151. Miscellaneous problems for the admission at math.

by Virgil Nicula, Oct 9, 2010, 4:21 PM

PP1. Let $ABC$ be a triangle with $b\ne c$ , the centroid $G$ and the incircle $w=C(I,r)$ . Prove that $IB\cdot IC = r\cdot IA\ \Longleftrightarrow\ IG\perp BC$ .

Proof 1 (metric). From the well-known relations $IA^2=\frac {bc(s-c)}{s}=bc-4Rr$ a.s.o. and $(s-a)(s-b)(s-c)=sr^2$ obtain that

$\blacktriangleright\ \boxed{IB\cdot IC = r\cdot IA}$ $\iff$ $\frac {ac(s-b)}{s}\cdot\frac {ab(s-c)}{s}=$ $r^2\cdot\frac {bc(s-a)}{s}$ $\iff$ $a^2(s-b)(s-c)=sr^2(s-a)$ $\iff$ $a^2=(s-a)^2$ $\iff$ $\boxed{b+c=3a}$ .

$\blacktriangleright$ $\boxed{IG\perp BC}$ $\iff$ $IB^2-IC^2=GB^2-GC^2$ $\iff$ $(ac-4Rr)-(ab-4Rr)=\frac 49\cdot\left(m_b^2-m_c^2\right)$ $\iff$

$9a(c-b)=\left[2\left(a^2+c^2\right)-b^2\right]-\left[2\left(a^2+b^2\right)-c^2\right]$ $\iff$ $9a(c-b)=3\left(c^2-b^2\right)$ $\iff$ $\boxed{b+c=3a}$ .


Proof 2 (synthetic).

$\blacktriangleright\ \left\{\begin{array}{ccc}
r(s-a)=2\cdot [AIE]=r\cdot IA\cdot\sin\left(\widehat{BIE}\right)=r\cdot IA\cdot\cos\frac A2 & \implies & r\cdot IA\cdot\cos\frac A2=r(s-a)\\\
ra=2\cdot [BIC]=IB\cdot IC\cdot\sin\left(\widehat{BIC}\right)=IB\cdot IC\cdot\cos\frac A2 & \implies & IB\cdot IC\cdot\cos\frac A2=ra\end{array}\right\|$ , where $E\in w\cap CA$ .

Therefore, $\boxed{IB\cdot IC = r\cdot IA}\ \Longleftrightarrow\ IB\cdot IC\cdot\cos\frac A2=r\cdot IA\cdot\cos\frac A2$ $\iff$ $ra=r(s-a)$ $\iff$ $\boxed{b+c=3a}$ .

$\blacktriangleright$ Denote the midpoint $M$ of $[BC]$ , $D\in w\cap BC$ , $F\in w\cap AB$ , $L\in BC$ for which $AL\perp BC$ . Is well-known that $MD=\frac {|b-c|}{2}$ , $ML=\frac {|b^2-c^2|}{2a}$

and $ID\cap EF\cap AM\ne\emptyset$ . Therefore, $\boxed{IG\perp BC}$ $\iff$ $G\in ID\cap EF\cap AM$ $\iff$ $ML=3\cdot MD$ $\iff$ $\frac {|b^2-c^2|}{2a}=\frac {3|b-c|}{2}$ $\iff$ $\boxed{b+c=3a}$ .



PP2. Prove that $\{x,y\}\subset\mathbb{R}\Rightarrow 1+8\cos x\cos y\cos (x+y)\ \ge 0$ . Particular case. $\boxed{x+y+z=\pi\Rightarrow\cos x\cos y\cos z\le \frac 18}$ .

Proof. Denote $E(x)\equiv 1+8\cos x\cos y\cos (x+y)$ . Thus $E(x)=1+4\cos (x+y)\cdot\left[\cos (x+y)+\cos (x-y)\right]=$

$4\cdot \underline{\cos ^2(x+y)}+4\cos (x-y)\cdot \underline{\cos (x+y)}+1=$ $\left[2\cdot\underline{\cos (x+y)}+\cos(x-y)\right]^2+\sin^2 (x-y)$ . In conclusion, $E(x)\ge 0$

and $E(x)=0\iff$ $\sin (x-y)=0$ and $\left\{\begin{array}{ccccc}
(x-y)\in 2\pi\cdot\mathbb Z & \implies & \cos (x+y)=-\frac 12 & \implies & (x+y)\in 2\pi\cdot\mathbb Z\pm\frac {2\pi}{3}\\\\
(x-y)\in \pi +2\pi\cdot\mathbb Z & \implies & \cos (x+y)=\frac 12 & \implies & (x+y)\in 2\pi\cdot\mathbb Z\pm\frac {\pi}{3}\end{array}\right\|$ .



PP3. Prove that the exponential equation $4^x+2=3\cdot 2^{x^2}\ ,\ x\in \mathbb R$ .

Proof. Given equation is equivalently with the equation $f(x)\equiv \boxed{2^{2x-x^2}+2^{1-x^2}=3}$ . Prove easily that $f\nearrow$ (strict increasing) on $(-\infty , 0]$

and $f\searrow$ (strict decreasing) on $[1,\infty )$ . Thus, $0$ and $1$ are solutions. Suppose that $x\in (0,1)$ . In this case observe that :

$\blacktriangleright\ f(x)=2^{2x-x^2-1} +2^{2x-x^2-1}+$ $2^{1-x^2}\ge$ $3\cdot 2^{\frac {2\left(2x-x^2-1\right)+\left(1-x^2\right)}3}=$ $3\cdot 2^{\frac {-(3x^2-4x+1)}{3}}>3$ for any $x\in \left(\frac 13, 1\right)$ $\implies$ $f(x)>3$ for any $x\in \left(\frac 13, 1\right)$ .

$\blacktriangleright\ f(x)=2^{2x-x^2} +2^{-x^2}+$ $2^{-x^2}\ge$ $3\cdot 2^{\frac {\left(2x-x^2\right)+2\left(-x^2\right)}{3}}=$ $3\cdot 2^{\frac {-(3x^2-2x)}{3}}>3$ for any $x\in \left(0, \frac 23\right)$ $\implies$ $f(x)>3$ for any $x\in \left(0,\frac 23\right)$ .

Therefore, for any $x\in \left(0, \frac 23\right)\cup\left(\frac 13, 1\right)=(0,1)$ the our equation doesn't solutions. In conclusion, the given equation admits only the solutions $x_1=0$ and $x_2=1$ .



PP4. Prove that for any $z\not\in \mathbb R$ exists the chain of implications : $\frac {z^2-z+1}{z^2+z+1}\in\mathbb R\ \iff\ |z|=$ $1\ \implies\ |z^3+1|+$ $|z^2+1|+|z+1|\ge 2$ .

Proof. Observe that $z\not\in \mathbb R\iff z\ne\overline z\ \ (*)$ and $\frac {z^2-z+1}{z^2+z+1}=1-\frac {2z}{z^2+z+1}$ . Thus $\boxed{\frac {z^2-z+1}{z^2+z+1}\in \mathbb R}\iff \frac {z}{z^2+z+1}\in\mathbb R$ $\iff$ $\frac {z}{z^2+z+1}=\frac {\overline z}{\overline z^2+\overline z+1}$ $\iff$ $z\left(\overline z^2+1\right)=\overline z\left(z^2+1\right)$ $\iff$ $z\overline z(z-\overline z)=z-\overline z$ $\iff$ $z=\overline z\ \vee\ z\overline z=1$ $\stackrel{(*)}{\iff}$ $z\overline z=1$ $\iff$ $\boxed{|z|=1}$ .

Otherwise, $\frac {z^2-z+1}{z^2+z+1}\in \mathbb R\iff$ exists $r\in\mathbb R$ , $r\ne 1$ so that $\frac {z^2-z+1}{z^2+z+1}=r$ $\iff$ $(r-1)\cdot z^2-(r+1)\cdot z+(r-1)=0$ .

If $z_1$ , $z_2$ are the nonreal roots of this equation with real coeficients, then $z_1z_2=1$ and $z_2=\overline z_1$ , i.e. $|z_1|=|z_2|=1$ $\iff$ $|z|=1$ .

Observe that $\boxed{|z|=1}$ $\implies$ $2=\left|\left(z^3+1\right)-z\left(z^2+1\right)-(z+1)\right|\le$ $\left|z^3+1\right|+\left|z^2+1\right|+|z+1|$ $\implies$ $\boxed{|z^3+1|+|z^2+1|+|z+1|\ge 2}$ .



PP5. Consider the real numbers $1<x<y$ and $\left\|\begin{array}{c}
x_1=x+\frac yx-1\\\\
y_1=y+\frac xy-1\end{array}\right\|$ . Prove that $\{x_1,y_1\}\subset (x,y)$ and $x_1=y_1\implies 2\in(x,y)$ .


Proof. $\left\|\begin{array}{cccc}
(x_1-x)(x_1-y)=\left(\frac yx-1\right)\left(x+\frac yx-1-y\right)\ .s.s.\ (y-x)(x^2+y-x-xy)=-(x-y)^2(x-1)<0\\\\
(1_1-x)(y_1-y)=\left(y+\frac xy-1-x\right)\left(\frac xy-1\right)\ .s.s.\ (y^2+x-y-xy)(x-y)=-(x-y)^2(y-1)<0\end{array}\right\|$ $\implies\{x_1,y_1\}\subset (x,y)$ .

I used the notation $X\ .s.s.\ Y\ \iff\ X=Y=0\ \ \vee\ \ XY>0$ , i.e. the real numbers $X$ , $Y$ have same sign.

Suppose $x_1=y_1$ . Thus $x+\frac yx=y+\frac xy\iff xy=x+y$ $\iff$ $x=\frac {y}{y-1}$ . Observe that $x=2\iff y=2$ , absurd because $x\ne y$ .

Thus, $2\not\in \{x,y\}$ and $\left\|\begin{array}{ccccc}
x<2 & \implies & \frac {y}{y-1}<2 & \implies &  y>2\\\\
x>2 & \implies & \frac {y}{y-1}>2 & \implies & y<2\ \mathrm{abs.}\end{array}\right\|$ $\implies$ $2\in(x,y)$ .


Quote:
Proposed problem. Study the nature of the interdependent sequencies which are defined so : $1<x_1<y_1$ and $\left\|\begin{array}{c}
x_{n+1}=x_n+\frac {y_n}{x_n}-1\\\\
y_{n+1}=y_n+\frac {x_n}{y_n}-1\end{array}\right\|\ ,\ (\forall )\ n\in\mathbb N^*$ .


PP6. Ascertain the least natural number $p$ for which its first digit is $7$ and if move this digit on the last place obtain a number $r$ so that $p=5r$ .

Proof. If denote $x=\overline{a_1a_2...a_n}$ , then $\boxed{p=7\cdot 10^n+x}$ . From the relation $\overline{7a_1a_2\ \ldots\ a_n}=5\cdot \overline{a_1a_2\ \ldots\ a_n7}$ obtain

$7\cdot 10^n+x=$ $5\cdot (10\cdot x+7)\Leftrightarrow  7\cdot 10^n=49x+35 \Leftrightarrow 7x=10^n-5$ , i.e. $7|\left(10^n-5\right)$ $\iff$ $7|\left(3^n+2\right)$ .

By trials, the least number $n$ is $\boxed{n=5}$ $\implies$ $\boxed{x=14285}$ and the required number is $\boxed{\boxed{714285}}$ . Verification : $714285=5\cdot 142857$ .



PP7. Let $\triangle ABC$ with orthocenter $H$ and circumcircle $C(O,R)$ . Show $OH = R \sqrt{1-8 \cos A \cdot \cos B \cdot \cos C}$ .

Proof. $OH=3\cdot OG$ and $R^2-OG^2=\frac 19\cdot \left(a^2+b^2+c^2\right)$ $\implies$ $OH^2=9R^2-\sum a^2=$ $9R^2-4R^2\cdot\sum \sin^2A=$

$9R^2-2R^2\cdot\sum (1-\cos 2A)=$ $R^2\left(3+2\cdot\sum\cos 2A\right)$ $\implies \boxed{\ OH^2=R^2\left(3+2\cdot\sum\cos 2A\right)\ }\ (1)$ . Observe that

$\sum \cos 2A=\cos 2A+2\cos (B+C)\cos (B-C)=$ $2\cos^2A-1-2\cos A\cos (B-C)=$ $-1-2\cos A[\cos (B+C)+\cos (B-C)]=$

$-1-4\cos A\cos B\cos C$ , i.e. $\boxed{\ \sum\cos 2A=-1-4\cdot \prod\cos A\ }$ . In conclusion, the relation $(1)$ becomes $OH^2=R^2\cdot\left(1-8\cdot\cos A\cos B\cos C\right)$ ,

i.e. $OH=R\cdot\sqrt {1-8\prod\cos A}$ . But $1-8\cdot\prod\cos A=1-4\cos A[\cos (B+C)+\cos (B-C)]=$ $1-4\cos A\cos (B-C)+4\cos^2A=$

$\left[2\cos A-\cos (B-C)\right]^2+\sin^2(B-C)$ . Thus, $1-8\cdot\prod \cos A\ge 0$ , i.e. $\boxed{\ \cos A\cos B\cos C\le\frac 18\ }$ with the equality iff $A=B=C$ , i.e. $O\equiv H$ .



PP8. Find all $ x_{n} $ $ \in\mathbb{R_{+}} $ ,where $ n\in\mathbb{N^{*}} $ which verifies $ x_{n}\cdot\left (x_{1}+x_{2}+...+x_{n}\right)= \frac{1}{(n+1)^{2}}\ , \forall\ n\in \mathbb{N^{*}} $ .

Proof. It's immediate to see that $x_1=\frac 12$ and that knowledge of $x_1,x_2,...,x_{n-1}$ gives a unique possible value for $x_n$ (the quadratic has two

roots, but only one is positive). So there is at most one such sequence. And since $x_n=\frac 1{n(n+1)}$ is obviously a solution, this is the unique one.



PP9. Prove that for any $n\in \mathbb N$ , $n\ge 2$ exists the identity $\prod_{k=1}^{n-1}\sin\frac{k\pi}{n}=\frac{n}{2^{n-1}}$ .

Proof. For $\omega=\cos\frac{2\pi}{n}+i\sin\frac{2\pi}{n}$ consider the roots $x_k=w^k$ , $k\in \overline {1,n-1}$ of the equation $\sum_{k=0}^{n-1}x^k\equiv \prod_{k=1}^{n-1}\left(x-\omega^k\right)=0$ obtain for $x:=1$

that $n=\prod_{k=1}^{n-1}|1-w^k|$ , where $\left|1-w^k\right|=\left|1-\cos\frac{2k\pi}{n}-i\sin\frac{2k\pi}{n}\right|=2\sin\frac{k\pi}{n}\ ,\ k\in \overline{1,n-1}$ . In conclusion, $\prod_{k=1}^{n-1}\sin\frac{k\pi}{n}=\frac{n}{2^{n-1}}$ .



PP10. Prove that $a^2+b^2+c^2\ge 4S\sqrt 3\ ,\ \sum a^2\cot B\ge 4S$ and in any acute $\triangle ABC$ there is the inequality $\sum \tan A\ge \frac sr$ .

Proof. Show easily that $\boxed{\begin{array}{c}
\sum a^2\left(b^2+c^2-a^2\right)=16S^2\\\\
b^2+c^2-a^2=4S\cdot\cot A\\\\
a^2\cot A +b^2\cot B+c^2\cot C=4S\end{array}}\ (*)$ . Thus, $\sum a^2\cot B\ge 4S$ $\iff$ $\sum a^{2}\left(a^2+c^2-b^2\right)\ge$

$\sum a^2\left(b^2+c^2-a^2\right)\iff$ $\sum a^2\left[\left(a^2+c^2-b^2\right)-\left(b^2+c^2-a^2\right)\right]\ge 0\iff$ $\sum a^2\left(a^2-b^2\right)\ge 0\iff$ $\sum a^4\ge \sum b^2c^2$ , what is truly.

Another application of the identity $\sum a^2\cdot\left(b^2+c^2-a^2\right)=16S^2$ is
Weitzenbock's inequality (<== click) $a^2+b^2+c^2\ge 4S\sqrt 3$ . Indeed,

$48S^2=3\cdot\sum a^2\cdot\left(b^2+c^2-a^2\right)\ \stackrel{(\mathrm{Chebyshev}:\uparrow\downarrow)}{\le}\ \sum a^2$ $\cdot\sum \left(b^2+c^2-a^2\right)=\left(\sum a^2\right)^2$ $\implies$ $4S\sqrt 3\le a^2+b^2+c^2$ .

If $\triangle ABC$ is acute, then $4S\ \stackrel{(*)}{=}\ \sum \frac {a^2}{\tan A}\ \stackrel {(\mathrm{C.B.S})}{\ge}\ \frac {4s^2}{\sum\tan A}$ $\implies$ $\sum \tan A\ge \frac sr$ .



PP11. Prove that in $\triangle ABC$ exists the inequality $a^2(b+c-a)+b^2(c+a-b)+c^2(a+b-c)\le 3abc\iff \sum a(a-b)(a-c)\ge 0$ (Schur for $t=1$).

Proof. Can use the remarkable identity $\boxed{\ \sum a^2(s-a)=abc+4\cdot \prod (s-a)\ }$ (see here). Therefore, $\sum a^2(b+c-a)=$ $2abc+8\cdot\prod (s-a)\le 3abc$

because $8\cdot\prod (s-a)\le abc\ (*)$ . Indeed, $a^2\ge a^2-(b-c)^2=$ $(a+b-c)(a-b+c)=$ $4(s-b)(s-c)$ $\implies$ $\boxed{a^2\ge 4(s-b)(s-c)}$ a.s.o.

In conclusion, $(abc)^2\ge 64(s-a)^2(s-b)^2(s-c)^2$ $\implies$ $\boxed{abc\ge 8(s-a)(s-b)(s-c)}$ .

Remark. $abc=4Rrs$ and $(s-a)(s-b)(s-c)=sr^2\stackrel{(*)}{\implies}$ $4Rrs\ge 8sr^2\implies \boxed{\ R\ge 2r\ }$ .



PP12. Eliminate the parameter $\theta$ between the relations $\left\|\begin{array}{c}
a=\frac {1}{\sin\theta}+\tan\theta\\\\
b=\frac {1}{\cos\theta}+\cot\theta\end{array}\right\|$ .

Proof. $\left\|\begin{array}{c}
x = \sec \theta = \frac {1} {\cos \theta}\\\\
y = \csc \theta = \frac {1} {\sin \theta}\end{array}\right\|$ $\implies$ $x^2 + y^2 = x^2y^2$ . Therefore, $a + b = \left(y + \frac xy\right) + \left(x + \frac yx\right) = x + y + \frac {x^2+y^2}{xy }= x+y+xy$ $\iff$

$(a+b) - xy = x+y\iff$ $(a+b)^2 - 2xy(a+b) + x^2y^2 = x^2 + y^2 + 2xy\iff$ $xy = \dfrac {(a+b)^2} {2(a+b+1)}$ and $x+y = a + b - \dfrac {(a+b)^2} {2(a+b+1)}$ .

Thus, $ab = xy + 1 + \frac {x^3+y^3}{xy }=$ $  xy + 1 +\frac { (x+y)\left(x^2 + y^2 - xy\right)}{xy }= $ $xy + 1 + (x+y)(xy-1)$. Substitute in here the expressions

for $xy$ and $x+y$ . If I made no mistake, that should yield $4p(s^2+2s+1) = s^4-4s^2 + 10s +4$ , where $s=a+b$ and $p=ab$ .

Remark. Prove easily that $\boxed{\ \cot\frac {\theta}{2}=\frac 12\cdot\left(b^2-a^2\right)+b\ }$ a.s.o.



PP13. Prove that $\cos \frac{2\pi }{7} + \cos \frac{4\pi }{7} + \cos \frac{6\pi }{7}=-\frac 12$ .

Proof 1 (complex numbers). Let $z=\cos\frac {2\pi}{7}+i\cdot\sin\frac {2\pi}{7}$ which satisfy $z^7 -1 = 0$ $\implies$ $1+z+z^2+z^3+z^4+z^5+z^6 = 0$ , i.e.

$\mathbb Re\left(z+z^2+z^3+z^4+z^5+z^6\right) = -1$ . Note the fact $\mathbb Re\ z^{7-k} =\mathbb Re\ z^k$ for $k\in\overline{1,3}$ (symmetry w.r.t. $xx'$-axis in the complex plane).

In conclusion, $\mathbb Re\left(z+z^2+z^3\right) = -\frac 12$ , i.e. $\cos \frac{2\pi }{7} + \cos \frac{4\pi }{7} + \cos \frac{6\pi }{7}=-\frac 12$ .

Proof 2 (trigonometric). Denote $P=\cos \frac{2\pi }{7} +\ cos \frac{4\pi }{7} + \cos \frac{6\pi }{7}\implies$ $2P\cdot \sin\frac{\pi}{7}=2\sin\frac{\pi}{7}\cos \frac{2\pi }{7} + 2\sin\frac{\pi}{7}\cos \frac{4\pi }{7} +2\sin\frac{\pi}{7}\cos \frac{6\pi }{7}=$

$\sin\frac{3\pi}{7}-\sin\frac{\pi}{7}+\sin\frac{5\pi}{7}-\sin\frac{3\pi}{7}+\sin\frac{7\pi}{7}-\sin\frac{5\pi}{7}=-\sin\frac{\pi}{7}$ $\implies P=-\frac 12$ , i.e. $\cos \frac{2\pi }{7} + \cos \frac{4\pi }{7} + \cos \frac{6\pi }{7}=-\frac 12$ .



PP14. Show that for any $n\in\mathbb N$ , $n\ge 2$ exists the inequality $\left[\frac{1+(n+1)^{n+1}}{n+2}\right]^{n-1} > \left(\frac{1+n^{n}}{n+1}\right)^{n}$ .

Proof. Observe that $\left(\frac{1+(n+1)^{n+1}}{n+2}\right)^{n-1}>\left(\frac{1+n^{n}}{n+1}\right)^{n}$ $\Longleftrightarrow \left(\frac{1+(n+1)^{n+1}}{(n+1)+1}\right)^{\frac{1}{(n+1)-1}}>\left(\frac{1+n^{n}}{n+1}\right)^{\frac{1}{n-1}}$ . Let $f(x)=\left(\frac{1+x^{x}}{x+1}\right)^{\frac{1}{x-1}}$ .

Then $f'(x)=\frac{1}{x-1}\cdot \left(\frac{1+x^x}{x+1}\right)^\frac{2-x}{x-1}\cdot \frac{(x+1)(\ln x+1)x^x-(1+x^x)}{(x+1)^2}$ . The only factor that is not immediately obviously positive for $\forall x >1$ is

$(x+1)(\ln x+1)x^x-(1+x^x)$ . It must be shown that $(x-1)(\ln x+1)x^x>1+x^x$ for $\forall x >1$ $\Longleftrightarrow ((x+1)\ln x + x)x^x>1$ , which is

obvious. Since $f'(x)>0$ for $\forall x>1$ obtain that $f(x)$ is increasing which implies for $\forall\ x,y\in R$ such that $x>y>1$ , it is true that $f(x)>f(y)$ .



PP15. Prove that the roots of any polynomial $f=x^n+a_1x^{n-1}+\ldots+a_{n-1}x+a_n$ with $|a_i|\le 1\ ,\ (\forall)i=\overline{1,n}$ have the modulus lower than $2$ .

Proof. For a root $r$ we have $r^n = -(a_1r^{n-1}+\cdots+a_{n-1}r+a_n)$ , hence $|r|^n = |a_1r^{n-1}+\cdots+a_{n-1}r+a_n| \leq |r|^{n-1} + \cdots + |r| + 1$ .

Assume $|r| \geq 2$ . Tthen $1 \le \frac {1}{|r|} +\cdots + \frac {1}{|r|^{n-1}} +\frac { 1}{|r|^n }\le\frac 12 + \cdots + \frac {1}{2^{n-1}} + \frac {1}{2^n }< 1$ , absurd.



PP16. Solve the trigonometrical equartion $2\cos 3x(2\cos 2x+1)=1$ .

Proof. Observe that $\sin x=0\iff x\in \pi\cdot\mathbb Z\implies 2\cos 3x(2\cos 2x+1)\not =1$ . Therefore, $2\cos 3x(2\cos 2x+1)=1\iff$

$\cos x+\cos 3x+\cos 5x=\frac 12\iff$ $\sin 6x=\sin x\iff$ $x\in \left(\frac {2\pi}{5}\cdot\mathbb Z\right)\cup\left(\frac {2\pi}{7}\cdot\mathbb Z+\frac {\pi}{7}\right)$ and $x\not\in \pi\cdot\mathbb Z$ .

Remark. Prove easily that $(\forall )\ k\in \mathbb N^*\ ,\ x_{k+1}=x_k+r\implies$ $\left\{\begin{array}{c}
\sin x_1+\sin x_2+\cdots +\sin x_{n-1}+\sin x_n=\frac {\sin \frac {x_1+x_n}{2}\cdot \sin\frac {nr}{2}}{\sin \frac r2}\ .\\\\
\cos x_1+\cos x_2+\cdots +\cos x_{n-1}+\cos x_n=\frac {\cos \frac {x_1+x_n}{2}\cdot \sin\frac {nr}{2}}{\sin \frac r2}\ .\end{array}\right\|$

Particularly, $\frac {\sin x+\sin 3x+\cdots +\sin (2n-1)x}{\cos x+\cos 3x+\cdots +\cos (2n-1)x}=\frac {\frac {\sin nx\cdot\sin nx}{\sin x}}{\frac {\cos nx\cdot\sin nx}{\sin x}}=\tan nx$ .



PP17. Prove that for any $\{a,b,c\}\subset\mathbb R$ the equation $f(x)=a\cdot \cos 3x+b\cdot\cos 2x+c\cdot\cos x+\sin x=0$ has at least a real zero $x_0\in[0,2\pi ]$ .

Proof. Consider the function $g(x)=\frac {a\cdot \sin 3x}{3}+\frac {b\cdot \sin 2x}{2}+c\sin x-\cos x\ ,\ x\in \mathbb R$ . Observe that $g'(x)=f(x)$ and $g(0)=g(2\pi)=-1$ .

Apply the Rolle's theorem to the function $g$ and obtain that exists at least $x_0\in[0,2\pi ]$ so that $g'\left(x_0\right)=0$ , i.e. $f\left(x_0\right)=0$ .



PP18. Let $f,g\in\mathbb{R}[X]$ two polynomials that have only real roots such that $\sum_{i=1}^n\frac{1}{x-a_i}=\sum_{j=1}^m\frac{1}{x-b_j},\ (\forall)x\in \mathbb{R},\ x\neq a_i,b_j$ ,

where $a_i$ and $b_j$ are the roots of $f$ , $g$ respectively and $m,n$ their degrees. Prove that $f$ and $g$ have the same degree and the same roots.


Proof. By condition for all $x\neq a_i,b_j$ we have $\frac{f'(x)}{f(x)}=\frac{g'(x)}{g(x)}$ , i.e. $f'(x)g(x)-f(x)g'(x)=0$ thus $\left(\frac fg\right )'=0 $ thus $\frac fg=k$ (constant).


PP19. Let $x$ , $y$ be two positive numbers for which $x^{3}+y^{3}=4x^{2}$ . Find the maximum value of the sum $x+y$ .

Proof. $\left\{\begin{array}{c}
x+y=m\\\\
m\left(x^2-xy+y^2\right)=4x^2\\\\
x=ty\end{array}\right\|\ \implies\ (m-4)\cdot t^2-m\cdot t+m=0$ , where $t\in \mathbb R$ , i.e. $\Delta (m)=m^2-4m(m-4)\ge 0\implies$ $m\le \frac {16}{3}$ .

In conclusion, $x+y\le \frac{16}{3}$ . Obtain the maximum value for $m_1=\frac {16}{3}$ and $t_1=\frac {m_1}{2\left(m_1-4\right)}=2$ , i.e. $\left\{\begin{array}{c}
x_1=2y_1\\\\
x_1+y_1=\frac {16}{3}\end{array}\right\|\implies$ $x_1=\frac{32}{9}$ and $y_1=\frac{16}{9}$ .



PP20. Prove that $r_a+r_b+r_c=4R+r$ .

Proof 1. Prove easily that $\left\{\begin{array}{c}
\frac {r_b+r_c}{s(s-a)}=\frac {r_a-r}{(s-b)(s-c)}=\frac aS\\\\
s(s-a)+(s-b)(s-c)=bc\end{array}\right\|$ $\implies$ $(r_a-r)+(r_b+r_c)=\frac aS\cdot bc\implies$ $r_a+r_b+r_c=4R+r$ .

Proof 2. $\left\{\begin{array}{cccc}
S=(s-a)r_a=sr & \iff & s(r_a-r)=ar_a & (1)\\\\
\frac {1}{r_a}+\frac {1}{r_b}+\frac {1}{r_c}=\frac 1r & \iff & r(r_br_c+r_cr_a+r_ar_b)=r_ar_br_c & (2)\end{array}\right\|$ . Therefore, $\prod \frac {ar_a}{s}\stackrel{(1)}{=}\prod (r_a-r)=$

$r_ar_br_c-r(r_ar_b+r_br_c+r_cr_a)+r^2(r_a+r_b+r_c)-r^3\stackrel{(2)}{=}$ $r^2(r_a+r_b+r_c-r)$ $\implies$ $\prod \frac {ar_a}{s}=r^2(r_a+r_b+r_c-r)$ $\implies$

$abc\cdot\frac {r_ar_br_c}{s^3r^2}=\sum r_a-r\implies$ $\frac {4Rsr\cdot s^2r}{s^3r^2}=\sum r_a-r\implies$ $r_a+r_b+r_c=4R+r$ . I used and the identity $rr_ar_br_c=S^2$ , i.e. $r_ar_br_c=s^2r$ .

Remark. The equation $t^3-(4R+r)\cdot t^2+s^2\cdot t-s^2r=0$ has the roots $r_a$ , $r_b$ and $r_c$ . The equation $s\cdot t^3-(4R+r)\cdot t^2+s\cdot t-r=0$ has the roots

$\tan\frac A2$ , $\tan\frac B2$ and $\tan\frac C2$ . For example, $90^{\circ}\in\{A,B,C\}\iff$ $1\in\left\{\tan\frac A2,\tan\frac B2,\tan\frac C2\right\}\iff$ $s-(4R+r)+s-r=0\iff$ $s=2R+r$ .

Prove easily that $\sum (s-b)(s-c)=S^2\cdot \sum\frac {1}{r_br_c}=$ $\frac {S^2(r_a+r_b+r_c)}{r_ar_br_c}=$ $r\left(r_a+r_b+r_c\right)=r(4R+r)$ and $\sum a(s-a)=2\cdot\sum (s-b)(s-c)$ .



PP21.Find $L_1\equiv \lim_{x\to a}\frac{x^a-a^x}{x^x-a^a}$ and $L_2\equiv\lim_{x\to 0}\frac{(1+x)^{x}-1}{x^2}$ without l'Hospital rule.

Proof. $L_2\equiv\lim_{x\to 0}\frac{(1+x)^{x}-1}{x^2}=$ $\lim_{x\to 0}\frac{e^{x\ln (x+1)}-1}{x\ln (x+1)}\cdot\frac {\ln (x+1)}{x}=1$ .

I used the remarkable limits $\lim_{t\to 0}\frac {a^t-1}{t}=\ln a$ , where $0<a\ne 1$ and $\lim_{t\to 0}\frac {\ln (t+1)}{t}=1$ .

Define $l_1\equiv\lim_{x\to a}\frac {x^a-a^a}{x-a}$ , $l_2\equiv\lim_{x\to a}\frac {a^x-a^a}{x-a}$ and $l_3\equiv\lim_{x\to a}\frac {x^x-a^x}{x-a}$ . Observe that $L_2=\frac {l_1-l_2}{l_3+l_2}$ , where :

$\blacktriangleright\ l_1=a^a\cdot \lim_{x\to a}\frac {\left(\frac xa\right)^a-1}{x-a}=$ $a^a\cdot \frac {\left(\frac xa\right)^a-1}{\frac xa-1}\cdot\frac {\frac xa-1}{x-a}=a^a\cdot a\cdot\frac 1a\implies$ $\boxed{\ l_1=a^a\ }$ . I used the remarkable limit $\lim_{t\to 1}\frac {t^a-1}{t-1}=a$

$\blacktriangleright\ l_2=a^a\cdot \lim_{x\to a}\frac {a^{x-a}-1}{x-a}\implies$ $\boxed{\ l_2=a^a\ln a\ }$ . I used the remarkable limit $\lim_{t\to 0}\frac {a^t-1}{t}=\ln a$ .

$\blacktriangleright\ l_3=\lim_{x\to a}a^x\cdot \frac {\left(\frac xa\right)^x-1}{x-a}=$ $\lim_{x\to a}a^x\cdot \frac {e^{x\ln\frac xa}-1}{x\ln\frac xa}\cdot\frac xa\cdot \frac {\ln\frac xa}{\frac xa-1}\implies$ $\boxed{\ \l_3=a^a\ }$ .

I used the remarkable limits $\lim_{t\to 0}\frac {a^t-1}{t}=\ln a$ and $\lim_{t\to 1}\frac {\ln t}{t-1}=1$ .

In conclusion, $L_2=\frac {l_1-l_2}{l_2+l_3}=\frac {a^a(1-\ln a)}{a^a(1+\ln a)}\implies$ $\boxed {\ L_2=\frac {1-\ln a}{1+\ln a}\ }$ .



\[\mathrm {END}\]
This post has been edited 191 times. Last edited by Virgil Nicula, Nov 22, 2015, 9:26 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a