392. Art of Problem Solving (geometry).

by Virgil Nicula, Mar 20, 2014, 10:50 PM

PP0. Prove that in $\triangle ABC$ there is the chain $\boxed{\ 3r\sqrt 3\ \le\ p\ \le\ \frac {4R+r}{\sqrt 3}\ \le\ \frac{3R\sqrt 3}2\ }$ (standard notations).

Proof. Are well-known $: \ abc=4Rpr\ ;\ (p-a)(p-b)(p-c)=pr^2\ ;\ \sum (p-b)(p-c)=r(4R+r)\ .$ The product of the inequalities $ a^2\ge a^2-(b-c)^2$ , i.e.

$ a^2\ge 4(p-b)(p-c)$ a.s.o. $ \Longrightarrow$ $ \ \boxed{abc\ge 8(p-a)(p-b)(p-c)}$ , i.e. $ 4Rpr\ge 8pr^2$ from where obtain $ \boxed {R\ge 2r}$ . Applly $ \mathrm {A.M.\ \ge\ G.M.}\  :\ \frac {(p-a)+(p-b)+(p-c)}{3}\ge$

$ \sqrt[3]{p-a)(p-b)(p-c)}$ $ \Longrightarrow$ $ p\ge 3\sqrt[3]{pr^2}$ $ \Longrightarrow$ $ p^2\ge 27r^2\Longrightarrow$ $ \boxed{p\ge 3r\sqrt 3}\ .$ In the inequality $ 3(xy+yz+zx)\le (x+y+z)^2$ for $ \left\| \begin{array}{c}
x=(p-b)(p-c)\\\
y=(p-c)(p-a)\\\
z=(p-a)(p-b)\end{array}\ \right\|$ obtain that

$ 3p(p-a)(p-b)(p-c)\le \left[r(4R+r)\right]^2$ $ \Longrightarrow$ $ \boxed{p\sqrt 3\le 4R+r}\ .$ Since $R\ge 2r$ get $p\sqrt 3\le 4R+\frac R2=\frac {9R}2$ , i.e. $\boxed{p\le\frac {3R\sqrt 3}2}$ . Otherwise. $\left(r_a+r_b+r_c\right)^2\ge $

$3\left(r_ar_b+r_br_c+r_cr_a\right)\iff$ $(4R+r)^2\ge 3p^2\iff$ $p\sqrt 3\le 4R+r$ . Add $9p\sqrt 3\le 9(4R+r)$ and $9r\le p\sqrt 3\  \Longrightarrow\ 8p\sqrt 3\le 36R$ $ \Longrightarrow$ $ \boxed{2p\le 3R\sqrt 3}$ .

Remark. $\left(r_a+r_b+r_c\right)\left(\frac 1{r_a}+\frac 1{r_b}+\frac 1{r_c}\right)\ge 9\iff$ $\frac {4R+r}r\ge 9\iff$ $4R+r\ge 9r\iff$ $R\ge 2r\ .$ I used the well-known identities $:\ \left\{\begin{array}{ccc}
r_a+r_b+r_c & = & 4R+r\\\\
r_ar_b+r_br_c+r_cr_a & = & p^2\\\\
\frac 1{r_a}+\frac 1{r_b}+\frac 1{r_c}& = & \frac 1r\end{array}\right\|$ .



PP1. Let $H$ be an interior point of the parallelogram $ABCD$ . Let the points $\left\{\begin{array}{cc}
E\in (BC)\ ; & F\in (CD)\\\\
G\in (AB)\ ; & I\in (AD)\end{array}\right\|$ such that

$H\in EI\cap FG$ and $EI\parallel AB\ ,\  FG\parallel AD$ . Prove that $[BGHIDC]=2\cdot [AEF]$ , where $[XYZ]$ is the area of $\triangle XYZ$ .


Proof 1. Observe that $\boxed{\ [AEF]=[EFH]+[AEH]+[AFH]\ }\ (1)$ and $\boxed{\ [CEHF]=2\cdot [EFH]\ }\ (2)$ . Thus,

$\odot\begin{array}{cccccccc}
\nearrow & BA\parallel EH & \implies & [BEH]=[AEH] & \implies & 2\cdot [BEH]=2\cdot [AEH] & \implies & \boxed{\ [BEHG]=2\cdot [AEH]\ }\\\\
\searrow & DA\parallel FH & \implies & [DFH]=[AFH] & \implies & 2\cdot [DFH]=2\cdot [AFH] & \implies & \boxed{\ [DFHI]=2\cdot [AFH]\ }\end{array}\ (3)\implies$

$[BGHIDC]=[CEHF]+[BEHG]+$ $[DFHI]\ \stackrel{(2\wedge 3)}{=}\ 2\cdot [EFH]+2\cdot [AEH]+2\cdot [AFH]=$ $2\cdot ([EFH]+[AEH]+[AFH])\stackrel{(1)}{=}\ 2\cdot [AEF]$ .

Proof 2. $\sigma\equiv [AEF]\ \implies\ [AEF]+[ABE]+[ADF]+[CEF]=[ABCD]\iff$ $2\sigma +[ABEI]+[ADFG]+[CEHF]=2[ABCD]\iff$

$2\sigma +[ABEI]+[ADFG]+[CEHF]=$ $[ABCD]+([ABEI]+[CEHF]+[DIHF])\iff$ $2\sigma +[ADFG]=[ABCD]+[DIHF]\iff$

$2\sigma =[BCFG]+[DIHF]\iff$ $2\sigma =[BGHIDC]\iff$ $[BGHIDC]=2\cdot [AEF]$ .



PP2. Prove that in any triangle $ABC$ exists the equivalence $B=2C \iff b^2=c(c+a)$ (standard notations).

Proof 1. Let $\left\{\begin{array}{cc}
D\in BC\ ,\ B\in (CD)\\\\
BD\ =\ BA\ =\ c\end{array}\right\|\implies$ $\left\{\begin{array}{c}
DC=c+a\\\\
B=2C\iff AD=AC=b\end{array}\right\|$ and $\triangle ABD\sim\triangle CAD$ , i.e. $\frac {AD}{BD}=\frac {CD}{AD}\iff$ $\frac bc=\frac {c+a}b\iff$ $b^2=c(c+a)$ .

Proof 2. Construct $D\in (AC)$ so that $\widehat{DBA}\equiv\widehat{DBC}$ . Thus, $\frac {DA}{BA}=\frac {DC}{BC}\iff$ $\frac {DA}c=\frac {DC}a=\frac b{a+c}\iff$ $\boxed{\ AD=\frac {bc}{a+c}\ }\ (*)$ . Therefore,

$B=2C\iff$ $\widehat{ABD}\equiv\widehat{ACB}\iff$ $\triangle ABD\sim\triangle ACB\iff$ $\frac {AB}{AC}=\frac {AD}{AB}\iff$ $\frac cb=\frac {AD}c\iff$ $AD=\frac {c^2}b\stackrel{(*)}{\iff}$ $\frac {bc}{a+c}=\frac {c^2}b\iff$ $b^2=c(c+a)$ .



PP3. Prove the Heron's formula (with more proofs) $:$ the area $S$ of the triangle $ABC$ is given by $\boxed{S=\sqrt {s(s-a)(s-b)(s-c)}}$ , where $2s=a+b+c$ (standard notations).

Proof 1 (classic). Denote the projection $D$ of $A$ on $BC$ . Suppose w.l.o.g. that $D\in (BC)$ . Thus, $\left\{\begin{array}{ccc}
DB^2-DC^2 & = & c^2-b^2\\\\
DB+DC & = & a\end{array}\right\|$ $\implies$ $\left\{\begin{array}{ccc}
DB-DC & = & \frac {c^2-b^2}a\\\\
DB+DC & = & a\end{array}\right\|$ $\implies$

$DB=\frac {a^2+c^2-b^2}{2a}$ $\implies$ $h_a^2=c^2-\left(\frac {a^2+c^2-b^2}{2a}\right)^2$ $\implies$ $\left(2ah_a\right)^2=(2ac)^2-\left(a^2+c^2-b^2\right)^2\implies$ $(4S)^2=\left\{\begin{array}{c}
2\left(a^2b^2+b^2c^2+c^2a^2\right)-\left(a^4+b^4+c^4\right)\\\\
\left(2ac+a^2+c^2-b^2\right)\left(2ac-a^2-c^2+b^2\right)\end{array}\right\|$ $\implies$

$16S^2=\left[(a+c)^2-b^2\right]\left[b^2-(a-c)^2\right]\implies$ $\boxed{16S^2=(a+c+b)(a+c-b)(b+a-c)(b-a+c)}\ (*)$ .

Remark. If denote $a+b+c=2s$ , then $\left\{\begin{array}{ccc}
-a+b+c & = & 2(s-a)\\\
a-b+c & = & 2(s-b)\\\
a+b-c & = & 2(s-c)\end{array}\right\|$ and the formula $(*)$ becomes $S^2=s(s-a)(s-b)(s-c)$ .

Thus, $S=sr\implies$ $s(s-a)(s-b)(s-c)=s^2r^2\implies$ $\boxed{(s-a)(s-b)(s-c)=sr^2}$ and $\left\{\begin{array}{ccccc}
s(s-a) & + & (s-b)(s-c) & = & bc\\\\
s(s-a) & - & (s-b)(s-c) & = & bc\cos A\end{array}\right\|\ \stackrel{+\ \wedge\ -}{\implies}$

$\left\{\begin{array}{ccc}
\cos\frac A2 & = & \sqrt{\frac {s(s-a)}{bc}}\\\\
\sin\frac A2 & = & \sqrt{\frac {(s-b)(s-c)}{bc}}\\\\
\tan\frac A2 & = & \sqrt{\frac {(s-b)(s-c)}{s(s-a)}}\end{array}\right\|\ .$ I used the relations $\left\{\begin{array}{ccc}
1+\cos A & = & 2\cos^2\frac A2\\\\
1-\cos A & = & 2\sin^2\frac A2\end{array}\right\|$ .

Proof 2. Is well-known that $\boxed{S=sr=(s-a)r_a}\ (*)$ . Let $\left\{\begin{array}{c}
R\in AB\cap w\\\\
S\in AB\cap w_a\end{array}\right\|$ , where $w=C(I,r)$ is the incircle and $w_a=C(I_a,r_a)$ is the $A$-excircle. So $\left\{\begin{array}{c}
BR=s-b\\\
BS=s-c\end{array}\right\|$

and $IRB\sim BSI_a\iff$ $\frac {IR}{BS}=\frac {RB}{SI_a}\iff$ $\boxed{rr_a=(s-b)(s-c)}\ (1)$ . In conclusion, $S^2=S\cdot S\ \stackrel{(*)}{=}\ sr\cdot (s-a)r_a=$ $s(s-a)\cdot$ $ rr_a\ \stackrel{(1)}{\implies}\ S=\sqrt {s(s-a)(s-b)(s-c)}$ .

Proof 3. Is well-known that $\boxed{S=(s-b)r_b=(s-c)r_c}\ (*)$ . Let $\left\{\begin{array}{c}
U\in BC\cap w_b\\\\
V\in BC\cap w_c\end{array}\right\|$ , where $w_b=C(I_b,r_b)$ is the $B$-excircle and $w_c=C(I_c,r_c)$ is the $C$-excircle. Thus,

$\left\{\begin{array}{c}
BU=s\\\
BV=s-a\end{array}\right\|$ and $I_cVB\sim BUI_b\iff$ $\frac {I_cV}{BU}=\frac {VB}{UI_b}\iff$ $\boxed{r_cr_b=s(s-a)}\ (1)\implies$ $S^2=S\cdot S\ \stackrel{(*)}{=}\ (s-b)r_b\cdot (s-c)r_c=$ $(s-b)(s-c)\cdot r_br_c\ \stackrel{(1)}{\implies}\ (*)$ .

Proof 4. $4S=\left(b^2+c^2-a^2\right)\tan A$ a.s.o. $\implies$ $\sum\cot B\cot C=1 \iff$ $\boxed{16S^2=\sum\left(a^2+c^2-b^2\right)\left(a^2+b^2-c^2\right)}\iff$

$16S^2=\sum\left[a^4-\left(b^2-c^2\right)^2\right]\iff$ $16S^2=2\sum b^2c^2-\sum a^4$ .

Proof 5. Let the orthocenter $H$ and $\left\{\begin{array}{c}
D\in AH\cap BC\\\\
E\in BH\cap CA\\\\
F\in CH\cap AB\end{array}\right\|$ . Suppose that $ABC$ is acute. Then $2S=\sum 2[BHC]=\sum aHD=$ $\sum a\left(h_a-HA\right)=6S-\sum aHA\implies$

$\boxed{4S=\sum aHA}=$ $2R\sum a\cos A=R\sum \frac {a\left(b^2+c^2-a^2\right)}{bc}=$ $\frac R{abc}\sum a^2\left(b^2+c^2-a^2\right)=$ $\frac R{4RS}\sum a^2\left(b^2+c^2-a^2\right)\implies$ $\boxed{16S^2=\sum a^2\left(b^2+c^2-a^2\right)}\ .$

Remark. $\boxed{\frac {2S}R=\sum a\cos A}=$ $R\sum 2\sin A\cos A=$ $R\sum \sin 2A=$ $4R\sin A\sin B\sin C\implies$ $\boxed{S=2R^2\sin A\sin B\sin C}\implies$ $S=2R^2\prod\left(\frac a{2R}\right)=$ $\frac {abc}{4R}\implies$

$\boxed{abc=4RS}\ .$ Otherwise, $S=\sum [BOC]=\frac R2\cdot \sum a\cos A\implies \sum a\cos A=\frac {2S}{R}$ , where $O$ is the length of the circumradius.



PP4. Prove that in any triangle $ABC$ there is the identity $\boxed{\ ab+bc+ca=s^2+r^2+4Rr\ }$ , where $2s=a+b+c$ (standard notations). See and here.

Proof 1. Prove easily that $\boxed{\ \left\{\begin{array}{ccccc}
 bc & = & s(s-a)+(s-b)(s-c) & = & r_br_c+rr_a\\\\
 ca & = & s(s-b)+(s-c)(s-a) & = & r_cr_a+rr_b\\\\
 ab & = & s(s-c)+(s-a)(s-b) & = & r_ar_b+rr_c\end{array}\right\|\bigoplus\implies \sum bc=s^2+\sum(s-b)(s-c)=\sum r_br_c+r\cdot\sum r_a=s^2+r(4R+r)\ }$.

Indeed, let $\left\{\begin{array}{ccc}
x: & = &  s-a\\\
y: & = & s-b\\\
z: & = & s-c\end{array}\right\|\implies$ $\left\{\begin{array}{ccc}
a=y+z\\\
b=z+x\\\
c=x+y\end{array}\right\|\implies$ $bc=(x+z)(x+y)=x(x+y+z)+yz\implies$ $bc=s(s-a)+(s-b)(s-c)\implies$ $\sum bc=s^2+r(4R+r).$

Proof 2. Let incircle $w=C(I,r)$ , $A$-excircle $w_a=C(I_a,r_a)$ , circumcircle $C(O,R)$ and $\left\{\begin{array}{ccc}
R\in AB\cap w & ; & T\in AB\cap w_a\\\\
P\in AB & ; & IP\perp IA\end{array}\right\|$ . Thus,

$AR=s-a\ ,\ AT=s,$ $\boxed{a(b+c)=s^2-(s-a)^2}\ (1)$ and $AI^2=IR^2+AR^2 \implies \boxed{AI^2=r^2+(s-a)^2}\ (2)$ . So

$\left\{\begin{array}{cccccc}
\triangle AI_aB\sim\triangle ACI & \implies & \frac {AI_a}{AC}=\frac {AB}{AI} & \implies & \boxed{AI_a\cdot AI=bc} & (3)\\\\
II_aTP\ \mathrm{cyclic} & \implies & AP\cdot AT=AI_a\cdot AI & \stackrel{(3)}{\implies} & \boxed{AP=\frac {bc}s} & (4)\end{array}\right\|$ . Thus, $AI^2=AR\cdot AP\stackrel{(4)}{=}(s-a)\cdot \frac {bc}s\implies$

$AI^2=bc-\frac {abc}s\implies$ $AI^2=bc-4Rr\stackrel{(2)}{\implies}$ $\boxed{bc=r^2+4Rr+(s-a)^2}\ (5)$ . The sum of $(1)\ \wedge\ (5)\ \implies\  ab+bc+ca=s^2+r^2+4Rr$ .

Proof 3. $sr^2=(s-a)(s-b)(s-c)=$ $s^3-2s^3+s(ab+bc+ca)-abc=$ $-s^3+s(ab+bc+ca)-4Rrs\implies$ $r^2=-s^2+(ab+bc+ca)-4Rr\implies$

$ab+bc+ca=s^2+r^2+4Rr$ . Hence $x^3-2sx^2+\left(s^2+r^2+4Rr\right)x-4Rsr=0\implies$ $ \odot\begin{array}{ccc}
\nearrow & a & \searrow\\\\
\rightarrow & b & \rightarrow\\\\
\searrow & c & \nearrow\end{array}\odot ,$ i.e.

$\{a,b,c\}\ \iff\ \{s,R,r\}\ \iff\ \left\{r_a,r_b,r_c\right\}$ , where $\left\{\begin{array}{ccc}
r_a+r_b+r_c & = & 4R+r\\\\
r_ar_b+r_br_c+r_cr_a & = & s^2\\\\
r_ar_br_c & = & s^2r\end{array}\right\|$ .


Proof 4. Let incircle $w=C(I,r)$ circumcircle $C(O,R)$ . From $\left\{\begin{array}{cc}
IA^2=r^2+(s-a)^2 &  (1)\\\\
IA^2=bc-4Rr & (2)\end{array}\right\|$ obtain $(1)$ from $\triangle AIT$ , where $T\in AB\cap w$

The relation $(2)$ is obtained from the Ptolemy's theorem in the quadrilateral $ABA_1C$ , where $\left\{A,A_1\right\}=AI\cap C(O,R)\ :\ IA_1\cdot (b+c)=$ $a(AI+IA_1)$ $\Longleftrightarrow$

$\underline{2(s-a)\cdot IA_1=a\cdot IA}\ (3)$ $\Longleftrightarrow$ $2(s-a)\cdot 2Rr=a\cdot IA^2$ $\Longleftrightarrow$ $abc(s-a)=as\cdot IA^2\Longleftrightarrow$ $IA^2=\frac {bc(s-a)}{s}\Longleftrightarrow$ $IA^2=bc-4Rr$ . Am folosit $A_1B=A_1C=A_1I$ .

Thus obtain $\boxed{\ bc=4Rr+r^2+(s-a)^2\ }\ (*)$ which is an interesting identity. Hence $(s-a)^2+a(b+c)=s^2$ and

$\sum bc=bc+a(b+c)=4Rr+r^2+(s-a)^2+a(b+c)$ $\Longrightarrow$ $ab+bc+ca=$ $s^2+r^2+4Rr$ .

Obtain $ab+bc+ca=$ $12Rr+3r^2+\sum (s-a)^2=$ $12Rr+3r^2+3s^2-2\sum bc\Longrightarrow$ $3\sum bc=3s^2+3r^2+12Rr\Longrightarrow$ $\sum bc=s^2+r^2+4Rr$ .

Remark. Can obtain $(2)$ without the Ptolemy's theorem$:$ let$D\in BC\cap AI$ and from $DC=\frac {ab}{b+c}$ and $\triangle ABA_1\sim\triangle ADC$ obtain

$\frac {AA_1}{BA_1}=\frac {AC}{DC}$ $\Longrightarrow$ $\frac {AA_1}{IA_1}=\frac {b}{\frac {ab}{b+c}}=$ $\frac {b+c}{a}$ $\Longrightarrow$ $\frac {IA}{IA_1}=\frac {b+c-a}{a}=\frac {2(s-a)}{a}$ , adica relatia $(3)$ a.s.o. Tot asa $s^2+\sum (s-a)^2=\sum a^2\Longleftrightarrow$

$s^2=\sum\left[a^2-(s-a)^2\right]\Longleftrightarrow$ $s^2=\sum s(2a-s)\Longleftrightarrow$ $s^2=4s^2-3s^2$ and O.K.



PP5.Prove that in $\triangle ABC$ exists Euler's relation $\boxed{OI^2=R^2-2Rr}$ .

Proof 1 (own). Let the midpoint $M$ of $[BC]$ , the diameter $[NS]$ of the circumcircle $w=C(O,R)$ , where $M\in NS$ and $BC$ separates $A$ , $S$ . Thus, the projection of $[OI]$ on $BC$ is

equally to $\left|\frac {b-c}{2}\right|$ and the projection of $[OI]$ on $NS$ is equally to $|R\cos A-r|$ , where $R|\cos A|=\sqrt {R^2-\left(\frac a2\right)^2}$ . Thus, $OI^2=\left(\frac {b-c}{2}\right)^2+(R\cos A-r)^2=$

$R^2-\frac {a^2}{4}+\frac {(b-c)^2}{4}+$ $r^2-2Rr\cos A=$ $R^2-2Rr+r^2-(s-b)(s-c)+2Rr(1-\cos A)$ . Thus, $r^2-(s-b)(s-c)+2Rr(1-\cos A)=$

$\frac {(s-a)(s-b)(s-c)}{s}-(s-b)(s-c)+\frac {4Rrs(s-b)(s-c)}{sbc}=$ $\frac {(s-a)(s-b)(s-c)}{s}-(s-b)(s-c)+$ $\frac {a(s-b)(s-c)}{s}=$

$\frac {(s-b)(s-c)[(s-a)+a]}{s}-(s-b)(s-c)=$ $(s-b)(s-c)-(s-b)(s-c)=0$ . In conclusion, $OI^2=R^2-2Rr$ .

Proof 2 (classic). Let the midpoint $M$ of $[BC]$ , the tangent point $E\in AC$ of incircle $C(I,r)$ and diameter $[NS]$ of circumcircle $C(O,R)$ , where

$M\in NS$and $BC$ separates $A$ , $S$ . Thus, $\boxed{SB=SC=SI}\ (*)$ and $\triangle AIE\sim\triangle NSC\iff$ $\frac {IA}{IE}=\frac {SN}{SC}\iff$ $\frac {IA}{r}=\frac {2R}{SC}\stackrel{(*)}{\iff}$ $IA\cdot IS=2Rr\iff$

$-p_w(I)=2Rr\iff$ $R^2-OI^2=2Rr\iff$ $OI^2=R^2-2Rr$ .

Proof 3 (classic). Is well-known that $\left\{\begin{array}{c}
\frac {DB}{c}=\frac {DC}{b}=\frac {a}{b+c}\\\\
AD^2=\frac {4bcs(s-a)}{(b+c)^2}\\\\
\frac {IA}{b+c}=\frac {ID}{a}=\frac {AD}{2s}\end{array}\right|$ . Hence $R^2-OI^2=-p_w(I)=IA\cdot IS=$ $\frac {b+c}{2s}\cdot AD\cdot\left(\frac {a}{2s}\cdot AD+DS\right)=$ $\frac {a(b+c)}{4s^2}\cdot \frac {4bcs(s-a)}{(b+c)^2}+$

$\frac {b+c}{2s}\cdot DA\cdot DS=$ $\frac {abc(s-a)}{s(b+c)}+\frac {b+c}{2s}\cdot\frac {a^2bc}{(b+c)^2}=$ $\frac {4Rr(s-a)}{b+c}+\frac {2aRr}{b+c}=$ $\frac {2Rr[(b+c-a)+a]}{b+c}=2Rr\implies$ $R^2-OI^2=2Rr\iff$ $OI^2=R^2-2Rr$ .

Proof 4. Apply the generalized Pythagoras' relation in $\triangle OAI\ :\ OI^2=AI^2+AO^2-2\cdot AI\cdot AO\cdot\cos \frac {B-C}{2}=$ $\frac {bc(s-a)}{s}+R^2-\frac {2Rr}{\sin\frac A2}\cdot\cos\frac {B-C}{2}=$ $bc-4Rr+R^2-$

$\frac {2Rr\cos\frac {B-C}{2}\sin\frac {B+C}{2}}{\sin\frac A2\cos\frac A2}=$ $bc-4Rr+R^2-\frac {2Rr(\sin B+\sin C)}{\sin A}=$ $bc-4Rr+R^2-\frac {2Rr(b+c)}{a}=$ $R^2-\frac {-4Rrs+4Rra+2Rr(b+c)}{a}\implies$ $OI^2=R^2-2Rr$ .



PP6. Let $C(r,g)$ be a right circular cone with radius $r$ and generatrix $g.$ Prove that

if its volume is constant, then: its lateral surface is minimum iff $g=r\sqrt 3$ ; its total surface is minimum iff $g=3r$ .


Proof. Denote the circle $C(O,r)$ from the base and the apex $A$ with $AO=h$ . Thus, $g^2=r^2+h^2$ and volume $V=\frac {\pi r^2h}{3}$

is constant, i.e. $r^2h$ is constant. Lateral surface area is $\boxed{S_l=\pi rg}$ and total surface area is $\boxed{S=\pi r(g+r)}$ .

$\blacktriangleright\ r^2h$ is constant $\iff r^8h^4$ is constant $\iff \frac {r^2h^2}{2}\cdot\frac {r^2h^2}{2}\cdot r^4$ is constant $(1)$ . Thus, $S_l$ is $\min\ \iff$ $rg$ is $\min\ \iff$

$r^2g^2$ is $\min\ \iff$ $r^2\left(r^2+h^2\right)$ is $\min\ \iff$ $r^4+\frac {r^2h^2}2+\frac {r^2h^2}2$ is $\min\ \stackrel{(1)}{\iff}$ $r^4=\frac {r^2h^2}2\iff \boxed{\ h=r\sqrt 2\ }$ .

$\blacktriangleright\ r^2h$ is constant $\iff r^4h^2$ is constant $\iff r^4\left(g^2-r^2\right)$ is constant $\iff$ $r^2\cdot\frac {r(g+r)}4\cdot\frac {r(g-r)}2$ is constant $(2)$ . Therefore,

$S$ is $\min\ \iff$ $\frac {3r(g+r)}4$ is $\min\iff$ $r^2+\frac {r(g+r)}4+\frac {r(g-r)}2$ is $\min\ \stackrel{(2)}{\iff}$ $r^2=\frac {r(g+r)}4=\frac {r(g-r)}2\iff$ $\boxed{\ g=3r\ }$ .



PP7. Prove that for $\triangle ABC$ exists Weitzenböck's inequality $\boxed{\ a^2+b^2+c^2\ \ge\ 4S\sqrt 3\ }$ .

Proof. Prove easily $16S^2=(a+b+c)(b+c-a)(c+a-b)(a+b-c)=$ $2\left(a^2b^2+b^2c^2+c^2a^2\right)-\left(a^4+b^4+c^4\right)=$ $\left\{\begin{array}{cc}
\sum a^2\left(b^2+c^2-a^2\right) & (1)\\\\
\sum\left(a^2+b^2-c^2\right)\left(a^2+c^2-b^2\right) & (2)\end{array}\right\|$ .

Method $(1)\blacktriangleright$ Since $a^2\le b^2\le c^2\iff$ $\left(b^2+c^2-a^2\right)\ge \left(c^2+a^2-b^2\right)\ge \left(a^2+b^2-c^2\right)$ we can apply Tchebyshev's

inequality
$:\ 48S^2\ \stackrel{(1)}{=}\ 3\sum a^2$ $\left(b^2+c^2-a^2\right)\le \sum a^2\sum\left(b^2+c^2-a^2\right)=$ $\left(a^2+b^2+c^2\right)^2\implies$ $a^2+b^2+c^2\ \ge\ 4S\sqrt 3$ .

Method $(2)\blacktriangleright$ I"ll apply inequality $3(xy+yz+zx)\le (x+y+z)^2$ , where $\left|\begin{array}{c}
x:=b^2+c^2-a^2\\\\
y:=c^2+a^2-b^2\\\\
z:=a^2+b^2-c^2\end{array}\right|$ .


PP8. $\boxed{\ A-\mathrm{rightangled}\ \triangle ABC\ \implies\begin{array}{ccccccccccc}
IA^2 & = & (a-b)(a-c) & ; & IB^2 & = & a(a-b) & ; & IC^2 & = & a(a-c)\\\\
I_aA^2 & = & (a+b)(a+c) & ; & I_aB^2 & = & a(a+b) & ; & I_aC^2 & = & a(a+c)\\\\
I_bA^2 & = & (a+b)(a-c) & ; & I_bB^2 & = & a(a+b) & ; & I_bC^2 & = & a(a-c)\\\\
I_cA^2 & = & (a-b)(a+c) & ; & I_cB^2 & = & a(a-b)& ; & I_cC^2 & = & a(a+c)\end{array}\ }$


Proof 1. Let $\left\{\begin{array}{cc}
X\in (BC)\ ; & CX=CA=b\\\\
Y\in (BC)\ ; & BY=BA=c\end{array}\right\|$ . Thus, $\left\{\begin{array}{c}
BX=a-b\\\\
CY=a-c\end{array}\right\|$ and $XY=b+c-a\ .$

$\blacktriangleright\ \widehat{BIX}\equiv \widehat{CXI}-\widehat{XBI}=$ $\widehat{CAI}-\widehat{CBI}\implies m\left(\widehat{BIX}\right)=$ $\frac {A-B}{2}=\frac C2 \implies$ $\widehat{BIX}\equiv \widehat{BCI}\implies$

$\triangle BIX\sim\triangle BCI\implies$ $\frac {BI}{BC}=\frac {IX}{CI}=\frac {BX}{BI}\implies$ $\left\{\begin{array}{cccc}
\nearrow & IB^2=BC\cdot BX & \implies & \boxed{IB^2=a(a-b)}\\\\\
\searrow & IX=BX\cdot\frac {CI}{BI} & \implies & IX=\frac {IC}{IB}\cdot (a-b)\end{array}\right\|$ .

$\blacktriangleright\ \widehat{CIY}\equiv \widehat{BYI}-\widehat{YCI}=$ $\widehat{BAI}-\widehat{BCI}\implies m\left(\widehat{CIY}\right)=$ $\frac {A-C}{2}=\frac B2 \implies$ $\widehat{CIY}\equiv \widehat{CBI}\implies$

$\triangle CIY\sim\triangle CBI\implies$ $\frac {CI}{CB}=\frac {IY}{BI}=\frac {CY}{CI}\implies$ $\left\{\begin{array}{cccc}
\nearrow & IC^2=CB\cdot CY & \implies & \boxed{IC^2=a(a-c)}\\\\\
\searrow & IY=CY\cdot\frac {BI}{CI} & \implies & IY=\frac {IB}{IC}\cdot (a-c)\end{array}\right\|$ .

$\blacktriangleright$ Prove easily that $XY=2(s-a)\ ,\ IX=IY=IA=r\sqrt 2=(s-a)\sqrt 2$ ($I$ is circumcenter of $\triangle XAY$)

and $IX\perp IY$ . Thus, $IA^2=IX\cdot IY=\frac {IC}{IB}\cdot (a-b)\cdot \frac {IB}{IC}\cdot (a-c)\implies$ $\boxed{IA^2=(a-b)(a-c)}$ .


Proof 2 (metric). $(\forall )\ \triangle ABC\implies bc-IA^2=ca-IB^2=ab-IC^2=4Rr.$ Hence $\left\{\begin{array}{c}
2R=a\\\\
r=s-a\end{array}\right\|\implies$ $4Rr=2a(s-a)\implies\left\{\begin{array}{ccccc}
IA^2 & = & bc-2a(s-a) & = & (a-b)(a-c)\\\\
IB^2 & = & ac-2a(s-a) & = & a(a-b)\\\\
IC^2 & = & ab-2a(s-a) & = & a(a-c)\end{array}\right\|$ .

Remark. Exist relations $\boxed{\ \begin{array}{ccccccc}
\triangle AIC\sim\triangle ABI_a & \implies & AI\cdot AI_a & =  & AI_b\cdot AI_c & = & bc\\\\
\triangle BIA\sim\triangle BCI_b & \implies & BI\cdot BI_b & = & BI_a\cdot BI_c & = & ac\\\\
\triangle CIB\sim\triangle CAI_c & \implies & CI\cdot CI_c & = & CI_a\cdot CI_b & = & ab\end{array}\ }\ \implies\ \boxed{\begin{array}{ccccccc}
bc-IA^2 & = & ca-IB^2 & = & ab-IC^2 & = & 4Rr\\\\
IA^2-(a-b)(a-c) & = &  IB^2-a(a-b) & = &  IC^2-a(a-c) & = & 4Rr\cos A\end{array}\ }$ .

Indeed, $\triangle AIC\sim \triangle ABI_a\iff$ $\boxed{AI\cdot AI_a=bc}\ (*)$ . Since $\frac {AI}{AI_a}=\frac {s-a}{s}\ \stackrel{(*)}{\iff}\ AI^2=$ $\frac {bc(s-a)}{s}=bc-\frac {abc}{s}\implies$ $\boxed{\ AI^2=bc-4Rr\ }$ .

Otherwise. $2S=bc\sin A\iff$ $rs=bc\sin\frac A2\cos\frac A2\iff$ $rs=bc\cdot\frac r{IA}\cdot \frac {s-a}{IA}\iff$ $IA^2=\frac {bc(s-a)}{s}\iff$ $IA^2=bc-4Rr$ .

Remark. $\boxed{\ \begin{array}{ccccccc}
IA^2 & = & \frac {bc(s-a)}{s} & ; & I_aA^2 & = & \frac {bcs}{s-a}\\\\
I_aB^2 & = & \frac {ac(s-c)}{s-a} & ; & I_aC^2 & = & \frac {ab(s-b)}{s-a}\end{array}\ }\ \implies\ \boxed{\ \begin{array}{ccccccc}
I_aA^2-bc & = & I_aB^2+ac & = & I_aC^2+ab & = & 4Rr_a\\\\
I_aA^2-(a+b)(a+c) & = &  I_aB^2-a(a+b) & = &  I_aC^2-a(a+c) & = & -4Rr_a\cos A\end{array}\ }$



PP9. Let $\triangle ABC$ with incenter $I$ and $\left\{\begin{array}{c}
E\in BI\cap AC\\\\
F\in CI\cap AB\end{array}\right\|$. Prove that $BE=CF\ \iff\ AB=AC$ .

Proof 1. Apply the theorem of Sines in $:\ \left\{\begin{array}{cccc}
\triangle ABE\ : & \frac {BE}{\sin A}=\frac {AB}{\sin\widehat{AEB}} & \implies & \frac {BE}{\sin A}=\frac c{\sin\left(C+\frac B2\right)}\\\\
\triangle ACF\ : & \frac {CF}{\sin A}=\frac {AC}{\sin\widehat{AFC}} & \implies & \frac {AC}{\sin A}=\frac b{\sin\left(B+\frac C2\right)}\end{array}\right\|$ .Thus, $BE=CF\iff$

$\frac c{\sin\left(C+\frac B2\right)}=\frac b{\sin\left(B+\frac C2\right)}\iff$ $\sin C\sin \left(B+\frac C2\right)=\sin B\sin\left(C+\frac B2\right)\iff$ $\sin\frac C2\cdot 2\sin\left(B+\frac C2\right)\cos\frac C2=\sin\frac B2\cdot\sin\left(C+\frac B2\right)\cos\frac B2\iff$

$\sin\frac C2(\sin A+\sin B)=\sin \frac B2\cdot (\sin A+\sin C)\iff$ $U\equiv \sin A\left(\sin\frac B2-\sin\frac C2\right)=\sin B\sin \frac C2-\sin C\sin\frac B2\equiv V$ . Define over $\mathbb R$ an equivalence relation

$\boxed{x\ .s.s.\ y\ \iff\ x=y=0\ \vee\ xy>0}$ , i.e. $x$ and $y$ have
same signature. Observe that $U\ .s.s.\ (B-C)$ and $V=\left(2\sin \frac B2\cos\frac B2\sin \frac C2-2\sin \frac C2\cos\frac C2\sin\frac B2\right)\ .s.s.$

$\left(\cos\frac B2-\cos\frac C2\right)\ .s.s.\ (C-B)$ . Hence $U\ .s.s.\ -V$ , i.e. $U=V=0\iff B=C\iff AB=AC$ .



PP10. Let $\triangle ABC$ with circumradius $R$ and inradius $r$. Prove that $A=90^{\circ}\implies b+c=2(R+r) \ \stackrel{\mathrm{not}}{\implies}\ A=90^{\circ}$ .

Proof. $A=90^{\circ}\implies a=2R$ and $b+c-a=2r$ $\implies b+c=a+(b+c-a)\implies b+c=2(R+r)$ . Suppose that $b+c=2(R+r)$ and $B\ge C$ . Thus,

$b+c=2(R+r)\iff$ $\sin B+\sin C=\cos A+\cos B+\cos C\iff$ $2\sin\frac {B+C}2\cos\frac {B-C}2=\cos A+2\cos\frac {B+C}2\cos\frac {B-C}2\iff$ $2\cos\frac{B-C}2\left(\cos\frac A2-\sin\frac A2\right)=$

$\cos^2\frac A2-\sin^2\frac A2\iff$ $A=90^{\circ}$ or $A\ne 90^{\circ}$ and $2\cos\frac{B-C}2=\cos\frac A2+\sin\frac A2\in \left(1,\sqrt 2\right)\implies$ $\frac 12<\cos\frac{B-C}2<\frac {\sqrt 2}2\implies$ $\frac {\pi}4<\frac{B-C}2<\frac {\pi}3\implies$ $\frac {\pi}2<B-C<\frac {2\pi}3$ .

Contraexample. $A=30^{\circ}\ ,\ B=75^{\circ}+x\ ,\ C=75^{\circ}-x$ , where $x\in\left(\frac {\pi}4,\frac {\pi}3\right)$ and $\cos 2x=-\frac 14$ .

Remark.$2\cos\frac{B-C}2=\cos\frac A2+\sin\frac A2\iff$ $2\cos\frac{B-C}2=\sin\frac {B+C}2+\cos\frac {B+C}2\iff$ $2\left(1+\tan\frac B2\tan\frac C2\right)=\tan\frac B2+\tan\frac C2+1-\tan\frac B2\tan\frac C2\iff$

$1+3\tan\frac B2\tan\frac C2=\tan\frac B2+\tan\frac C2\iff$ $\left(1-\tan\frac B2\right)\left(1-\tan\frac C2\right)+2\tan\frac B2\tan\frac C2=0$ . In this case $B> \frac {\pi}2\ \ \vee\ \ C>\frac {\pi}2\iff (\pi-2B)(\pi-2C)< 0$



PP11. Let $\triangle ABC$ with the circumcircle $\mathbb \rho=C(O,R)$ , incircle $w=\mathbb C(I,r),$ $A$-excircle $w_a=\mathbb C(I_a,r_a)$ and

$E\in AB$ so that $IE\perp IA$ and $\left\{\begin{array}{c}
F\in AB\cap w\ ;\ T\in AB\cap w_a\\\\
D\in BC\cap AI\ ;\ \{A,R\}=AI\cap \rho\end{array}\right\|$ . Prove that $\left\{\begin{array}{c}
AD\cdot AR=AI\cdot AI_a=bc\\\\
AE=\frac {bc}{s}\ ;\ AI^2=\frac {bc(s-a)}{s}\end{array}\right\|$ .


Proof. $\left\{\begin{array}{ccccc}
BICI_a\ \mathrm{is\ cyclic}\implies BI_aA\equiv BCI\equiv ICA & \implies & BI_aA\sim ICA & \implies & \frac {I_aA}{AB}=\frac {CA}{AI}\implies AI\cdot AI_a=bc\\\\
ABRC\ \mathrm{is\ cyclic}\implies BRA\equiv BCA\equiv DCA & \implies & BRA\sim DCA & \implies & \frac {RA}{CA}=\frac {AB}{AD}\implies AD\cdot AR=bc\end{array}\right\|$ $\implies \boxed{AD\cdot AR=AI\cdot AI_a=bc}\ (*)$ .

Thus, $EII_aT\ \mathrm{is\ cyclically} \implies AE\cdot AT=AI\cdot AI_a \stackrel{(*)}{\implies} $ $\boxed{AE=\frac {bc}{s}}$ . From the $I$-right $\triangle AIE$ obtain that $AI^2=AE\cdot AF \implies \boxed{AI^2=\frac {bc(s-a)}{s}}=bc-4Rr$ .

Otherwise. $AI\cdot AI_a=bc\iff AI\left(AI+II_a\right)=bc\iff$ $AI^2+IA\cdot II_a=bc\iff$ $AI^2+2\cdot IA\cdot IR=bc\iff$ $AI^2+2p_{\mathrm{\rho}}(I)=bc\iff$ $AI^2=bc-4Rr$ .



PP12. Let $\triangle ABC$ and $M\in (BC)$ fot which $AM=m$ and $\left\{\begin{array}{c}
MB=x\\\\
MC=y\end{array}\right\|$ , where $x+y=a$ . Prove that Stewart's relation $:\ \boxed{xb^2+yc^2=a\left(m^2+xy\right)}$ .

Proof. I"ll use property: $\boxed{XY\perp UV\iff XU^2-XV^2=YU^2-YV^2}\ (*)$. Let $P\in BC\ ,\ AP\perp BC$ and suppose w.l.o.g. $P\in (BM)$ , where $\left\{\begin{array}{c}
PB=u\\\\
PM=v\\\\
u+v=x\end{array}\right\|$ .

Thus, $\left\{\begin{array}{ccccccc}
AP\perp MC & \iff & AM^2-AC^2=PM^2-PC^2 & \iff & m^2-b^2=-y^2-2vy & \iff & \frac {m^2+y^2-b^2}{y}=-2v\\\\
AP\perp MB & \iff & AM^2-AB^2=PM^2-PB^2 & \iff & m^2-c^2=2vx-x^2 & \iff & \frac {m^2+x^2-c^2}{x}=2v\end{array}\right\|\ \bigoplus$ $\implies$

$\frac {m^2+y^2-b^2}{y}+\frac {m^2+x^2-c^2}{x}=0\iff$ $m^2(x+y)+xy(x+y)=xb^2+yc^2\iff$ $xb^2+yc^2=(x+y)\left(m^2+xy\right)\iff$ $xb^2+yc^2=a\left(m^2+xy\right)$ .



PP13. Prove that a plane which pass through midpoints of two opposite edges of a tetrahedron cut the tetrahedron in two solids with same volume.

Proof. Let midpoints $M,$ $N$ of $[AB],$ $[CD]$ respectively. Suppose the plane $\pi$ cut $[BC]$ in $P$ and $[AD]$ in $Q$ . Appear two cases:

$\blacktriangleright\ MP\parallel AC\implies$ $(P,Q)$ are midpoints of $[BC]$ , $[AD]$ respectively and $NQ\parallel AC$ . Let midpoint $R$ of $[AC]$ and volume $V$ of

$ABCD$ . Observe that $AMPRNQ$ is a prism. Its volum is $v=v[AMPCNQ]=$ $v[AMPRNQ]+v[RPCN]\implies$ $\frac vV=\frac {v[AMPRMQ]}V+$

$\frac {v[RPCN]}V=$$\frac {[AMQ]\cdot \delta_{(ABD)}(R)}{[ABD]\cdot \delta _{(ABD)}(C)}+$ $\frac {[PCN]\cdot\delta_{(PCN)}(R)}{[BCD]\cdot\delta_{(BCD)}(A)}=$ $\frac {[AMQ]}{[ABD]}\cdot \frac {RA}{CA}+$ $\frac {[PCN]}{[BCD]}\cdot \frac {RC}{AC}=$ $\frac 34\cdot\frac 12+\frac 14\cdot \frac 12=\frac 12\implies$ $V=2v$ .

$\blacktriangleright\ MP\not\parallel AC$ . Let $\frac {PB}{PC}=r$ and with Menelaus' theorem prove easily $\frac{RA}{RC}=\frac {QA}{QD}=r$ . suppose w.l.o.g.

$R\in MP\cap AC\ ,\ C\in (AR)$ , adica $r>1$ si $Q\in RN\cap AD$ . Required volume is $v=v[AMPCNQ]=$ $v[RMAQ]-v[RPCN]$ and $\frac vV=\frac {v[RMAQ]}V-\frac {v[RPCN]}V=$

$\frac {[AMQ]\cdot\delta_{(ABD)}(R)}{[ABD]\cdot\delta_{(ABD)}(C)}-\frac {[PCN]\cdot\delta_{(BCD)}(R)}{[BCD]\cdot\delta_{(BCD)}(A)}=$ $\frac {AM\cdot AQ}{AB\cdot AD}\cdot\frac {RA}{CA}-\frac {CP\cdot CN}{CB\cdot CD}\cdot\frac {RC}{AC}=$ $\frac 12\cdot\frac {r}{r+1}\cdot\frac r{r-1}-\frac 12\cdot\frac 1{r+1}\cdot\frac 1{r-1}=\frac {r^2-1}{2\left(r^2-1\right)}=\frac 12\implies$ $V=2v$ .



PP14. Let $\triangle ABC$ with incenter $I$ , centroid $G$ and orthocentre $H$ . Prove that $m\left(\widehat{GIH}\right)\ge 90^{\circ}$ .

Proof. Choose the origin $I$ of the vectorial system. Thus, $X\odot I=0$ , $X\odot X=\overrightarrow{IX}\odot $ $\overrightarrow{IX}=IX^{2}$ and $\overrightarrow{HG}=2\cdot\overrightarrow{GO}$ , $\overrightarrow{NG}=2\cdot \overrightarrow{GI}$ . We know that $OI^{2}=R^{2}-2Rr$ ,

$IH^{2}=4R(R+r)+3r^{2}-p^{2}$ and $HO^{2}=9GO^{2}=9R^{2}-(a^{2}+b^{2}+c^{2})=9R^{2}-(2p^{2}-2r^{2}-8Rr)$ . Apply the theorem of $I$- median in $\triangle IHO$ $\Longrightarrow$

$4\cdot IK^{2}=2(IH^{2}+IO^{2})-HO^{2}$ $\Longrightarrow$ $4\cdot IK^{2}=(R-2r)^{2}$ . Thus, $H=2K-O\ ,\ G=\frac{1}{3}\cdot (2K+O)$ $\Longrightarrow$ $H\odot G=\frac{1}{3}\cdot (2K-O)\odot (2K+O)=$

$\frac{1}{3}\cdot (4\cdot K\odot K-O\odot O)=$ $\frac{1}{3}\cdot (4\cdot IK^{2}-IO^{2})$ . So, $H\odot G=\frac{1}{3}\cdot (4\cdot IK^{2}-IO^{2})=$ $\frac{1}{3}\left[(R-2r)^{2}-(R^{2}-2Rr)\right]=$ $\frac{1}{3}\cdot (4r^{2}-2Rr)=$ $-\frac{2}{3}\cdot r(R-2r)\le 0$ .

Thus $H\odot G\le 0$ $\Longrightarrow$ $\overrightarrow{IH}\odot \overrightarrow{IG}\le 0$, i.e. $m(\widehat{GIH})\ge 90^{\circ}\ .$



PP15. Let $\triangle ABC$ with incircle $I$ . Prove that $A=90^{\circ}\iff IA^2=(a-b)(a-c)\iff$ $IB^2=a(a-b)\iff$ $IC^2=a(a-c)\iff IB\cdot IC=IA\cdot BC$ .

Proof. Let $\{X,Y\}\subset (BC)$ so that $\left\{\begin{array}{ccc}
CX=CA=b & \implies & BX=a-b\\\\
BY=BA=c & \implies & CY=a-c\end{array}\right\|$ . Prove easily that $\left\{\begin{array}{c}
IX=IY=IA\\\\
m\left(\widehat{IXC}\right)=m\left(\widehat{IYB}\right)=45^{\circ}\end{array}\right\|$ , i.e. $\triangle XIY$ is an $A$-right isosceles and

$I$ is the circumcenter of $\triangle XAY$ . Thus, $\left\{\begin{array}{ccccccc}
\triangle BIX\sim\triangle BCI & \implies & \frac {BI}{BC}=\frac {BX}{BI} & \implies & BI^2=BX\cdot BC & \implies & \boxed{IB^2=a(a-b)}\\\\
\triangle CIY\sim\triangle CBI & \implies & \frac {CI}{CB}=\frac {CY}{CI} & \implies & CI^2=CY\cdot CB & \implies & \boxed{IC^2=a(a-c)}\end{array}\right\|$ and $\triangle IBX\sim\triangle CIY\implies$

$\frac {IB}{CI}=\frac {BX}{IY}=\frac {IX}{CY}\implies$ $IX\cdot IY=BX\cdot CY\implies \boxed{IA^2=(a-b)(a-c)}$ . Shortly, $BIX\sim BCI\sim ICY\ \iff\ \left\{\begin{array}{ccc}
IA^2 & = & (a-b)(a-c)\\\\
IB^2 & = & a(a-b)\\\\
IC^2 & = & c(a-c)\end{array}\right\|$ .

Remark. $(\forall )\ \triangle ABC$ there is the chain of the equalities $\boxed{\boxed{IA^2-(a-b)(a-c)=IB^2-a(a-b)=IC^2-a(a-c)=4Rr\cos A}}$ .



PP16. The point $C$ is a midpoint of $AB$ . Circle $o_1$ which passes through $A$ and $C$ intersect circle $o_2$ which passes through $B$ and $C$ in two different points $C$ and $D$ .

Point $P$ is midpoint of arc $AD$ of circle $o_1$ which doesn't contain $C$ . Point $Q$ is a midpoint of arc $BD$ of circle $o_2$ which doesn't contain $C$ . Prove that $PQ \perp CD$.


Here is a short metrical proof.

Lemma. Let $\triangle ABC$ with circumcircle $w$ and middlepoint $X$ of the arc $\stackrel{\frown}{BC}\subset w$ which doesn't contain vertex $A$. Then exists relation $XA^2-XB^2=bc\ .$

Proof 1. Let $D\in AX\cap BC$. Thus, $\triangle ABX\sim \triangle ADC\implies$ $AD\cdot AX=bc$ and $\triangle ABX\sim\triangle BDX\implies$ $XB^2=XA\cdot XD$.

Thus, $XA^2-XB^2=$ $XA^2-XA\cdot XD=$ $XA(XA-XD)=$ $AX\cdot AD=bc\ .$ Therefore, $XA^2-XB^2=bc\ .$

Proof 2. In $w=C(O,R)$ have $XA=2R\sin \left(B+\frac A2\right)$ and $XB=2R\sin \frac A2$. Thus, $XA^2-XB^2=$ $4R^2\left[\sin^2\left(B+\frac A2\right)-\sin^2\frac A2\right]=$ $4R^2\sin B\sin C=bc\ .$

Remark. If denote the middlepoint $Y$ of the arc $\stackrel{\frown}{BC}\subset w$ which contains the vertex $A$, then there is and the relation $YB^2-YA^2=bc$ because $AX^2+AY^2=$

$BX^2+BY^2=4R^2\ .$ In the proof of the lemma I used the relation $\sin^2x-\sin^2y=$ $\sin (x+y)\sin (x-y)$ and theorem of the Sinus.

Proof 3. Let $D\in BC\cap AX$and incircle $C(I,r)$. Hence $XA^2-XB^2=XA^2-XI^2=$ $(XA-XI)(XA+XI)=$

$IA(AX+IX)=$ $AI\cdot AX+\rho (I)=$ $2Rr+AX\cdot \frac{b+c}{2p}AD=$ $2Rr+\frac{bc(b+c)}{2p}=$ $2Rr+bc-\frac{abc}{2p}=$ $2Rr+bc-\frac{4RS}{2p}=$ $2Rr+bc-2Rr=bc\ .$

Remark.. I denoted the power $\rho (I)$ of $I$ w.r.t. circumcircle and I used the relations: $XB=XC=XI$ ,

$\rho (I)=2Rr$ , $\frac{IA}{b+c}=\frac{ID}{a}=\frac{AD}{2p}$, $AX\cdot AD=bc$ (from $\triangle ABX\sim\triangle ADC$), $abc=4RS$ and $S=pr\ .$

Proof 4. $XA^2-XB^2=\frac{b^2c^2}{AD^2}-\frac{a^2}{4\cos^2\frac A2}=$ $b^2c^2\cdot \frac{(b+c)^2}{4bcp(p-a)}-\frac{a^2bc}{4p(p-a)}=$ $\frac{bc\left[(b+c)^2-a^2\right]}{4p(p-a)}=bc\ .$

Remark. I used the relations $AX\cdot AD=bc$, $AD=\frac{2}{b+c}\cdot \sqrt{bcp(p-a)}$ and $\cos \frac A2=\sqrt{\frac{p(p-a)}{bc}}\ .$

Proof of the proposed problem. Apply the above lemma for $\triangle DAC$ and $\triangle CBD$ $\Longrightarrow$ $PC^2-PD^2=CD\cdot CA$

and $QC^2-QD^2=CD\cdot CB$. But $CA=CB$. Thus,
$PC^2-PD^2=QC^2-QD^2\Longleftrightarrow$ $PQ\perp CD\ .$


PP17 (Gustavo Jimmy Garcia Paytan). Let $A$-right $\triangle ABC$ with $B$-excircle $w_b=\mathbb C\left(I_b,r_b\right),$ and $C$-excircle $w_c=\mathbb C\left(I_c,r_c\right),$ incircles $\beta =\mathbb C\left(R,\rho_b\right)$ and

$\gamma =\mathbb C\left(L,\rho_c\right)$ of $\triangle AI_bC$ and $\triangle AI_cB$ respectively. Let $D\in BC,$ of $AD\perp BC$ and $\left\{\begin{array}{ccc}
M\in (DB) & ; & \widehat{MAD}\equiv\widehat{MAB}\\\\
N\in (DC) & ; & \widehat{NAD}\equiv\widehat{NAC}\end{array}\right\|$ . Prove that $\frac {MB}{NC}=\left(\frac {\rho_c}{\rho_b}\right)^2$ .


Proof. $\left\{\begin{array}{c}
m\left(\widehat{MAD}\right)=m\left(\widehat{MAB}\right)=\frac C2\\\\
m\left(\widehat{NAD}\right)=m\left(\widehat{NAC}\right)=\frac B2\end{array}\right\|$ $\implies \left\{\begin{array}{cc}
m\left(\widehat{MAC}\right)=m\left(\widehat{AMC}\right)=B+\frac C2\implies MC=AC=b\implies & MB=a-b\\\\
m\left(\widehat{NAB}\right)=m\left(\widehat{ANB}\right)=C+\frac B2 \implies NB=AB=c\implies & NC=a-c\end{array}\right\|\implies \boxed{\frac {MB}{NC}=\frac {a-b}{a-c}}\ (1)\ .$

$AI_cBMI$ and $AI_bCNI$ are cyclic and $\left\{\begin{array}{ccccccc}
m\left(\widehat{ACI_b}\right) & = & 45^{\circ}+\frac B2 & = & 90^{\circ}-\frac C2 & = & m\left(\widehat{AI_cB}\right)\\\\
m\left(\widehat{AI_bC}\right) & = & 45^{\circ}+\frac C2 & = & 90^{\circ}-\frac B2 & = & m\left(\widehat{ABI_c}\right)\end{array}\right\|$ $\implies$ $\triangle AI_bC\sim ABI_c$ , i.e. $\frac {\rho_c}{\rho_b}=\frac {BI_c}{CI_b}\ .$ Since $\left\{\begin{array}{ccc}
BI_c & = & BI\\\\
CI_b & = & CI\end{array}\right\|$

and $\frac {IB}{IC}=\frac {\sin\frac C2}{\sin\frac B2}\implies$ $\frac {\rho_c}{\rho_b}=\frac {\sin\frac C2}{\sin\frac B2}\implies$ $\left(\frac {\rho_c}{\rho_b}\right)^2=$ $\frac  {1-\cos C}{1-cos B}=$ $\frac {1-\frac ba}{1-\frac ca}\implies$ $\boxed{\left(\frac {\rho_c}{\rho_b}\right)^2=\frac {a-b}{a-c}}\ (2)\ .$ The relations $(1)$ and $(2)$ implies relation $\frac {MB}{NC}=\left(\frac {\rho_c}{\rho_b}\right)^2\ .$


Remark. Otherwise can apply the well-known identities in $\triangle ABC\ :\ r=4R\sin\frac A2\sin\frac B2\sin\frac C2\ ;\ a=$ $r\left(\cot\frac B2+\cot\frac C2\right)\ ;\ h_a=\frac {a\sin B\sin C}{\sin A}$ .


PP18. Let $\triangle ABC$ and an its interior $P$ so that $AB=AP=PC$ and $2\cdot m\left(\widehat {PAC}\right)+3\cdot m\left(\widehat{PCB}\right)=B$ . Prove that $C=30^{\circ}$ and $m\left(\widehat {PAC}\right)=90^{\circ}-B$ .

Proof. Let $\left\{\begin{array}{c}
m\left(\widehat {PAC}\right)=x\\\
m\left(\widehat {PCB}\right)=y\\\
m\left(\widehat {PBC}\right)=z\end{array}\right\|$ and $S\in BP\cap BC$ . So $\boxed{B=2x+3y}\ (*)$ . Thus, $\left\{\begin{array}{c}
m\left(\widehat {ABP}\right)=B-z\\\
m\left(\widehat {CPS}\right)=y+z\end{array}\right\|$ and $PA=PC\iff$

$m\left(\widehat {PCA}\right)=x\implies$ $\left\{\begin{array}{c}
m\left(\widehat {PSA}\right)=x+y+z\\\
m\left(\widehat {APB}\right)=2x+y+z\end{array}\right\|$ . Hence $AB=AP\implies \widehat {APB}\equiv\widehat {ABP}\implies$ $2x+y+z=B-z\ \stackrel{(*)}{\implies}$

$2x+y+z=$ $(2x+3y)-z \implies$ $ \boxed{z=y=30^{\circ}-x}\ ,\ \triangle APB$ is equilateral $\implies$ $C=30^{\circ}$ and $m\left(\widehat {PAC}\right)=90^{\circ}-B$ .



PP19. Let $\triangle ABC$ and for $P\in\mathrm{int}(ABC)$ let the cevian $\triangle DEF$ , where $\left\{\begin{array}{ccc}
D & \in & (BC)\\\\
E & \in & (CA)\\\\
F & \in & (AB)\end{array}\right\|$ . Prove that $\frac 1{[BDF]}+\frac 2{[DEF]}=\frac 1{[DEFP]}+\frac 2{[BDPF]}$ .

Proof. Let $Q\in BE\cap DF\ .$ Is well-known that the division $(B,Q,P,E)$ is harmonically, i.e. $\boxed{\frac {QB}{QP}=\frac {EB}{EP}}\ (*)$ and $\frac {QB}{QP}=\frac {EB}{EP}\iff \boxed{\frac {PB}{PE}=2\cdot\frac {QB}{QE}}\ (1)$ .

Let $\left\{\begin{array}{ccc}
b & = & [BDF]\\\\
m & = & [DEF]\\\\
s & = & [DFP]\end{array}\right\|$ . Thus, $\frac 1{[BDF]}+\frac 2{[DEF]}=\frac 1{[DEFP]}+\frac 2{[BDPF]}\iff$ $\frac 1b+\frac 2m=\frac 1{m-s}+\frac 2{b+s}\iff$ $\frac 1b-\frac 1{m-s}=2\left(\frac 1{b+s}-\frac 1m\right)\iff$

$\frac {m-s-b}{b(m-s)}=\frac {2(m-b-s)}{m(b+s)}\ \stackrel{(b+s\ne m)}{\iff}\ 2b(m-s)=m(b+s)\iff$ $mb=ms+2bs\iff\frac bs=1+\frac {2b}m\iff$ $\frac {[BDF]}{[DFP]}=1+2\cdot \frac {[BDF]}{[DEF]}\iff$

$\boxed{\frac {QB}{QP}=1+2\cdot\frac {QB}{QE}}\ \stackrel{(*)}{\iff}\  \frac {EB}{EP}=1+2\cdot \frac {QB}{QE}\iff $ $\boxed{\frac {PB}{PE}=2\cdot\frac {QB}{QE}}$ what is the relation $(1)$ . Otherwise. $\boxed{\frac {QB}{QP}=1+2\cdot\frac {QB}{QE}}\iff$

$\frac {QB}{QP}=\frac {QB}{QE}+\frac {EB}{EQ}\iff$ $QB\cdot \left(\frac 1{QP}-\frac 1{QE}\right)=\frac {EB}{EQ}\iff$ $\frac {QB\cdot PE}{QP\cdot QE}=\frac {EB}{EQ}\iff$ $\boxed{\frac {QB}{QP}=\frac {EB}{EP}}$ what is the relation $(*)$ . See
here
This post has been edited 284 times. Last edited by Virgil Nicula, Jun 28, 2017, 5:39 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404398
  • Total comments: 37
Search Blog
a