260. Some nice, simple identities and their applications.

by Virgil Nicula, Apr 4, 2011, 2:46 PM

Lemma 1. Let $ABC$ be an acute triangle with orthocenter $H$ , circumradius $R$ , inradius $r$ and $A$-exinradius $r_a$ . Then $\boxed{\ r_a+AH=2R+r\ }$ .

Proof 1 (metrical). I"ll use the well-known identity $AH=2R\cdot\cos A$ from an acute $\triangle ABC$ . Indeed, $r_a+AH=2R+r\iff$ $r_a-r=2R(1-\cos A)\iff$

$\frac {S}{s-a}-\frac Ss=4R\sin^2\frac A2\iff$ $\frac {aS}{s(s-a)}=\frac {4R(s-b)(s-c)}{bc}\iff$ $abcS=4Rs(s-a)(s-b)(s-c)\iff$ $abc=4RS$ , what is truly.

Proof 2 (synthetical). Denote the circumcircle $w$ of $\triangle ABC$ , the midpoint $M$ of the side $[BC]$ , the point $S\in AI\cap w$ , the tangent points $D$ , $D'$ of the incircle and the

$A$-exincircle with $BC$ . Observe that $MS=OS-OM=$ $R-R\cos A=$ $R-\frac 12\cdot AH$ , where $H$ is the orthocenter of $\triangle ABC$ . In the right trapezoid $IDI_aD'$

the segment $[MS]$ joins the midpoints of diagonals $[DD']$ , $[II_a]$ . Thus, $2\cdot MS=I_aD'-ID\iff$ $2R-AH=r_a-r\iff$ $r_a+AH=2R+r$ .



PP1. Let $ABC$ be an acute triangle with the circumcircle $w=C(O,R)$ and the

$A$-exincircle $w_a=C\left(I_a,r_a\right)$ . Prove that $\boxed{\ r_a=R\ \implies\ \cos A\ \le\ \sqrt 3-1\ <\ \frac 34\ }$ .


Proof. I"ll use $\sum \cos A=1+\frac rR\ (*)$ . Thus, $\boxed{r_a=R}\ \stackrel{(\mathrm{lemma\ 1})}{\iff}\ \boxed{AH=R+r}\iff$ $2\cdot\cos A=1+\frac rR\stackrel{(*)}{\iff}$ $\boxed{\cos A=\cos B+\cos C}\iff$

$\cos A=2\sin\frac A2\cos\frac {B-C}{2}\le 2\sin\frac A2\implies$ $\cos^2A\le 4\sin^2\frac A2\iff$ $\cos^2A\le 2(1-\cos A)\iff$ $(1+\cos A)^2\le 3\iff$ $\cos A\le\sqrt 3-1$ .



PP2. Let $ABC$ be an acute triangle with the orthocenter $H$ and the incenter $I$ . Denote the midpoint

$M$ of the side $[BC]$ . Prove that the implication $\boxed{\ M\in IH\ \implies\ \cos A\ \le\ \sqrt 5-2\ <\ \frac 14\ }$ .


Proof. From an well-known property obtain that $\boxed{\ M\in IH\ }\iff AH=r\iff 2R\cos A=r\iff$ $2\cos A=\frac rR\iff$

$1+2\cos A=\cos A+\cos B+\cos C\iff$ $\boxed{1+\cos A=\cos B+\cos C}\iff$ $\cos^2\frac A2=\sin\frac A2\cos\frac {B-c}{2}$ . In conclusion, $M\in IH\implies$

$1-\sin^2\frac A2\le \sin\frac A2\iff$ $\boxed{\sin\frac A2\ge\frac {\sqrt 5-1}{2}}$ . Otherwise, $(1+\cos A)^2\le 2(1-\cos A)\iff$ $\cos^2A+4\cos A-1\le 0\implies$ $\boxed{\cos A\le \sqrt 5-2}$ .


Lemma 2. Let $ABC$ be a triangle with the inradius $r$ and the $A$-exinradius $r_a$ a.s.o. Then $\boxed{\ \left(r_a-r\right)\left(r_b+r_c\right)=a^2\ }$ .

Proof. $\left(r_a-r\right)\left(r_b+r_c\right)=$ $\left(\frac {S}{s-a}-\frac Ss\right)\cdot\left(\frac {S}{s-b}+\frac {S}{s-c}\right)=a^2$ because $\left\{\begin{array}{c}
S^2=s(s-a)(s-b)(s-c)\\\\
s-(s-a)=(s-b)+(s-c)=a\end{array}\right\|$ .

PP3. Prove that $\frac{a^3}{(r_a-r)^2}+\frac{b^3}{(r_b-r)^2}+\frac{c^3}{(r_c-r)^2}=\frac{2}{p}\cdot\left(r_a+r_b+r_c\right)^2\ \implies\ a=b=c$ .

Proof. $\sum\frac {a^3}{(r_a-r)^2}\stackrel{(\mathrm{lemma\ 2})}{=}$ $\sum\frac{a^3}{\left(\frac{a^2}{r_b+r_c}\right)^2}=$ $\sum{\frac{(r_b+r_c)^2}{a}}\ \stackrel{(C.B.S)}{\ge}\ \frac{4\cdot\left(r_a+r_b+r_c\right)^2}{a+b+c}=$ $\frac{2}{p}\cdot \left(r_a+r_b+r_c\right)^2$ $\implies$ $a=b=c$ .

Remark. $r_a-r=a\cdot\tan\frac A2$ a.s.o. $\implies$ $\sum\frac {a^3}{\left(r_a-r\right)^2}=\sum\frac {a}{\tan^2\frac A2}=\sum\frac {as(s-a)}{(s-b)(s-c)}=$ $\sum\frac {a[bc-(s-b)(s-c)]}{(s-b)(s-c)}=$

$abc\cdot\sum\frac {1}{(s-b)(s-c)}-\sum a=$ $4Rsr\cdot\frac {s}{sr^2}-2s\implies$ $\boxed{\sum\frac {a^3}{\left(r_a-r\right)^2}=\frac {2s(2R-r)}{r}}$ . Prove easily that $r_a+r_b+r_c=4R+r$ and

$\frac {2s(2R-r)}{r}\ge \frac {2(4R+r)^2}{s}$ using $s^2\ge r(16R-5r)\ge \frac {r(4R+r)^2}{2R-r}$ because $(16R-5r)(2R-r)\ge (4R+r)^2\iff (R-2r)(8R-r)\ge 0$ .



PP4. Prove that in any triangle $ABC$ exists the identity $\cos \frac {A}{2} + \cos \frac {B}{2} + \cos \frac {C}{2} = 4\cdot\sin\frac{\pi +A}{4}\cdot\sin\frac{\pi +B}{4}\cdot\sin\frac{\pi +C}{4}$ .


Proof. We can obtain the proposed identity by the substitutions $\left\{\begin{array}{c}
x:=\frac {\pi -A}{2}\\\\
y:=\frac {\pi -B}{2}\\\\
z:=\frac {\pi -C}{2}\end{array}\right\|$ in the well-known conditioned

trigonometrical identity $\boxed{\ x+y+z=\pi\ \implies\ \sum \sin x=4\cdot\prod\cos\frac x2\ }\ (*)$ . Indeed, $x+y+z=\sum \frac {\pi -A}{2}=\pi$

and $\cos\frac A2+\cos\frac B2+\cos\frac C2=$ $\sum \sin \frac {\pi -A}{2}=4\cdot\prod\cos \frac {\pi -A}{4}=$ $4\cdot \sin\frac {\pi +A}{4}\cdot\sin\frac {\pi +B}{4}\cdot\sin\frac {\pi +C}{4}$ .

=============================================================================================================================

$(*)\ :\ \frac x2+\frac {y+z}{2}=\frac {\pi}{2}\implies$ $\sum\sin x=2\sin\frac x2\cos\frac x2+2\sin\frac {y+z}{2}\cos\frac {y-z}{2}=$ $2\cos\frac x2\left(\cos\frac {y+z}{2}+\cos\frac {y-z}{2}\right)=$ $4\cdot \prod\cos\frac x2$ .



PP5. Show that $8\sin^{4}x=\cos 4x -4\cos2x+3$ .

Method 1. $8\sin^4x=2(2\sin^2x)^2=$ $2\left(1-\cos 2x\right)^2=$ $2-4\cos 2x+2\cos^22x=$ $\cos 4x-4\cos 2x+3$ .

Method 2. $\left\{\begin{array}{c}
z=\cos \phi +i\cdot\sin \phi\\\\
\frac 1z=\cos \phi -i\cdot\sin \phi\end{array}\right\|\implies$ $\left\{\begin{array}{c}
z^n=\cos n\phi +i\cdot\sin n\phi\\\\
\frac {1}{z^n}=\cos n\phi -i\cdot\sin n\phi\end{array}\right\|\implies$ $\boxed{\ \begin{array}{c}
z^n+\frac {1}{z^n}=2\cos n\phi \\\\
z^n-\frac {1}{z^n}=2i\cdot\sin n\phi\end{array}\ }$ .

Thus, $\boxed{8\sin^4x}=\frac 12\cdot(2i\cdot\sin x)^4=\frac 12\cdot\left(z-\frac 1z\right)^4=$ $\frac 12\cdot\left(z^4+\frac {1}{z^4}\right)-2\cdot\left(z^2+\frac {1}{z^2}\right)+3=$ $\boxed{\cos 4x-4\cos 2x+3}$ .



PP6. Prove that $AX^2+BX^2+CX^2=AG^2+BG^2+CG^2+3XG^2$ , where $X$ is a point in $\triangle{ABC}$ and $G$ is its centroid.

Proof 1 (vectorial). Denote by (lowercase) $v$ the vector associated to a point (uppercase) $V$ in the plane. Origin $O$ is taken arbitrarily, and $v = \overrightarrow{OP}$ .

Then $VW^2 = ||v - w||^2 = \left < v-w,v-w \right >$ . So, $\sum AX^2 = \sum \left < a-x,a-x \right > =$ $ \sum \left < (a-g) + (g-x),(a-g) + (g-x) \right > =$

$\sum \left ( ||a-g||^2 + 2\left < a-g,g-x \right > + ||g-x||^2 \right )= $ $\sum AG^2 + 3XG^2 + 2\sum \left < a-g,g-x \right > =$ $\sum AG^2 + 3XG^2$ , since

$\sum \left < a-g,g-x \right > = $ $\left < \sum a - 3g,g-x \right > = $ $\left < 0,g-x \right > = 0$ . We have $\sum a = 3g$ , as $G$ is the centroid of $\triangle ABC$ .

Proof 2 (metric). Prove easily that $\sum GA^2=\frac 49\cdot\sum m_a^2\implies$ $\sum GA^2=\frac 13\cdot \sum a^2\ (*)$ . Denote the midpoint $L$ of the side $[BC]$ . Apply the theorem of median

in $\triangle BXC\ :\ 4\cdot XL^2=$ $2\cdot\left(XB^2+XC^2\right)-a^2\ (1)$ . Apply the Stewart's relation to the cevian $[XG$ in $\triangle AXL\ :\ XA^2+$ $2\cdot XL^2=$ $3\cdot XG^2+\frac 23\cdot m_a^2$ .

Thus, $(1)\implies 2\cdot\sum XA^2-a^2=$ $6\cdot XG^2+\frac 43\cdot m_a^2$ $\implies$ $\sum XA^2=3\cdot XG^2+\frac 13\cdot \sum a^2$ and $(*)\implies \sum XA^2=3\cdot XG^2+\sum GA^2$ .


Extension. Let $P$ be a point with the normalized barycentrical coordinates $(\alpha , \beta , \gamma )$ . Then for any point $X$

there is the identity $\alpha\cdot XA^2+\beta\cdot XB^2+\gamma\cdot XC^2=XP^2+\alpha\cdot PA^2+\beta\cdot PB^2+\gamma\cdot PC^2$ .


Proof (vectorial). $\sum \alpha\cdot XA^2 = \sum \alpha\cdot \left < a-x,a-x \right > =$ $ \sum \alpha\cdot \left < (a-p) + (p-x),(a-p) + (p-x) \right > =$

$\sum \alpha\cdot \left ( ||a-p||^2 + 2\left < a-p,p-x \right > + ||p-x||^2 \right )= $ $\sum \alpha\cdot PA^2 + XP^2 +$ $ 2\sum \alpha \cdot \left < a-p,p-x \right > =$

$\sum \alpha\cdot PA^2 + XP^2$ , since $\sum \alpha\cdot \left < a-p,p-x \right > = $ $\left < \sum \alpha\cdot a -p,p-x \right > = $ $\left < 0,p-x \right > = 0$ because

$\sum\alpha\cdot \overrightarrow{PA}=\overrightarrow 0$ , i.e. $\sum \alpha\cdot a = p$ , as $P$ has the normalized barycentrical coordinates $(\alpha ,\beta , \gamma )$ w.r.t. $\triangle ABC$ .



PP7. Prove that in any triangle $ABC$ there is the chain of the equivalencies : $OH=R\iff$ $\sum a^2=8R^2\iff$ $\sum\sin^2A=2\iff$ $\sum\cos^2A=1\iff$

$\prod\cos A=0\iff$ $\prod\left(b^2+c^2-a^2\right)=0\iff$ $s=2R+r\iff$ $90^{\circ}\in\{A,B,C\}\iff$ $\tan \frac A2=1\ \vee\ \tan\frac A2=\frac {a}{b+c}$ .


Proof 1 (trigonometric). $\boxed{OH=R}\iff$ $OH^2=R^2\iff$ $9\cdot OG^2=R^2\iff$ $9\left(R^2-\frac {a^2+b^2+c^2}{9}\right)=R^2\iff$ $\boxed{a^2+b^2+c^2=8R^2}$ .
$\boxed{\sum\sin^2A=2}\iff$ $\sum (1-\cos 2A)=4\iff$ $(1+\cos 2A)+(\cos 2B+\cos 2C)=0\iff$

$\cos^2A+\cos (B+C)\cos (B-C)=0\iff$ $\cos A[\cos A-\cos (B-C)]=0\iff$

$\cos A[\cos (B+C)+\cos (B-C)]=0\iff$ $\boxed{\prod\cos A=0}\iff$ $90^{\circ}\in\{A,B,C\}$ .

Proof 2 (metric). I"ll use the well-known relations $\frac {a}{\sin A}=\frac {b}{\sin B}=\frac {c}{\sin C}=2R$ and $a^2+b^2+c^2\stackrel{(1)}{=}2\left(s^2-r^2-4Rr\right)$ .

Therefore, $\sum \sin^2A=2\iff$ $\boxed{\sum a^2=8R^2}\iff$ $s^2-r^2-4Rr=4R^2\iff$

$s^2=4R^2+4Rr+r^2\iff$ $s=2R+r\stackrel{(2)}{\iff}$ $90^{\circ}\in\{A,B,C\}$ .

Remarks.

$(1)\ \blacktriangleright\ (s-a)(s-b)(s-c)=sr^2\iff$ $s^2-2s^2+(ab+bc+ca)-4Rr=r^2\iff$ $ab+bc+ca=s^2+r^2+4Rr$ .

$(2)\ \blacktriangleright$ Prove easily that the roots of the equation $f(t)\equiv s\cdot t^3-(4R+r)\cdot t^2+s\cdot t-r=0$ are $\left\{\tan\frac A2,\tan\frac B2,\tan\frac C2\right\}$ .

Indeed, $\sum\tan\frac A2=\sum\frac {r_a}{s}=\frac {4R+r}{s}$ , $\sum\tan\frac B2\tan\frac C2=1$ and $\prod\tan\frac A2=\prod\frac {r}{s-a}=\frac {r^3}{\prod (s-a)}=\frac {r^3}{sr^2}=\frac rs$ .

Therefore, $90^{\circ}\in\{A,B,C\}\iff$ $1\in \left\{\tan\frac A2,\tan\frac B2,\tan\frac C2\right\}\iff$ $f(1)=0\iff$ $s=2R+r$ .


In conclusion, $90^{\circ}\in\{A,B,C\}\iff$ $\prod\cos A=0\iff$ $\sum\sin^2A=2\iff$ $s=2R+r$ .

Otherwise. $\boxed{s=2R+r}\iff$ $s-r=\frac {a}{\sin A}\iff$ $\sin A=\frac {a}{s-r}\iff$ $\frac {2\tan\frac A2}{1+\tan^2\frac A2}=\frac {a}{s-(s-a)\tan\frac A2}\iff$

$(b+c)\tan^2\frac A2-(a+b+c)\tan\frac A2+a=0\iff$ $\boxed{\tan \frac A2=1\ \ \vee\ \ \tan\frac A2=\frac {a}{b+c}}\iff$

$A=90^{\circ}\ \ \vee\ \ \tan\frac A2=\frac {\sin A}{\sin B+\sin C}\iff$ $A=90^{\circ}\ \ \vee\ \ \cos\frac A2=\cos\frac {B-C}{2}\iff$ $\boxed{90^{\circ}\in\{A,B,C\}}$ .


Quote:
$\boxed{\mathrm{PP8}}\ ab\ne0\ ,\ a+b\ne 0\ ,\ \ n\in\mathbb N^*\ ,\ \frac{\sin^4 x}{a} + \frac{\cos^4 x}{b} = $ $\frac{1}{a+b}\ \implies\ \frac{\sin^{2n} x}{a^{n-1}} + $ $\frac{\cos^{2n} x}{b^{n-1}}=$ $\frac{1}{(a+b)^{n-1}}$ .
$\frac{\sin^4 x}{a} + $ $\frac{\cos^4 x}{b} = $ $\frac{1}{a+b}\iff$ $b(a+b)\left(2\sin^2x\right)^2+$ $a(a+b)\left(2\cos^2x\right)^2=$ $4ab\iff$ $b(a+b)(1-\cos 2x)^2+$ $a(a+b)(1+\cos 2x)^2=$

$4ab\iff$ $(a+b)^2\cos^22x+$ $2\left(a^2-b^2\right)\cos 2x+(a+b)^2=$ $4ab\iff$ $(a+b)^2\cos^22x+$ $2\left(a^2-b^2\right)\cos 2x+$ $(a-b)^2=0\iff$

$\left[(a+b)\cos 2x+(a-b)\right]^2=0\iff$ $\cos 2x=$ $\frac {b-a}{a+b}\implies$ $\left\|\begin{array}{c}
\sin ^2x=\frac {a}{a+b}\\\\
\cos^2x=\frac {b}{a+b}\end{array}\right\|\implies$ $\frac{\sin^{2n} x}{a^{n-1}} +$ $ \frac{\cos^{2n} x}{b^{n-1}}=$ $\frac{1}{(a+b)^{n-1}}\ .$
This post has been edited 104 times. Last edited by Virgil Nicula, Nov 22, 2015, 9:08 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404427
  • Total comments: 37
Search Blog
a