380. Functions. Range. Bijection and inverse.

by Virgil Nicula, Jul 17, 2013, 2:16 AM

PP1. The equation $f_a(x)\equiv x^{2}+(a+2)x+a^{2}-a+2=0\ (*)$ has real roots, where $a\in\mathbb R^*$ . Find the range of these roots.

Proof. $r$ is a root of $(*)\iff$ $f_a(r)=\underline r^{2}+(a+2)\underline r+a^{2}-a+2=0$ , i.e. $\underline a^2+(r-1)\cdot \underline a+\left(r^2+2r+2\right)=0$ .

$\blacktriangleright\ r\in\mathbb R\iff$ $\Delta_r' (a)\equiv (a+2)^2-4\left(a^2-a+2\right)\ge 0\iff$ $3a^2-8a+4\le 0\iff$ $a\in\left[\frac 23,2\right]$ .

$\blacktriangleright\ a\in\mathbb R^*\iff$ $\Delta_a^{\prime}(r)\equiv (r-1)^2-4\left(r^2+2r+2\right)\ge 0\iff$ $3r^2+10r+7\le 0\iff$ $\boxed{\ r\in\left[-\frac 73,-1\right]\ }$ .



PP2. Determine the real values of the parameter $m$ so that inequality $mx^2 + (m + 1)x + m -1 > 0$ hasn't real solutions.

Proof. Observe that $mx^2 + (m + 1)x + m -1 >0 \iff$ $f(x)<m$ , where $f(x)=\frac {1-x}{x^2+x+1}$ . Prove easily that the range of $f$ is $ \Im (f)=\left[1-\frac 2{\sqrt 3} ,1+\frac 2{\sqrt 3}\right]$ .

Therefore, the inequality $mx^2 + (m + 1)x + m -1 > 0$ hasn't real solutions $\iff$ the inequality $f(x)<m$ hasn't real solutions $\iff$ $\Im (f)\subset (m,\infty)$ , i.e. $\boxed{m<1-\frac 2{\sqrt 3}}$ .


PP3. (College Entrance Examination (China Liaoning 2013). Suppose that $(1+x)e^{-2x}\ge ax+\frac{x^3}{2}+1+2x\cos x\ ,\ \forall\ x\in[0,1]$ . Find the range of real number $a$ .

Proof. Suppose w.l.o.g. that $x\in (0,1]$ . Thus , $(1 +x)e^{-2x} \ge ax + \frac{1}{2}x^3 + 1 + 2x\cos x\ \ (\forall )\  x \in [0,1]\iff$ $a \le \inf_{0<x\le 1}f(x)$ ,

where $\boxed{f(x)=\left(1 +\frac 1x\right)e^{-2x} - \frac 12x^2 - \frac 12 - 2\cos x}$ Thus, $\boxed{f'(x) = \frac{1}{x^2}\cdot [g(x)+h(x)]}$ , where $g(x) = -(2x^2+2x+1)e^{-2x}\ ,\ h(x)=2x^2\sin x - x^3 + 1\implies$

$g'(x)=4x^2e^{-2x}\ ,\ h'(x) =$ $ 4x\sin x + 2x^2\cos x - 3x^2$. Obviously $g'(x)>0$ and $g(0)=0\implies$ $\boxed{g(x)>0\ ,\ (\forall )\ x\in (0,1]}$ . I"ll show that $h'(x)>0$, which isn't so obvious.

Indeed, $\left\{\begin{array}{ccc}
\frac {\sin x}{x}>\frac 2{\pi} & \implies & \frac {4\sin x}{x}>\frac8{\pi}\\\\
x\le 1<\frac {\pi}{3} & \implies & 2\cos x-3>-2\end{array}\right\|\ \bigoplus\ \implies $ $\frac {h'(x)}{x^2}=$ $\frac {4\sin x}{x}+2\cos x-3>\frac {8}{\pi}-2=\frac {2(4-\pi)}{\pi}>0\implies$ $ h'(x)>0$ .Thus, $h'(x)>0$

and $h(0)=0\implies$ $\boxed{h(x)>0\ ,\ (\forall )\ x\in (0,1]}$ . Hence, $f'(x)>0\ ,\ (\forall )x\in (0,1]$ . Observe that $\lim_{x\searrow 0}f(x)=1+\lim_{x\searrow 0}\frac {e^{-2x}-1}{x}-2=1-2-2=-3$ .

Since $f$ is increasing obtain that $\inf_{0<x\le 1}f(x)=-3$ , i.e. $a\le -3$ .



PP4. Prove that the function $f:\mathbb R\rightarrow\mathbb R$ , where $f(x)=x-2\{ x \}$ is invertibly.

Proof. I"ll show $(\forall )\ y\in\mathbb R\ (\exists )$ one and only one $x\in\mathbb R$ so that $f(x)=y$ . Let the quation $f(x)=y$ with parameter $y$ , i.e. $x-2\{x\}=y\iff$ $x-2\left(x-[x]\right)=y\iff$

$\boxed{x=2[x]-y}\ (*)$ and $[x]\le x<[x]+1\iff$ $[x]\le 2[x]-y<[x]+1$ $\iff$ $\boxed{y\le [x]<y+1}\ (1)$ . Since $[x]\in\mathbb Z$ obtain $[x]=\left\{\begin{array}{ccc}
[y+1] & \mathrm{if} & y\not\in\mathbb Z\\\\
y & \mathrm{if} & y\in\mathbb Z\end{array}\right\|$ and

$x\stackrel{(*)}{=}\left\{\begin{array}{ccc}
2[y+1]-y & \mathrm{if} & y\not\in\mathbb Z\\\\
y & \mathrm{if} & y\in\mathbb Z\end{array}\right\|$ $\implies$ $x\stackrel{(*)}{=}\left\{\begin{array}{ccc}
y-2\{y\}+2 & \mathrm{if} & y\not\in\mathbb Z\\\\
y & \mathrm{if} & y\in\mathbb Z\end{array}\right\|$ . Hence $f$ is a bijectively and its inverse is $f^{-1}(x)=\left\{\begin{array}{ccc}
x-2\{x\}+2 & \mathrm{if} & x\not\in\mathbb Z\\\\
x & \mathrm{if} & x\in\mathbb Z\end{array}\right\|$ .



PP5. Let $z\in\mathbb C^*$ be a complex number such that $\left|2z +\frac{1}{z}\right|=1$ and $\arg (z) =\theta$ . Ascertain the minimum value of $8\cdot \sin^2\theta$ .

Proof. Denote $z=\rho\cdot (\cos\theta +i\cdot \sin\theta )$ , where $\rho >0$ and $\theta\in \left[0,2\pi\right)$ . Thus, $z\cdot\overline z=\rho^2$ , $z+\overline z=2\rho\cos\theta$ and $z^2+\overline z^2=(z+\overline z )^2-2z\cdot\overline z=$

$4\rho^2\left(1-\sin^2\theta \right)-2\rho^2\implies$ $z^2+\overline z^2=2\rho^2-4\rho^2\sin^2\theta$ . Hence $\left|2z +\frac{1}{z}\right|=1\iff$ $\left|2z^2+1\right|=|z|\iff$ $\left(2z^2+1\right)\left(2\overline z^2+1\right)=z\overline z\iff$

$4\left(z\overline z\right)^2+2\left(z^2+\overline z^2\right)+1=z\overline z\iff$ $4\rho^4+2\left(2\rho^2-4\rho^2\sin^2\theta\right)+1=\rho^2\iff$ $8\sin^2\theta =\frac {4\rho^4+3\rho^2+1}{\rho^2}=$ $4\rho^2+\frac {1}{\rho^2}+3\ge 4+3=7$ .

Remark. $\left|2z+\frac 1z\right|=1\iff\left(2z+\frac{1}{z}\right)\left(2\overline{z}+\frac{1}{\overline{z}}\right)=1\iff$ $4|z|^{2}+\frac{1}{|z|^{2}}+2\left(\frac{z}{\overline{z}}+\frac{\overline{z}}{z}\right)=1\iff$

$4|z|^{2}+\frac{1}{|z|^{2}}+4\cos 2\theta =1$ $\Longrightarrow$ $1-4\cos 2\theta\geq 4$ by AM-GM inequality $\iff$ $4\left(1-2\sin^2\theta\right)\le -3\iff$ $8\sin^{2}\theta\geq 7$ .



An easy extension. Let $z\in\mathbb C^*$ be a complex number such that $\left|az +\frac{b}{z}\right|=1$ and $\arg (z) =\theta$ ,

where $\{a,b\}\subset\mathbb R^*$ and $ab>\frac 14$ . Ascertain the maximum of $|z|$ and prove that $\cos^2\theta\le\frac {1}{4ab}$ .


Remark. Suppose $\{a,b,c\}\subset\mathbb R$ , where $a>0$ and $b>0$ . Observe that if denote $|z|=\rho$ , then $\left|az^2+b\right|=|z+c|\iff$ $\left(az^2+b\right)\left(a\overline z^2+b\right)=$

$(z+c)\left(\overline z+c\right)\iff$ $a^2\rho^4+ab\left[\left(z+\overline z\right)^2-2\rho^2\right]+b^2=$ $\rho^2+c\left(z+\overline z\right)+c^2\iff$ $a^2\rho^4-\left(2ab+1\right)\rho^2+ab\left(z+\overline z\right)^2-c\left(z+\overline z\right)=$ $c^2-b^2\iff$

$\left(a\rho^2-\frac {2ab+1}{2a}\right)^2+\left[\sqrt {ab}\cdot\left(z+\overline z\right)-\frac {c}{2\sqrt {ab}}\right]^2=$ $c^2-b^2+\left(\frac {2ab+1}{2a}\right)^2+\frac {c^2}{4ab}\implies$ $\left\{\begin{array}{c}
\left|a\rho^2-\frac {2ab+1}{2a}\right|\le\sqrt{c^2-b^2+\left(\frac {2ab+1}{2a}\right)^2+\frac {c^2}{4ab}}\\\\
\left|\sqrt {ab}\cdot\left(z+\overline z\right)-\frac {c}{2\sqrt {ab}}\right|\le \sqrt{c^2-b^2+\left(\frac {2ab+1}{2a}\right)^2+\frac {c^2}{4ab}}\end{array}\right\|$ .

Some examples. Let $z\in\mathbb C^*$ be a complex number with $\rho=|z|$ and $\mathrm{Re}(z)=\frac 12\cdot\left(z+\overline z\right)$ . Ascertain the maximum for $\rho$ and for $\mathrm{Re}(z)$ , where :

$1\blacktriangleright\ \left|z^2+1\right|=a|z|\ ;\ \ 2\blacktriangleright\ \left|z^2+1\right|=$ $|z-1|\ ;\ \ 3\blacktriangleright\ \left|z^2+1\right|=|4z+3|\ ;\ \ 4\blacktriangleright\ \left|z^2+1\right|=2\cdot |z+1|\ .$
(CCLVII)
This post has been edited 29 times. Last edited by Virgil Nicula, Nov 26, 2015, 12:05 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a