312. Very nice (famous trigonometrical problems) !

by Virgil Nicula, Aug 17, 2011, 4:55 PM

Very Nice ! (famous problem).

$\left\{\begin{array}{c}
4 \sin\frac{2\pi }{11} + \tan\frac{3\pi }{11}= \sqrt {11}\\\\
4 \sin\frac{4\pi }{11}- \tan\frac{2\pi }{11}= \sqrt {11}\\\\
4 \sin\frac{3\pi }{11} + \tan\frac{ \pi }{11} = \sqrt {11}\\\\
4 \sin\frac{\pi }{11} + \tan\frac{4\pi }{11} = \sqrt {11}\\\\
4 \sin\frac{4\pi }{11}- \tan\frac{5\pi }{11}= - \sqrt {11}\end{array}\right|\ \ \ \wedge\ \ \left\{\begin{array}{c}
32 \sin\frac{\pi }{11}\sin\frac{2\pi }{11}\sin\frac{3\pi }{11}\sin\frac{4\pi }{11}\sin\frac{5\pi }{11} = \sqrt {11}\\\\
32 \cos\frac{\pi }{11}\cos\frac{2\pi }{11}\cos\frac{3\pi }{11}\cos\frac{4\pi }{11}\cos\frac{5\pi }{11}=1\\\\
\tan\frac{\pi }{11}\tan\frac{2\pi }{11}\tan\frac{3\pi }{11}\tan\frac{4\pi }{11}\tan\frac{5\pi }{11}= \sqrt {11}\end{array}\right|$ . Proofs of above can be seen at
here.


PP1. Prove that $\sin\frac{3\pi}7\cdot \sin\frac{2\pi}7\cdot \sin\frac{\pi}7=\frac {\sqrt 7}8$ and $\sin^2\frac{\pi}7+\sin^2\frac{2\pi}7+\sin^2\frac{3\pi}7=\frac 74$ .

Proof. Writing $x=\sin u$ , it's classical and easy to establish that $\sin 7u=x(7-56x^2+112x^4-64x^6)$ . Let then $P(x)=64x^3-112x^2+56x-7$ .

So the only possible roots of equation $xP(x^2)=0$ are in $\left|\left|\sin\frac{k\pi}7\right|k\in\mathbb Z\right|$ . $P(x)$ has three distinct real roots and so these roots can only be $\sin^2\frac{\pi}7$ , $\sin^2\frac{2\pi}7$

and $\sin^2\frac{3\pi}7$ . So $\sin^2\frac{\pi}7$ $\sin^2\frac{2\pi}7$ $\sin^2\frac{3\pi}7$ $=\frac 7{64}$ . And $\boxed{8\sin\frac{\pi}7\sin\frac{2\pi}7\sin\frac{3\pi}7=\sqrt 7}$ (since this product is $>0$) . Prove easily that $\boxed{8\cos\frac{\pi}7\cos\frac{2\pi}7\cos\frac{3\pi}7=1}$ .

$\sin^2\frac{\pi}7+\sin^2\frac{2\pi}7+\sin^2\frac{3\pi}7=$ $\frac{1-\cos\frac{2\pi}7}2+\sin^2\frac{2\pi}7+ \frac{1-\cos\frac{6\pi}7}2=$ $\frac{2-2\cos\frac{4\pi}7\cos\frac{2\pi}7}2+\sin^2\frac{2\pi}7=$ $1-\cos\frac{4\pi}7\cos\frac{2\pi}7+1-\cos^2\frac{2\pi}7=$

$2-\cos\frac{2\pi}7\left(\cos\frac{4\pi}7+\cos\frac{2\pi}7\right)=$ $2-2\cos\frac{2\pi}7\cos\frac{\pi}7\cos\frac{3\pi}7=$ $2+2\cos\frac{2\pi}7\cos\frac{\pi}7\cos\frac{4\pi}7=$ $2+\frac{\sin\frac{8\pi}7}{4\sin\frac{\pi}7}=$ $2-\frac{1}{4}\implies$ $\boxed{\sin^2\frac{\pi}7+\sin^2\frac{2\pi}7+\sin^2\frac{3\pi}7=\frac{7}{4}}$ .


PP2. Find all $m$ and $n$ from $\mathbb N^*$ such that $1^2+ 2^2 + 3^2 \mathellipsis + m^2 = n^2$ .

Answer. How nice ... centuries of history of this cannonball problem (attributed to Kepler) down the drain.

See
here (<== click) for a history of the fact that the only non-trivial solution is $m=24$ and $n=70$ .


PP3. Find the value of $\tan ^{ 2 }{ \frac { \pi  }{ 11 }  } +\tan ^{ 2 }{ \frac { 2\pi  }{ 11 }  } +\tan ^{ 2 }{ \frac { 3\pi  }{ 11 }  } +\tan ^{ 2 }{ \frac { 4\pi  }{ 11 }  } +\tan ^{ 2 }{ \frac { 5\pi  }{ 11 }  } $ .

Proof. $z_k = \cos \frac{2k\pi}{11} + \text i \cdot \sin \frac{2k\pi}{11}$, where $k = 1, 2, ..., 11$ are complex roots of $z^{11} - 1 = (z - 1) \cdot (z^{10} + z^9 + z^8 + z^7 + z^6 + z^5 + z^4 + z^3 + z^2 + z + 1) = 0\implies$

$(z - 1) \cdot z^5 \cdot \left(z^5 + z^4 + z^3 + z^2 + z + 1 + \frac{1}{z} + \frac{1}{z^2} + \frac{1}{z^3} + \frac{1}{z^4} + \frac{1}{z^5}\right) = 0$ . Let $z_k+\frac{1}{z_k} = 2\cos  \frac{2k\pi}{11} = x_k$ , where $k = 1, 2, ..., 5$ . Denote $\boxed{z+\frac{1}{z}= x}$ . Therefore,

$\left\{\begin{array}{ccc}
z^2+\frac{1}{z^2} & = & x^2-2\\\\
z^3+\frac{1}{z^3} & = & x^3-3x\\\\
z^4+\frac{1}{z^4} & = & x^4 - 4x^2 + 2\\\\
z^5+\frac{1}{z^5} & = &  x^5-5x^3+5x\end{array}\right|\implies$ $1+\sum_{k=1}^5\left(z^k +\frac{1}{z^k}\right)=$ $(x^5-5x^3+5x) + (x^4 - 4x^2 + 2) + (x^3-3x) + (x^2-2) + x + 1 =$ $x^5 + x^4 - 4x^3 - 3x^2 + 3x + 1 = $

$\sum_{k=0}^5 a_kx^k = 0$ . Therefore, $5 + \sum_{k=1}^{5}\tan^2\frac{k\pi}{11} = $ $\sum_{k=1}^{5}\frac{1}{\cos^2\frac{k\pi}{11}} =$ $ \sum_{k=1}^{5}\frac{2}{1 +\cos\frac{2k\pi}{11}} = $ $\frac{2 \cdot \sum_{k=1}^{5} \prod_{k=1, k \ne j}^5 (1 + \cos\frac{2k\pi}{11})}{\prod_{k=1}^5 (1 + \cos\frac{2k\pi}{11})} = $ $2 \cdot \frac{2 \cdot \sum_{k=1}^{5} \prod_{k=1, k \ne j}^5 (2 + x_k)}{\prod_{k=1}^5 (2 + x_k)} =$

$2 \cdot \frac{\sum_{k=1}^{5} (-1)^{k+1} \cdot k \cdot 2^k \cdot a_k}{\sum_{k=0}^5 (-1)^{k+1} \cdot 2^k \cdot a_k} =$ $2 \cdot \frac{5 \cdot 2^5 \cdot a_5 - 4 \cdot 2^4 \cdot a_4 + 3 \cdot 2^3 \cdot a_3  - 2 \cdot 2^2 \cdot a_2 + 1 \cdot 2^1 \cdot a_1 }{2^5 \cdot a_5 - 2^4 \cdot a_4 + 2^3 \cdot a_3 - 2^2 \cdot a_2 + 2^1 \cdot a_1 - 2^0 \cdot a_0 + } = $ $2 \cdot \frac{160 - 64 - 96 + 24 + 6}{32 - 16 - 32 + 12 + 6 - 1} = $ $\frac{2 \cdot 30}{1} = 60$ $\Longrightarrow$

$\boxed{\sum_{k=1}^{5}\tan^2\frac{k\pi}{11} = 55}\ .$



PP4. Solve the equations $\left\|\begin{array}{cc}
1\blacktriangleright & \tan^{2}x\cot^{2}2x\cot 3x=\tan^{2}x-\cot^{2}2x+\cot 3x\\\\
2\blacktriangleright & 2(\tan x-\sin x)+3(\cot x-\cos x)+5=0\end{array}\right\|$ .

Proof.

$1\blacktriangleright$ Observe that $\cos x\ne 0\ ,\ \sin 2x\ne 0\ ,\ \sin 3x\ne 0$ . Therefore, $\tan^{2}x\cot^{2}2x\cot 3x=\tan^{2}x-\cot^{2}2x+\cot 3x\iff$

$\left(1-\tan^2x\cot^22x\right)\cot 3x=\cot^22x-\tan^2x\iff$ $\tan 3x=\frac {1-\tan^2x\cot^22x}{\cot^22x-\tan^2x}\iff$ $\tan 3x=\frac {\tan^22x-\tan^2x}{1-\tan^2\tan^22x}$ . Thus,

$\tan 3x=\frac {\tan 2x-\tan x}{1+\tan2x\tan x}\cdot\frac {\tan 2x+\tan x}{1-\tan 2x\tan x}\iff$ $\boxed{\tan 3x=\tan x\tan 3x}\iff$ $\tan x=1$ or $\tan 3x=0$ .

$2\blacktriangleright$ Observe that $\sin x\cos x\ne 0$ , i.e. $\sin 2x\ne 0$ . Therefore, $2(\tan x-\sin x)+3(\cot x-\cos x)+5=0\iff$ $2(\tan x-\sin x+1)+3(\cot x-\cos x+1)=0\iff$

$\frac 2{\cos x}\cdot (\sin x-\sin x\cos x+\cos x)+\frac 3{\sin x}\cdot (\cos x-\cos x\sin x+\sin x)=0\iff$ $\boxed{(2\sin x+3\cos x)(\sin x+\cos x-\sin x\cos x)=0}\ (1)\iff$

$\tan x=-\frac 32\ \vee\ \sin x+\cos x=1-\sqrt 2$ . Remark that in the equation $\sin x+\cos x-\sin x\cos x=0$ I used the substitution $\sin x+\cos x=y\in\left[-\sqrt 2,\sqrt 2\right]$ . Thus,

$\sin x+\cos x=\sin x\cos x\iff$ $y=\frac {y^2-1}{2}\iff$ $y^2-2y-1=0\iff$ $y\in \left\{1\pm\sqrt 2\right\}\implies y=1-\sqrt 2$ .

Other proof. I"ll use the standard substitution $\tan\frac x2=t\ :$ $2(\tan x-\sin x)+3(\cot x-\cos x)+5=0\iff$

$2\left(\frac {2t}{1-t^2}-\frac {2t}{1+t^2}\right)+3\left(\frac {1-t^2}{2t}-\frac {1-t^2}{1+t^2}\right)+5=0\iff$ $16t^4+3\left(1-t^2\right)^2(1-t)^2+10t\left(1-t^2\right)\left(1+t^2\right)=0\iff$

$3t^6-16t^5+13t^4+12t^3-3t^2+4t+3=0\iff$ $\boxed{\left(3t^2-4t-3\right)\left(t^4-4t^3-1\right)=0}\ (2)\ \iff$

$\left(3t^2-4t-3\right)\left[\left(t^2\sqrt 2-t\sqrt 2\right)^2-\left(t^2+1\right)^2\right]=0\iff$ $\left(3t^2-4t-3\right)\left[\left(1+\sqrt 2\right)t^2-t\sqrt 2+1\right]\left[\left(\sqrt 2-1\right)t^2-t\sqrt 2-1\right]=0\iff$

$\boxed{\left(3t^2-4t-3\right)\left[\left(\sqrt 2-1\right)t^2-t\sqrt 2-1\right]=0}$ because the second equation $\left(1+\sqrt 2\right)t^2-t\sqrt 2+1=0$ has $\Delta <0$ .

Remark. I'll verify that with these two methods obtain same solutions. Indeed, with the substitution $\tan\frac x2=t$

the equation (1) becomes $\left(2\cdot\frac {2t}{1+t^2}+3\cdot\frac {1-t^2}{1+t^2}\right )\left[\frac {2t}{1+t^2}+\frac {1-t^2}{1+t^2}-\frac {2t\left(1-t^2\right)}{\left(1+t^2\right)^2}\right]=0\iff$

$\left(-3t^2+4t+3\right)\left[\left(1+2t-t^2\right)\left(1+t^2\right)+2t\left(t^2-1\right)\right]=0\iff$ $\left(3t^2-4t-3\right)\left(t^4-4t^3-1\right)=0$ , i.e. the relation $(2)$ .


An easy extension. Solve the equations $\left\|\begin{array}{cc}
1\blacktriangleright & \tan^{2}nx\cot^{2}mx\cot (m+n)x=\tan^{2}nx-\cot^{2}mx+\cot (m+n)x\\\\
2\blacktriangleright & m(\tan x+a\cdot\sin x)+n(\cot x+a\cdot\cos x)+(m+n)=0\end{array}\right\|$ ,where $\{m,n,a\}\subset\mathbb Z^*$ .


PP5. Ascertain $r\in\mathbb R$ so that $\arctan\frac 13+\arctan\frac 14+\arctan\frac 15+\arctan r+\frac{\pi}{4}=0\ (*)$ .

Proof 1. Denote $a=\arctan\frac 13+\arctan\frac 14$ and $b=\frac{\pi}{4}+\arctan \frac 15$ . Observe that:

$\blacktriangleright\ \tan a=\tan\left(\arctan\frac 13+\arctan\frac 14\right)=\frac {\frac 13+\frac 14}{1-\frac 13\cdot\frac 14}=$ $\frac {7}{11}\implies$ $a=\arctan\frac 13+\arctan\frac 14=\arctan \frac {7}{11}$ .

$\blacktriangleright\ \tan b=\tan\left(\frac{\pi}{4}+\arctan \frac 15\right)=$ $\frac {1+\frac 15}{1-\frac 15}=$ $\frac 64=\frac 32\implies$ $b=\frac{\pi}{4}+\arctan\frac 15=\arctan\frac 32$ .

$\blacktriangleright\ \tan (a+b)=\tan\left(\arctan \frac {7}{11}+\arctan\frac 32\right)=$ $\frac {\frac {7}{11}+\frac 32}{1-\frac {7}{11}\cdot\frac 32}=47$ $\implies$ $a+b=\arctan \frac 13+\arctan\frac 14+\arctan\frac 15+\frac{\pi}{4}=\arctan 47$ .

Thus, the relation $(*)$ is equivalently with $(a+b)+\arctan r=0\iff$ $\arctan 47+\arctan r=0\iff \arctan 47=\arctan (-r)\implies$ $\boxed{r=-47}$ .

Proof 2 (with complex numbers). Consider the complex numbers $\left\{\begin{array}{ccccc}
a=3+i & ; & \arg (a) & = & \arctan \frac 13\\\\
b=4+i & ; & \arg (b) & = & \arctan \frac 14\\\\
c=5+i & ; & \arg (c) & = & \arctan\frac 15\\\\
d=1+i & ; & \arg (d) & = & \frac {\pi}{4}\\\\
e=1+ri & ; & \arg (e) & = & \arctan r\end{array}\right|$ .

Observe that $\arctan\frac 13+\arctan\frac 14+\arctan\frac 15+\arctan r+\frac{\pi}{4}\in\{0,\pi\}\iff$ $z\equiv abcde\in\mathbb R$ .

Since $z=ab\cdot cd\cdot e=(11+7i)(4+6i)(1+ri)=(2+94i)(1+ri)$ then $z\in\mathbb R\iff$ $2r+94=0\iff r=-47$ .



PP6. Let $\triangle ABC$ with $\left\{\begin{array}{ccc}
A & = & \phi\\\\
B & = & 2\phi\\\\
C & = & 4\phi\end{array}\right\|$ , where $\phi=\frac {\pi}7$ . Prove that $\frac {a^2}{c^2}+\frac {c^2}{b^2}+\frac {b^2}{a^2}=5\ .$

Proof 1. Prove easily that $\left\{\begin{array}{cc}
 C=2B\iff c^2=b(b+a) & (1)\\\\
B=2A\iff b^2=a(a+c) & (2)\end{array}\right\|$ . Observe that $\boxed{c^2-a^2=a(b+c)}\ (3)$ and $\left\{\begin{array}{ccc}
\frac ca=\frac {\sin 3\phi}{\sin \phi} & \implies & \frac ca=1+2\cos 2\phi\\\\
\frac cb=\frac {\sin 4\phi}{\sin 2\phi} & \implies & \frac cb =2\cos 2\phi\end{array}\right\|\implies$

$a(b+c)=bc\implies$ $\boxed{\frac 1b+\frac 1c=\frac 1a}\ (*)\ \implies$ $\boxed{c^2=a^2+bc}\ (4)\ .$ Therefore, $\frac {a^2}{c^2}+\frac {c^2}{b^2}+\frac {b^2}{a^2}=5\ \stackrel{1\wedge 2\wedge 4}{\iff}\ \left(1-\frac bc\right)+ $ $\left(1+\frac ab\right)+\left(1+\frac ca\right)=5\iff$

$\boxed{\frac ab+\frac ca=2+\frac bc}\ (5)\iff$ $\frac {c-a}a+\frac ab=\frac {b+c}c\iff$ $\frac {\sin 3\phi -\sin \phi}{\sin \phi}+\frac {\sin\phi}{\sin 2\phi}=\frac {\sin 2\phi +\sin 4\phi}{\sin 4\phi}\iff$ $2\cos 2\phi +\frac 1{2\cos\phi}=2\cos \phi\iff$

$4\cos\phi \cos 2\phi +1=4\cos^2\phi\iff$ $2(\cos 3\phi +\cos\phi )+1=2(1+\cos 2\phi )\iff$ $\boxed{\cos\phi -\cos 2\phi +\cos 3\phi =\frac 12}\ (6)\iff$

$2\sin\phi\cos\phi -2\sin\phi\cos 2\phi +2\sin\phi\cos 3\phi =\sin\phi\iff$ $\sin 2\phi -(\sin 3\phi -\sin\phi )+(\sin 4\phi -\sin 2\phi )=\sin\phi$ what is truly.

Proof 2. $\left\{\begin{array}{cc}
 C=2B\iff c^2=b(b+a) & (1)\\\\
B=2A\iff b^2=a(a+c) & (2)\end{array}\right\|\implies \boxed{c^2=a^2+a(b+c)}\ (3)$ and $\left\{\begin{array}{c}
\frac ca=\frac {\sin 3\phi}{\sin \phi}\implies\frac ca=1+2\cos 2\phi\\\\
\frac cb=\frac {\sin 4\phi}{\sin 2\phi}\implies\frac cb =2\cos 2\phi\end{array}\right\|\implies$ $\frac ca=1+\frac cb\iff$ $\boxed{a(b+c)=bc}\ (*)\ .$

$\boxed{\cos\phi -\cos 2\phi +\cos 3\phi =\frac 12}$ is well-known or we can prove easily if multiply it with $2\sin\phi\ .$ Therefore, $\cos\phi -\cos 2\phi +\cos 3\phi =\frac 12\iff$ $\frac {\sin 2\phi}{2\sin\phi}-\frac {\sin 4\phi}{2\sin 2\phi}+\frac {\sin\phi}{2\sin 3\phi}=\frac 12$

$\iff$ $\boxed{\frac ba-\frac cb+\frac ac=1}\ (4)\ \iff$ $\left(\frac ba-\frac cb+\frac ac\right)^2=1\iff$ $\frac {a^2}{c^2}+\frac {c^2}{b^2}+\frac {b^2}{a^2}=$ $1+2\left(\frac ca+\frac ab-\frac bc\right)$ . In conclusion, $\frac {a^2}{c^2}+\frac {c^2}{b^2}+\frac {b^2}{a^2}=5\iff$ $\frac ca+\frac ab-\frac bc=2\iff$

$c\left(a^2+bc\right)=ab(2c+b)\iff$ $\frac ab+\frac ca=2+\frac bc\ \stackrel{\odot c}{\iff}\ \frac {ac}b+\frac {c^2}a=2c+b\ \stackrel{(3)}{\iff}$ $\frac {ac}b+a+(b+c)=2c+b\iff$ $\frac {ac}b+a=c\iff$ $\frac 1b+\frac 1c=\frac 1a$ , i.e. the true relation $(*)\ .$

Proof 3. Let $P\in AC$ so that $BP\perp AC$ and $\{R,S\}\subset AC$ so that $P$ is the common midpoint of $[CR]$ , $[AS]$ . Therefore,

$\odot \begin{array}{cccccccccc}
\nearrow & RBC\sim RAB & \implies & \frac {RB}{RA}=\frac {RC}{RB} & \implies & \frac ac=\frac {c-b}a & \implies & c^2=a^2+bc & (1) & \searrow\\\\
\searrow & \frac {AB}{AS}=\frac {\sin\phi}{\sin 5\phi} & = & \frac {\sin \phi}{\sin 2\phi}=\frac {CB}{CA} & \implies & \frac c{b+c}=\frac ab & \implies & bc=a(b+c) & (2) & \nearrow\end{array}\odot$ $\implies c^2=a^2+a(b+c)\ (3)\ .$ Hence

$\frac {a^2+bc}{ac}\ \stackrel{(1)}{=}\ \frac {c^2}{ac}=\frac ca\ \stackrel{(2)}{=}\ \frac {b+c}b\iff$ $\frac ac+\frac ba=1+\frac cb\iff$ $\boxed{\frac ac+\frac ba-\frac cb=1}\ (4)\ \mathrm{a.s.o.}$ (in this moment we"ll continue as in the second proof).
This post has been edited 132 times. Last edited by Virgil Nicula, Apr 24, 2016, 11:45 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a