437. An equivalence relation over R.

by Virgil Nicula, Dec 27, 2015, 8:02 AM

Define in $\mathbb R$ the following equivalence relation : for any $\{x,y\}\subset\mathbb R$ we"ll mean $\boxed{\ x\ .s.s.\ y\ \iff\ x=y=0\ \vee\ xy>0\ }$ , i.e. $x$ and $y$ have "same sign".

Some examples. Consider $0<a,b\ne 1$ , $\{x,y\}\subset \mathbb R$ .

$\blacktriangleright\ \frac xy\ .s.s.\ xy$ , where $y\ne 0\ ;\ |x|\ .s.s.\ x^2\ ;\ |x|-|y|\ .s.s.\ x^2-y^2$ .

$\blacktriangleright\ \sqrt[n]x\ .s.s.\ x$ , where $x\in \mathbb D(n)=\left\{\begin{array}{ccc}
\mathbb R & , & n\in 2\mathbb N+1\\\\
\mathbb R_+ & , & n\in 2\mathbb N^*\end{array}\right\|$ . Convention. $\sqrt[1]x=x$ for any $x\in\mathbb R$ .

$\blacktriangleright\ \left(\sqrt[n]x-\sqrt [n]y\right)\ .s.s.\ (x-y)$ , for any $\{x,y\}\subset D(n)$ .

$\blacktriangleright\ \left(a^x-a^y \right)\ .s.s.\ (a-1)(x-y)\ \ ;\ \ a^x-b^x\ .s.s.\ x(a-b)$ . Particular cases. $a^x-1\ .s.s.\ x(a-1)$ and $a^x-a\ .s.s.\ (a-1)(x-1)$ .

$\blacktriangleright\ \log_ax-\log_ay\ .s.s.\ (a-1)(x-y)\ \ ;\ \ \log_ax\ .s.s.\ (a-1)(x-1)$ , where $x>0$ and $y>0$ .

$\blacktriangleright\ \log_ax-\log_bx\ .s.s.\ (a-1)(b-1)(x-1)(b-a)$ , where $x>0$ .

$\blacktriangleright\ \arcsin x\ .s.s.\ x\ ;\ (\arcsin x-\arcsin y)\ .s.s.\ (x-y)$ , where $\{x,y\}\subset [-1,1]$ .

$\blacktriangleright\ \arccos x\ .s.s.\ (1-x)\ ;\ (\arccos x-\arccos y)\ .s.s.\ (y-x)$ , where $\{x,y\}\subset [-1,1]$ .

$\blacktriangleright\ \arctan x\ .s.s.\ x\ ;\ (\arctan x-\arctan y)\ .s.s.\ (x-y)$ , where $\{x,y\}\subset\mathbb R$ .

$\blacktriangleright$ Generally. Let a real function $f:\mathbb E\rightarrow F$ . Then for any $\{x,y\}\subset E\ ,\ f(x)-f(y)\ .s.s.\ \left\{\begin{array}{cccc}
(x-y) & \iff & f\nearrow & \mathrm{i.e.\ f\ is\ strict\ increasing} \\\\
(y-x) & \iff & f\searrow & \mathrm{i.e.\ f\ is\ strict\ decreasing}\end{array}\right\|$ .

Exercises.

$1.\blacktriangleright$ Prove that for any $0<a\ne 1$ , $0<b\ne 1$ have the relation $\left(a^b-a\right)\left(b^a-b\right)> 0$ .

Proof. $E(a,b)\equiv \left(a^b-a\right)\left(b^a-b\right)\ .s.s.\ (a-1)(b-1)\cdot(b-1)(a-1)=(a-1)^2(b-1)^2\implies$ $E(a,b)>0$ .

$2.\blacktriangleright$ Solve the inequation $E(x)\equiv (2x-1)\left(|x-2|-|x|\right)\lg|x-1|\ge 0$ .

Proof. $E(x)\equiv (2x-1)\left(|x-2|-|x|\right)\lg|x-1|\ .s.s.\ (2x-1)\cdot \left(|x-2|^2-|x|^2\right)\cdot\left(|x-1|-1\right)(10-1)\ .s.s.\ (2x-1)\cdot 4(1-x)\cdot\left(|x-1|^2-1\right)\ .s.s.$

$(2x-1)(1-x)(x-2)x$ . In conclusion, $E(x)\ge 0\iff$ $(2x-1)(1-x)(x-2)x\ge 0$ , where $x\ne 0$ , i.e. $x\in\mathbb S=\left[0,\frac 12\right]\cup (1,2]$ .


$3.\blacktriangleright$ Solve the inequation $\boxed{\max\left\{a^x,a^{-x}\right\}\ge a^{\max\left\{x,\frac 1x\right\}}}\ (*)$ , where $0<a\ne 1$ .

Proof. $a^x-a^{-x}\ .s.s.\ (a-1)x$ and $x-\frac 1x\ .s.s.\ x\left(x^2-1\right)\iff$ $\max \left\{x,\frac 1x\right\}=\left\{\begin{array}{ccc}
\frac 1x & \iff & x\not\in D\\\\
x & \iff & x\in D\end{array}\right\|$ , where $D=[-1,0)\cup [1,\infty )$ and $0<a\ne 1$ and $x\ne 0$ .

First case. $a\in (0,1)$ , i.e. $a^x-a^{-x}\ .s.s.\ -x$ and the relation $(*)$ becomes: $\left\{\begin{array}{ccccccccc}
1.1 & x\le -1\ : & a^x\ge a^{\frac 1x} & \iff & x\le \frac 1x & \iff & x\left(x^2-1\right)\le 0\ ,\ x\ne 0 & \mathrm{Yes}\\\\
1.2 & -1<x<0\ : & a^x\ge a^{x} & &  & & & \mathrm{Yes}\\\\
1.3 & 0<x\le 1\ : & a^{-x}\ge a^{\frac 1x} & \iff & -x\le \frac 1x & \iff & x\left(1+x^2\right)\ge 0\ ,\ x\ne 0 & \mathrm{Yes}\\\\
1.4 & 1<x : & a^{-x}\ge a^{x} & \iff & -x\le x & \iff & x\ge 0\ ,\ x\ne 0 & \mathrm{Yes}\end{array}\right\|$ .

Second case. $a>1$ , i.e. $a^x-a^{-x}\ .s.s.\ x$ and the relation $(*)$ becomes: $\left\{\begin{array}{ccccccccc}
2.1 & x\le -1\ : & a^{-x}\ge a^{\frac 1x} & \iff & -x\ge \frac 1x & \iff & x\left(x^2+1\right)\le 0\ ,\ x\ne 0 & \mathrm{Yes}\\\\
2.2 & -1<x<0\ : & a^{-x}\ge a^{x} & \iff & -x\ge x & \iff &  x<0\ ,\ x\ne 0  & \mathrm{Yes}\\\\
2.3 & 0<x\le 1\ : & a^x\ge a^{\frac 1x} & \iff & x\ge \frac 1x & \iff & x\left(x^2-1\right)\ge 0\ ,\ x\ne 0 & \mathrm{Not}\\\\
2.4 & 1\le x : & a^{x}\ge a^{x} & & &  &  & \mathrm{Yes}\end{array}\right\|$ .

In conclusion, the solution of the given inequation is $x\in\mathbb S(a)\equiv\left\{\begin{array}{ccc}
\mathbb R^* & \iff & a\in (0,1)\\\\
(-\infty ,0)\cup[1,\infty ) & \iff & a>1\end{array}\right\|$ .


$4.\blacktriangleright$ Show that $\log_{\frac {1}{2}} x > \log_{\frac {1}{3}} x$ only when $0 < x < 1$ .

Proof. $E(x)\equiv\log_{\frac {1}{2}} x -\log_{\frac {1}{3}} x\ .s.s.\ \left(\frac 12-1\right)$ $\left(\frac 13-1\right)(x-1)\left(\frac 13-\frac 12\right)\ .s.s.\ -(x-1)$ . Thus, $\log_{\frac {1}{2}} x > \log_{\frac {1}{3}} x\iff$ $E(x)>0\iff$ $x-1<0\iff$ $0<x<1$ .


PP1. Let $\triangle ABC$ with the incircle $w=\mathbb C(I,r)$ . Prove that $\frac {IB}{IC}=\frac {AC}{AB}\iff AC=AB$ .

Proof 1. Observe that in $\triangle BIC$ there is the chain of relatioms $IB-IC\ .s.s.\ \frac C2-\frac B2\ .s.s.\ C-B\ .s.s.\ (c-b)\implies$ $\boxed{IB-IC\ .s.s.\ (c-b)}\ (1)$ . In conclusion,

$\frac {IB}{IC}=\frac {AC}{AB}\iff$ $\frac {IB-IC}{IC}=\frac {AC-AB}{AB}\implies$ $IB-IC\ .s.s.\ (b-c)\ \stackrel{(1)}{\iff}\ (c-b)\ .s.s.\ (b-c)$ $\iff b-c=0\iff b=c\iff AC=AB$ .

Proof 2. I"ll use the standard notations and some remarkable identities. Thus, $IA^2=\frac {bc(s-a)}s\ ,$ i.e. $\boxed{IA^2=bc-4Rr}\ (*)$ a.s.o. Observe that

$IB-IC\ .s.s.\ IB^2-IC^2\ \stackrel{(*)}{=}\ ac-ab=$ $a(c-b)\ .s.s.\ (c-b)\implies$ $\boxed{IB-IC\ .s.s.\ (c-b)}\ (1)$ . In conclusion, $\frac {IB}{IC}=\frac {AC}{AB}\iff$

$\frac {IB-IC}{IC}=\frac {AC-AB}{AB}\implies$ $IB-IC\ .s.s.\ (b-c)\ \stackrel{(1)}{\iff}\ (c-b)\ .s.s.\ (b-c)$ $\iff b-c=0\iff b=c\iff AC=AB$ .



PP2. Let $\triangle ABC$ with the incircle $w=\mathbb C(I,r)$ where denote $\in AI\cap w$ , $E\in BI\cap w$ and $F\in CI\cap w$ . Prove that $BE=CF\iff AB=AC$ .

Proof. I"ll use the well-known identities $AD^2\equiv l_a^2=\frac {2\sqrt{bcs(s-a)}}{b+c}$ a.s.o. Thus, $l_b-l_c=\frac {2\sqrt{acs(s-b)}}{a+c}-\frac {2\sqrt{abs(s-c)}}{a+b}\ .s.s.\ \frac {\sqrt{s-b}}{(a+c)\sqrt b}-\frac {\sqrt{s-c}}{(a+b)\sqrt c}\ .s.s.$

$(a+b)\sqrt{c(s-b)}-$ $(a+c)\sqrt{b(s-c)}\ .s.s.\ c(s-b)(a+b)^2-b(s-c)(a+c)^2=$ $s\left[c(a+b)^2-b(a+c)^2\right]+bc\left[(a+c)^2-(a+b)^2\right]=$

$s\left[a^2(c-b)+bc(b-c)\right]+bc(a+2s)(c-b)=$ $(c-b)\left[abc+s\left(a^2+bc\right)\right]\ .s.s.\ (c-b)\implies$ $\boxed{l_b-\l_c\ .s.s.\ (c-b)}$ . In conclusion, $l_b=l_c\iff b=c$ .
This post has been edited 47 times. Last edited by Virgil Nicula, Dec 27, 2015, 4:15 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a