213. Another classical "slicing" problems.

by Virgil Nicula, Jan 24, 2011, 10:23 AM

PP1. In $\triangle ABC$ with $A = 30^{\circ}$ and $B = 80^{\circ}$ consider $M$ so that $m(\angle MAC)= 10^{\circ}$ and $m(\angle MCA) = 30^{\circ}$ . Find $m\left(\widehat{BMC}\right)$ .

Proof 1 (trigonometric). Denote $x=m(\angle MBC)$ and apply the trigonometric form of the Ceva's theorem to the point $M$ in the triangle $ABC\ :$

$\sin\widehat{MCA}\cdot\sin\widehat{MAB}\cdot\sin\widehat {MBC}=\sin\widehat{MAC}\cdot\sin\widehat{MBA}\cdot\sin\widehat {MCB}=1\iff$ $\sin 30^{\circ}\sin 20^{\circ}\sin x=\sin 40^{\circ}\sin 10^{\circ}\sin (80^{\circ}-x)\iff$

$\sin 30^{\circ}\sin x=2\cos 20^{\circ}\sin 10^{\circ}\cos(10^{\circ}+x)\iff$ $\sin x=2(\sin 30^{\circ}-\sin 10^{\circ})\cos (10^{\circ}+x)\iff$ $\sin x=\cos (10^{\circ}+x)-2\sin 10^{\circ}\cos (10^{\circ}+x)\iff$

$\sin x=\cos (10^{\circ}+x)-\sin (20^{\circ}+x)+\sin x\iff$ $\cos (10^{\circ}+x)=\cos (70^{\circ}-x)\iff$ $10^{\circ}+x=70^{\circ}-x\iff$ $x=30^{\circ}\iff$ $m(\angle BMC)=110^{\circ}$ .

Proof 2. Take $D\in (BC$ so that $m\left(\widehat{ADB}\right)=60^\circ$, circumcenter $O$ of $\triangle ABD$, $Q$ - midpoint of arc $\stackrel {\frown}{BCA}$ , $P\in BO \cap AD$; $O$ is on $AC$ . Because $C$ , $P$ are on perpendicular bisector

of $BQ$ , $AQ$ respectively ($\triangle ABQ$ is equilateral) and $m\left(\widehat{DAQ}\right)=$ $m\left(\widehat{DBQ}\right)=20^\circ $ $\implies$ $ BC=CQ=PQ=AP$ and $m\left(\widehat{CQP}\right)=60^\circ$ . Hence $PC=CQ$ . But

$PC=AP \implies $ $\angle APC=10^\circ$ , $\angle BCP=80^\circ$ , $\triangle BCP$ is isosceles; $\angle ACM=30^\circ \implies \angle BCM = \frac{\angle BCP}{2}=40^\circ$ . Hence $M$ is on perpendicular bisector of $BP$ . As $AM$

is bisector of $\angle DAB=\angle PAB$ $\implies$ $ PMBA$ cyclic and $\angle BMP=180^\circ-\angle PAB=140^\circ$ $ \implies \angle CMB=\angle CMP =\frac{360^\circ-140^\circ}{2}=110^\circ$ .

Proof 3. Let $D\in AB\cap CM$ and $\left\{\begin{array}{cc}
E\in (AM)\ ; & DE=DM\\\
F\in (AC)\ ; & EA=EF\end{array}\right|$ . Thus, $\triangle MDE$ and $\triangle AEF$ are isosceles, $m\left(\widehat{MDE}\right)=100^{\circ}$ , $m\left(\widehat{ADE}\right)=20^{\circ}$ , $\triangle ADE$ is isosceles,

$DE=AE=EF$ , $\triangle DEF$ is isoscels, $m\left(\widehat{MEF}\right)=20^{\circ}$ , $\triangle DEF$ is equilateral, $DE=DF=DM$ , $\triangle MDF$ is isosceles, $m\left(\widehat{MDF}\right)=40^{\circ}$ ,

$m\left(\widehat{DMF}\right)=m\left(\widehat{DFM}\right)=70^{\circ}$ . Let $G\in (BD)$ such that $m\left(\widehat{MGD}\right)=60^{\circ}$ . Denote $H\in DE\cap FG$ . $\triangle MDG$ is equilateral and $\triangle DFG$ is isosceles, $m\left(\widehat{DFG}\right)=40^{\circ}$ .

$m\left(\widehat{EFG}\right)=100^{\circ}$ , $m\left(\widehat{DHG}\right)=20^{\circ}$ , $\triangle DGH$ is isosceles, $GH=DG=MG$ , $\triangle MGH$ is isosceles, $m\left(\widehat{GMB}\right)=10^{\circ}$ , $m\left(\widehat{DMB}\right)=70^{\circ}$ , $m\left(\widehat{BMC}\right)=110^{\circ}$ .



PP2. Let $ABC$ be an $A$-isosceles triangle with $A=80^{\circ}$ . Let $P$ be an inner point of $\triangle ABC$ so that $\left\{\begin{array}{c}
m\left(\widehat{PBC}\right)=10^{\circ}\\\
m\left(\widehat{PCB}\right)=30^{\circ}\end{array}\right|$ . Find the value of the angle $\widehat {PAB}$ .

Proof 1 (trigonometric). Denote $m\left(\widehat {PAB}\right)=x$ . Thus, $m\left(\widehat {PAC}\right)=80^{\circ}-x$ and apply the trigonometric form of the Menelaus' theorem:

$\sin 40^{\circ}\sin 30^{\circ}\sin \left(80^{\circ}-x\right)=\sin x\sin 10^{\circ}\sin 20^{\circ}\iff$ $\cos 20^{\circ}\sin \left(80^{\circ}-x\right)=\sin x\sin 10^{\circ}\iff$ $\cos 20^{\circ}\cos \left(10^{\circ}+x\right)=\sin x\sin 10^{\circ}\iff$

$\cos (30^{\circ}+x)+\cos (x-10^{\circ})=\cos (x-10^{\circ})-\cos (x+10^{\circ})\iff$ $\cos (30^{\circ}+x)=\cos \left(170^{\circ}-x\right)\iff$ $30^{\circ}+x=170^{\circ}-x\iff$ $x=70^{\circ}$ .

Proof 2 (synthetic). Let $P$ be the circumcenter of $\Delta ABC$. See that $\Delta BPC$ is $P$-isosceles, $40^\circ-100^\circ-40^\circ$ , also $\Delta CPO$ is $P$-isosceles, $20^\circ-140^\circ-20^\circ$ .

Take $O'$ the symmetrical of $O$ w.r.t. perpendicular bisector of $BC$ . Then $\Delta OPO'$ is equilateral, so $BCOO'$ is an isosceles trapezoid with $CO=OO'=O'B$ . Therefore,

$\angle CBO'=\angle OCB=20^\circ$ and $BO$ is the bisector of $\angle CBO'$ . Consequently $\angle ABO=70^\circ$ . Hence $\Delta ABO$ is isosceles with $\angle BAO=40^\circ$ and $\angle BOA=70^\circ$ .

Proof 3 (metric). $a=2b\sin 40^{\circ}$ . Apply theorem of Sinus in $\triangle BPC\ :\ \frac {PB}{\sin \widehat{BCP}}=$ $\frac {BC}{\sin\widehat{BPC}}\iff$ $\frac {PB}{\sin 30^{\circ}}=$ $\frac {a}{\sin 140^{\circ}}\iff$

$PB=\frac {a}{2\sin 40^{\circ}}\iff$ $PB=b\iff$ the triangle $ABP$ is $B$-isosceles with $m\left(\widehat{ABP}\right)=40^{\circ}\iff$ $m\left(\widehat{BAP}\right)=70^{\circ}$ .

Proof 4 (synthetic). Denote the midpoint $M$ of $[BC]$ and the projection $S$ of $B$ on $PC$ . Observe that the triangle $BMS$ is equilateral, i.e. $BS=SM=MB=MC$

and $\triangle BSP\equiv\triangle BMA$ because $BS=BM$ and $\widehat{BPS}\equiv\widehat{BAM}$ . In conclusion, $BP=BA$ , i.e. $m\left(\widehat{BAP}\right)=70^{\circ}$ .



PP3. Let an $A$-isosceles $\triangle ABC$ with $A=20^{\circ}$ . Denote $\left\{\begin{array}{cc}
D\in (AB)\ ; & m\left(\widehat{ACD}\right)=20^{\circ}\\\\
E\in (AC)\ ; & m\left(\widehat{ABE}\right)=10^{\circ}\end{array}\right|$ . Find $m\left(\widehat{DEB}\right)$ .

Proof 1 (trigonometric). Denote $m\left(\widehat{DEB}\right)=x$ and apply the trigonometric form of the Ceva's therem in the quadrilateral $BDEC\ :$

\[\boxed{\begin{array}{c}
\sin (50^{\circ}+x)\sin 10^{\circ}\sin 60^{\circ}\sin 30^{\circ}=\sin x\sin 40^{\circ}\sin 70^{\circ}\sin 20^{\circ}\\\\
\cos (40^{\circ}-x)\sin 10^{\circ}\sin 60^{\circ}=2\sin x\sin 40^{\circ}\cos 20^{\circ}\sin 20^{\circ}\\\\
\cos (40^{\circ}-x)\sin 10^{\circ}\sin 60^{\circ}=\sin x\sin^240^{\circ}\\\\
\cos (40^{\circ}-x)(\cos 50^{\circ}-\cos 70^{\circ})=\sin x(1-\cos 80^{\circ})\\\\
\cos (40^{\circ}-x)(\sin 40^{\circ}-\sin 20^{\circ})=\sin x (1-\sin 10^{\circ})\\\\
\sin (80^{\circ}-x)+\sin x-\sin (60^{\circ}-x)+\sin (20^{\circ}-x)=2\sin x-\cos(x-10^{\circ})+\cos (x+10^{\circ})\\\\
-\sin (60^{\circ}-x)+\sin (20^{\circ}-x)=\sin x-\cos (x-10^{\circ})\\\\
\sin (60^{\circ}-x)+\sin x=\sin (20^{\circ}-x)+\cos (x-10^{\circ})\\\\
2\sin 30^{\circ}\cos (30^{\circ}-x)=\sin (20^{\circ}-x)+\cos (x-10^{\circ})\\\\
\cos (30^{\circ}-x)-\cos (x-10^{\circ})=\sin (20^{\circ}-x)\\\\
-2\sin 10^{\circ}\sin (20^{\circ}-x)=\sin (20^{\circ}-x)\\\\
\sin (20^{\circ}-x)(1+2\sin 10^{\circ})=0\\\\
\sin (20^{\circ}-x)=0\\\\
x=20^{\circ}\\\\
m\left(\widehat{DEB}\right)=20^{\circ}\end{array}}\]
Proof 2 (synthetic). Denote intersection $N$ of $CD$ with bisector of $\widehat {BAC}$ . Prove easily that $BCN$ is an equilateral triangle, $ABNE$ is an isosceles trapezoid with $NE\parallel AB$ ,

$CNE$ is a $N$-isosceles triangle and $ANE$ is an $E$-isosceles triangle. In conclusion, $BC=BN=NC=NE=AE\implies$ $\boxed{AE=BC}\ (*)$ . Denote $F\in (AB)$ ,

$G\in (AC)$ so that $CB=CF=CG$ . Prove easily that $BCF$ is a $C$-isosceles triangle, $CFG$ is an equilateral triangle, $DFG$ is a $F$-isosceles triangle. Since $AE=BC\implies$

$AE=CG$ and by symmetry w.r.t. the midpoint of $[AC]$ obtain that $D$ belongs to the bisector of $[AC]$ , i.e. $DEG$ is $D$-isosceles. In conclusion, $m\left(\widehat{DEB}\right)=20^{\circ}$ .
This post has been edited 47 times. Last edited by Virgil Nicula, Nov 26, 2015, 6:18 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a