqrt 3}\right)^3}=\frac 2{\sqrt 3}\implies\sum\frac {a}{r_a}\ge 2\sqrt{3}\ .$



P18 (own). Prove that $(\forall )\ \triangle ABC$ there is the relations $\sum\frac {bc}{s-a}=\frac {s^2+(4R+r)^2}s\ge 4\cdot \max\left\{\ s\ ,\ (R+r)\sqrt 3\ \right\}$ (standard notations).

Proof. I"ll use the identities $r_a+r_b+r_c=4R+r\ ,$ $r_ar_b+r_br_c+r_cr_a=s^2\ ,$ $s(s-a)+(s-b)(s-c)=bc\ ,$ $\sum (s-b)(s-c)=r(4R+r)$ and the inequalities

$3\sum \left(r_br_c\right)\le \left(\sum r_a\right)^2\iff$ $3s^2\le (4R+r)^2\iff \boxed{\ s\sqrt 3\le 4R+r\ }\ (1)$ and $\sum (s-b)(s-c)\le \left[\sum (s-a)\right]^2\iff\boxed{\ 3r(4R+r)\le s^2\ }\ (2)\ .$ Therefore $:$

$\blacktriangleright\ \sum\frac {bc}{s-a}=$ $\sum \frac {s(s-a)+(s-b)(s-c)}{s-a}=$ $\sum \left[s+\frac {(s-b)(s-c)}{s-a}\right]=$ $3s+\sum \frac {r(4R+r)-a(s-a)}{s-a}=$ $3s+r(4R+r)\cdot \sum\frac 1{s-a}-2s=$

$s+r(4R+r)\cdot \frac {\sum (s-b)(s-c)}{\prod (s-a)}=$ $s+\cancel r(4R+r)\cdot \frac {\cancel r(4R+r)}{s\cancel{r^2}}=$ $s+\frac {(4R+r)^2}s=\frac {s^2+(4R+r)^2}s\implies \boxed{\ \sum\frac {bc}{s-a}=\frac {s^2+(4R+r)^2}s\ }\ .$

$\blacktriangleright\ \sum\frac {bc}{s-a}=s+\frac {4R+r}s\cdot (4R+r)\ge s+\frac {4R+r}{\cancel s}\cdot \cancel s\sqrt 3=$ $s+(4R+r)\sqrt 3\ge$ $ 3r\sqrt 3+(4R+r)\sqrt 3=$ $[3r+(4R+r)]\sqrt 3=$ $4(R+r)\sqrt3\implies$

$ \boxed{\ \sum\frac {bc}{s-a}\ge 4(R+r)\sqrt 3\ }\ .$ On other hand $\sum\frac {bc}{s-a}=s+\frac {(4R+r)^2}s\ge s+\frac {\left(s\sqrt 3\right)^2}s=s+\frac {3s^2}s=s+3s=4s\implies \boxed{\ \sum\frac {bc}{s-a}\ge 4s\ }\ .$



P19 (own). Prove that $(\forall )\ \triangle ABC$ there is the inequality $(16R-5r)\left(4R^2+4Rr+3r^2\right)\le 9\left(r_a^3+r_b^3+r_c^3\right)$ (standard notations).

Proof. Prove easily that $(16R-5r)\left(4R^2+4Rr+3r^2\right)\le (4R+r)^3\iff r(R-2r)^2\ge 0\ .$ Hence $r_a+r_b+r_c=4R+r$ and $(4R+r)^3=\left(r_a+r_b+r_c\right)^3\le 9\left(r_a^3+r_b^3+r_c^3\right)\ .$


P20 (Nguyễn Đăng Khoa, Vietnam). Let $\triangle ABC$ with the incircle $w=\mathbb C(I,r)$ and the midpoint $M$ of the side $[AB]\ .$ Suppose that $b+c=3a\ .$ Prove that $IM\perp IB\ .$

Proof. $b+c=3a\iff a+b+c=4a\iff 2s=4a\iff \boxed{\ s=2a\ }\ (*)\ 
 .$ Therefore, $\frac {AI}{AI_a}=\frac {s-a}s\ \stackrel{(*)}{=}$

$\frac a{2a}=\frac 12=\frac {AM}{AB}\implies$ $\frac {AI}{AI_a}=\frac {AM}{AB}\implies$ $\boxed{\  I_aB\parallel IM\ }\ .$ Since $IB\perp BI_a$ and $IM\parallel  BI_a$ obtain that $IB\perp IM\ .$



P21 (Carlos Olivera Diaz). Let $A\mathrm{-right}\ \triangle ABC$ and two mobile points $M\in (AB)$ and $N\in (AC)$ so that $\boxed{\frac {BM}{BA}+\frac {CN}{CA}=1}\ .$ Ascertain the minimum value of the segment $[MN]\ .$

Proof. Denote $AM=x\in (0,c]\ ,$ i.e. $BM=c-x$ and $AN=y\in (0,b]\ ,$ i.e. $CN=b-y\ .$ Hence $\frac {c-x}c+\frac {b-y}b=1\iff\frac xc+\frac yb=1\iff \boxed{\ bx+cy=bc\ }\ .$ Apply the

C.B.S. inequality $:\ (bc)^2=\left(bx+cy\right)^2\le \left(b^2+c^2\right)\left(x^2+y^2\right)=a^2\cdot MN^2$ $\implies$ $\boxed{\ MN\ge \frac {bc}a\ }$ and $MN=\frac {bc}a\iff$ $\frac xb=\frac yc\iff$ $\frac {bx}{b^2}=\frac {cy}{c^2}=\frac {bx+cy}{b^2+c^2}=\frac {bc}{a^2}=\frac ha\ ,$ where $h=\frac {bc}a\ .$



P22 (Dung Nguyen Tien, Vietnam). Let $\triangle\ ABC$ with the excircles $w_b\
 ,$ $w_c$ and the incircle $I\ .$ Denote $E\in AI\cap BC\ ,$ $D\in AB\cap w_c$

and $F\in AC\cap w_b\ .$ Prove that the implication $:\ ADEF$ is cyclic $\implies b+c=\phi\cdot a\ ,$ where $\phi =\frac {1+\sqrt 5}2$ (golden ratio).


Proof. Observe that $\left\{\begin{array}{ccc}
DB=s-a & ; & DA=s-b\\\\
FC=s-a & ; & FA=s-c\end{array}\right\|$ and $\frac {EB}c=\frac {EC}b=\frac a{b+c}\ .$ Denote $\{E,K\}=BC\cap w\ ,$ where $w$ is the circumcircle of $ADEF\ .$ I"ll apply the power of the points $\{B,C\}$

w.r.t. $w\ :\ \left\{\begin{array}{ccc}
BA\cdot BD=BE\cdot BK & \implies & c(s-a)=\frac {ac}{b+c}\cdot BK\\\\
CA\cdot CF=CE\cdot CK & \implies & b(s-a)=\frac {ab}{b+c}\cdot CK\end{array}\right\|$ $\implies$ $KB=KC=\frac a2\ .$ Thus, $\cancel c(s-a)=\frac {a\cancel c}{b+c}\cdot\frac a2$ $\implies$ $2(s-a)(b+c)=a^2\implies (b+c)[(b+c)-a]=a^2$ $\implies$

$(b+c)^2-a(b+c)-a^2=0$ $\implies$ $\left(\phi a\right)^2-\phi a^2-a^2=0$ $\implies$ $a^2\left(\phi ^2-\phi-1\right)=0$ $\implies$ $\phi ^2-\phi-1=0$ $\implies$ $\boxed{\ \phi=\frac {1+\sqrt 5}2\ }\ .$ In conclusion, $b+c=\phi\cdot a\ ,$ where $\phi =\frac {1+\sqrt 5}2\ .$



P23 (Ercole SUPPA, Italy).

Proof. Suppose w.l.o.g. $AB=2\ ,$ i.e. $MB=MC=1\ .$ Let $:$ the midpoint $N$ of $[AD]\ ,$ i.e. $ON=R\ ,$ $OM=2-R\ ;$ the incircle $\Omega=\mathbb C(O,R)$ of $\triangle AMD$ and the incircle $w=\mathbb C(I,r)$ of $\triangle CDM.$

Apply the theorem of the $A$-bisector in $\triangle MAN\ :\ \frac {OM}{AM}=\frac {ON}{AN}\iff$ $\frac {2-R}{\sqrt 5}=\frac R1=$ $\frac 2{1+\sqrt 5}=$ $\frac {\sqrt 5-1}2\iff \boxed{\ R=\frac {\sqrt 5-1}2\ }\ .$ Apply the well known identity $2r=CM+CD-MD$

in the $C$-right $\triangle MCD\ ,$ i.e. $2r=1+2-\sqrt 5\iff \boxed{\ r=\frac {3-\sqrt 5}2\ }\ .$ In conclusion, $\frac Rr=\frac{\sqrt 5 -1}{3-\sqrt 5}=$ $\frac {\left(\sqrt 5-1\right)\left(3+\sqrt 5\right)}4=$ $\frac{2\left(\sqrt 5+1\right)}4=\frac{1+\sqrt 5}2\implies$ $\boxed{\ \frac Rr=\frac {1+\sqrt5}2\ }\ .$



P24 (Problem 733, SANGAKU).

Proof.


P25 (Ercole SUPPA, Italy).

Proof.


P26 (Valentin VORNICU). It is known that $ \angle BAC$ is the smallest angle in the triangle $ ABC$. The points $ B$ and $ C$ divide the circumcircle

of the triangle into two arcs. Let $ U$ be an interior point of the arc between $ B$ and $ C$ which does not contain $ A$. The perpendicular bisectors

of $ AB$ and $ AC$ meet the line $ AU$ at $ V$ and $ W$, respectively. The lines $ BV$ and $ CW$ meet at $ T$. Show that $ AU = TB + TC$.

Alternative formulation: Four different points $ A,B,C,D$ are chosen on a circle $ \Gamma$ such that the triangle $ BCD$ is not right-angled. Prove that:

(a) The perpendicular bisectors of $ AB$ and $ AC$ meet $ AD$ at certain $ W$ and $ V,$ respectively, and that $ CV$ and $ BW$ meet at a certain $ T.$

(b) The length of one of the line segments $ AD, BT,$ and $ CT$ is the sum of the lengths of the other two.


Proof. $x=m(\widehat {BAU})\ ,\ y=m(\widehat {CAU})\implies  m(\widehat {BTC})=2(x+y)=2A$ and $\frac{TB}{\sin (C-y)}=\frac{TC}{\sin (B-x)}=\frac{a}{\sin 2A}=\frac{R}{\cos A}.$

In conclusion, $TB+TC=\frac{R}{\cos A}\cdot [\sin (B-x)+\sin (C-y)]=$ $=2R\cdot \cos \frac{B-C-x+y}{2}=2R\sin (C+x)=AU.$
This post has been edited 495 times. Last edited by Virgil Nicula, May 23, 2018, 9:03 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a