461. Problems for the relaxation in ... weekend (II).

by Virgil Nicula, Jan 26, 2018, 7:36 PM

P1. Sa se rationalizeze fractia $\boxed{\ F=\frac 1{\sqrt[3]4+\sqrt [3]{10}+\sqrt[3]{25}}\ }$ (clasa a VII - a).

Proof. Daca notam $\sqrt[3]2=a$ si $\sqrt [3]5=b\ ,$ atunci fractia $F$ devine $\frac 1{a^2+ab+b^2}\ ,$ adica $F=\frac {b-a}{(b-a)\left(b^2+ab+a^2\right)}=$ $\frac {b-a}{b^3-a^3}=\frac{\sqrt [3]5-\sqrt [3]2}{5-2}\implies$ $\boxed{\ F=\frac{\sqrt [3]5-\sqrt [3]2}3\ }\ .$


P2 (Adil ABDULLAYEV, Baku). Prove that in any $\triangle ABC$ the following relationship holds $\ :\ \frac {\left(r_a+r_b\right)\left(r_b+r_c\right)\left(r_c+r_a\right)}{8r_ar_br_c}=\frac R{2r}\ge \frac{h_a^2+h_b^2+h_c^2}{h_ah_b+h_bh_c+h_ch_a}\ge 1$ (standard notations).

Proof. Prove easily that $rr_ar_br_c=S^2=s^2r^2\ ,$ i.e. $\boxed{ r_ar_br_c=s^2r\ }\ (1)$ and $\frac {\left(r_a+r_b\right)\left(r_b+r_c\right)\left(r_c+r_a\right)}{8r_ar_br_c}=$ $\prod\frac{r_b+r_c}{2r_a}=$ $\frac 18\cdot\prod\left(\frac{r_b}{r_a}+\frac{r_c}{r_a}\right)=$ $\frac 18\cdot\prod\left(\frac{s-a}{s-b}+\frac{s-a}{s-c}\right)=$

$\frac 18\cdot\prod\frac{a(s-a)}{(s-b)(s-c)}=$ $\frac {abc}{8(s-a)(s-b)(s-c)}=$ $\frac{4R\cancel s\cancel r}{8\cancel sr^{\cancel 2}}=\frac R{2r}\ ,$ i.e. $\boxed{\ \frac {\left(r_a+r_b\right)\left(r_b+r_c\right)\left(r_c+r_a\right)}{8r_ar_br_c}=\frac R{2r}\ }\ (2)\ .$ Observe that $\boxed{\ ah_a=2sr\ }\ \mathrm{a.s.o.}\iff$ $ \boxed{\ h_a=\frac {2sr}a\ }\ \mathrm{a.s.o.}\implies $

$h_bh_c=\frac {2sr}{b}\cdot\frac {2sr}{c}=\frac {4s^2r^2}{bc}\ \mathrm{a.s.o.}\implies$ $\sum \left(h_bh_c\right)=4s^2r^2\cdot\sum\frac 1{bc}=$ $4s^2r^2\cdot\frac{a+b+c}{abc}=$ $4s^2r^2\cdot\frac{2s}{4Rrs}=$ $4s^2r^2\cdot\frac{2s}{4Rrs}=$ $\frac {2s^2r}{R}\implies$ $\boxed{\ h_ah_b+h_bh_c+h_ch_a=\frac {2s^2r}R\ }\ (3)\ .$

Otherwise. $\boxed{\ bc=2Rh_a\ }\ \mathrm{a.s.o.}\implies$ $\boxed{\ h_a=\frac {bc}{2R}\ }\ \mathrm{a.s.o.}\implies$ $h_bh_c=\frac {ac}{2R}\cdot\frac {ab}{2R}=a\cdot \frac {abc}{4R^2}=\frac {a\cdot 4RS}{4R^2}=\frac {aS}R\implies$ $\boxed{\ h_bh_c=\frac {aS}R\ }\implies$ $\sum h_bh_c=\frac SR\cdot \sum a=\frac {2s\cdot sr}R\implies$

$\boxed{\ \sum h_bh_c=\frac {2s^2r}R\ }\ .$ From $a^2\ge a^2-(b-c)^2=(a+b-c)(a-b+c)=4(s-b)(s-c)\ \mathrm{a.s.o.}$ obtain that $\boxed{\ a^2\ge 4(s-b)(s-c)\ }\ \mathrm{a.s.o.}\implies$ $4s(s-a)(s-b)(s-c)=$

$(2S)^2=\left(ah_a\right)^2=a^2h_a^2\ge 4(s-b)(s-c)\cdot h_a^2\implies$ $\cancel 4s(s-a)\cancel{(s-b)(s-c)}\ge \cancel 4\cancel{(s-b)(s-c)}\cdot h_a^2\implies$ $\boxed{\ h_a^2\le s(s-a)\ }\implies$ $\sum h_a^2\le s\sum (s-a)\implies$

$\boxed{\ h_a^2+h_b^2+h_c^2\le s^2\ }\ (4)\ .$ Remain to prove $\frac {\sum h_a^2}{\sum \left(h_bh_c\right)}\le \frac R{2r}\ .$ Indeed, from the relation $(3)$ obtain that $\left(h_a^2+h_b^2+h_c^2\right)\cdot\frac {\cancel R}{\cancel 2s^2\cancel r}\le \frac {\cancel R}{\cancel 2\cancel r}\ ,$ i.e. the true relation $(4)\ .$

Remark. Prove easily that $h_ah_b+h_bh_c+h_ch_a\le 3S\sqrt 3\le 3r(4R+r)\le s^2\ .$



P3 (Θεόδωρος Σαμπάς, Greece). Prove that the following exercise (<= click).

Proof. $\prod\cos A=\frac 18\iff$ $4\cos A\cdot 2\cos B\cos C=1\iff$ $4\cos A[\cos (B-C)-\cos A]=1\iff$ $4\cos^2A-4\cos A\cos (B-C)+1=0\iff$

$[2\cos A-\cos (B-C)]^2+\sin^2(B-C)=0\iff$ $B=C$ and $2\cos A=\cos (B-C)=\cos 0=1\ ,$ i.e. $A=60^{\circ}$ and $A=B=C\ .$



P4 (Θεόδωρος Σαμπάς, Greece). Prove that the following identity $:\ \left(\frac bc+\frac cb\right)\cdot\cos A+\left(\frac ca+\frac ac\right)\cdot\cos B+\left(\frac ab+\frac ba\right)\cdot \cos C=3\ .$

Proof. Prove easily that $\boxed{\ \sum_{\mathrm{cyc}}\frac{b\cdot\cos A}c=\sum_{\mathrm{cyc}}\frac{a\cdot\cos C}b\ }\ (*)$ and I"ll use the well known identities $\boxed{\ b\cdot \cos C+c\cdot\cos B=a\ }\ (1)\ .$ Thus, $\sum_{\mathrm{cyc}}\left(\frac bc+\frac cb\right)\cdot\cos A=$

$ \sum_{\mathrm{cyc}}\frac {b\cdot \cos A}c+\sum_{\mathrm{cyc}}\frac {c\cdot \cos A}b\ \stackrel{(*)}{=}\ \sum_{\mathrm{cyc}}\frac{a\cdot\cos C}b+\sum_{\mathrm{cyc}}\frac {c\cos A}b=$ $\sum_{\mathrm{cyc}}\frac{a\cdot\cos C+c\cdot\cos A}b\ \stackrel{(1)}{=}\ \sum_{\mathrm{cyc}}\frac bb=3\implies$ $\sum_{\mathrm{cyc}}\left(\frac bc+\frac cb\right)\cdot\cos A=3\ .$



P5 (Nguyen Viet Hung). Prove the following inequality (<= click) $:\ \frac{h_bh_c}{h_ar_a^2}+\frac{h_ch_a}{h_br_b^2}+\frac{h_ah_b}{h_cr_c^2}\le\frac 1r\ .$

Proof. $\frac {h_bh_c}{h_ar_a^2}=\frac{2\cancel S}b\cdot\frac {\cancel 2\cancel S}c\cdot\frac a{\cancel 2S}\cdot \frac {(s-a)^2}{\cancel{S^2}}=$ $\frac {2a(s-a)^2}{bcS}=$ $\frac {2a^2(s-a)^2}{abcS}=$ $\frac {a^2(s-a)^2}{2RS^2}\implies$ $\frac {h_bh_c}{h_ar_a^2}=\frac {a^2(s-a)^2}{2RS^2}\ .$ Hence $\boxed{\ \sum \frac {h_bh_c}{h_ar_a^2}=\frac 1{2RS^2}\cdot \sum a^2(s-a)^2\
 }\ (1)\ .$

In conclusion, the required inequality $\boxed{\ \sum\frac{h_bh_c}{h_ar_a^2}\le\frac 1r\ }\ (*)$ is equivalent with the inequality $\sum a^2(s-a)^2\le 2Rs^2r\iff$ $\boxed{\ \sum a^2(b+c-a)^2\le abc(a+b+c)\ }\ (2)\ .$

Prove easily that $\sum a^2(s - a)^2 = 2r^2\left[\left(4R + r\right)^2 - s^2\right]$ starting from the development of $\left[\sum a(s-a)\right]^2 = \ldots$ The inequality becomes $2r^2\left[(4R+r)^2-s^2\right]\le 2Rs^2r\iff$

$r\left[(4R+r)^2-s^2\right]\le Rs^2\iff$ $r(4R+r)^2\le s^2(R+r)\iff$ $\boxed{\ s^2\ge \frac {r(4R+r)^2}{R+r}\ }\ .$ Is well known $s^2\ge 16Rr-5r^2$ and observe that $16Rr-5r^2\ge \frac {r(4R+r)^2}{R+r}\iff$

$(16R-5r)(R+r)\ge (4R+r)^2\iff$ $16R^2+16Rr-5Rr-5r^2\ge 16R^2+8Rr+r^2\iff$ $3Rr\ge 6r^2\iff$ $R\ge 2r\ .$ Hence $s^2\ge 16Rr-5r^2\ge \frac {r(4R+r)^2}{R+r}\implies$

$ s^2\ge \frac {r(4R+r)^2}{R+r}\ .$ In conclusion, our inequality $(*)$ is true. Very nice!



P6 (G. Baron). Solve the following system from here.

Proof. Denote $x+y=S\ ,$ $xy=P\ .$ Thus, $\left\{\begin{array}{ccc}
x^2+x & = & y^3-y\\\\
y^2+y & = & x^3-x\end{array}\right\|\implies$ $\left(y^3-\cancel y\right)+\left(y^2+\cancel y\right)=\left(x^2+\cancel x\right)+\left(x^3-\cancel x\right)\iff$

$y^3+y^2=x^3+x^2\iff$ $\left(y^3-x^3\right)+\left(y^2-x^2\right)=0\iff$ $(y-x)\left(y^2+xy+x^2+y+x\right)=0\ .$ Appear two cases $:$

$1.\blacktriangleright\ x=y\iff x^2+x=x^3-x\iff$ $x^3-x^2-2x=0\iff$ $x(x+1)(x-2)=0\iff$ $x=y\in\{-1,0,2\}\ .$

$2.\blacktriangleright\ x\ne y\iff\left(x^2+y^2\right)+(x+y)+xy=0\iff$ $S^2-2P+S+P=0\iff$ $\boxed{\ S^2+S=P\
 }\ (1)\ .$ Observe that

$\left(x^2+x\right)+\left(y^2+y\right)=\left(y^3+x^3\right)-(x+y)\iff$ $\left(x^2+y^2\right)+2(x+y)=\left(x^3+y^3\right)\iff$ $\left(S^2-2P\right)+2S=$ $S^3-3PS\iff$

$P(3S-2)=S^3-S^2-2S\ \stackrel{(1)}{\iff}\ S(S+1)(3S-2)=S(S+1)(S-2)\iff$ $S\in\{0,-1\}$ or $3S-2=S-2\ ,$ i.e. $S=0\ .$

Therefore: for $S=0$ obtain $P=0\ ,$ i.e. $x=y=0\ ;$ for $S=-1$ obtain $P=0\ ,$ i.e. $(\ x=0\ \wedge\ y=-1\ )\ \vee\ (\ x=-1\ \wedge\ y=0\ )\ .$

In conclusion, the solutions of this system are $:\ (x,y)\ \in\ \left\{\ (-1,-1)\ ;\ (0,0)\ ;\ (2,2)\ ;\ (0,-1)\ ;\ (-1,0)\ \right\}\ .$



P7 (Marian URSARESCU). Let $\triangle ABC$ with the incircle $w=\mathbb C(I,r)\ .$ The lines $AI\ ,$ $BI$ and $CI$ meet again $w$ in $D\ ,$ $E$ and $F$ respectively. Prove that the inequality $\boxed{\ \frac{ID}{IA}+\frac {IE}{IB}+\frac{IF}{IC}\ge 3\ }\ (*)\ .$

Proof. $\sum\frac {ID}{IA}=$ $\sum\frac {ID^2}{IA\cdot ID}=$ $\sum\frac {ID^2}{p_w(I)}=$ $\frac 1{2Rr}\cdot\sum BD^2=$ $\frac 1{2Rr}\cdot\sum \left(2R\sin\frac A2\right)^2=$ $\frac {\cancel 2R^{\cancel 2}}{\cancel 2\cancel Rr}\cdot\sum \left(2\sin^2\frac A2\right)=$ $\frac Rr\cdot\sum \left(1-\cos A\right)=$ $\frac Rr\cdot\left[3-\left(1+\frac rR\right)\right]=$ $\frac {\cancel R}r\cdot \frac {2R-r}{\cancel R}=$

$\frac {2R-r}r\ge 3$ because $2R-r\ge 3r\iff R\ge 2r\ ,$ what is true. In conclusion, $\sum\frac {ID}{IA}\ge 3\ .$ I used the well known relations $DI=DB$ and the power of $I$ w.r.t. $w$ is $p_w(I)=-2Rr\ .$



P8 (M. URSARESCU). Let the Gergonne's point $\Gamma$ of $\triangle ABC$ and $A\Gamma\ ,$ $B\Gamma\ ,$ $C\Gamma$ meet again $BC\ ,$ $CA\ ,$ $AB$ at $D\ ,$ $E\ ,$ $F$ respectively. Prove that $\boxed{\ a\cdot AD^2+b\cdot BE^2+c\cdot CF^2\ge 54r^3\sqrt 3\ }\ (*)\ .$

Proof. Prove easily the following identities $:\ \left\{\begin{array}{cccc}
\sum a(s-b)(s-c) & = & 2sr(2R-r) & (1)\\\\
 \sum a^2(s-a) & = & 4sr(R+r) & (2)\end{array}\right\|\ .$ Apply the Stewart's relation to the cevian $AD\ ,$ where $DB=s-b$ and $DC=s-c\ :$

$a\cdot AD^2+a(s-b)(s-c)=b^2(s-b)+c^2(s-c)\implies$ $\sum a\cdot AD^2+\sum a(s-b)(s-c)=$ $\sum\left[b^2(s-b)+c^2(s-c)\right]\ \stackrel{(1\wedge 2)}{\iff}\sum a\cdot AD^2+2sr(2R-r)=$ $2\cdot 4sr(R+r)\iff$

$\sum a\cdot AD^2=2sr\left[4(R+r)-(2R-r)\right]=2sr(2R+5r)\implies$ $\boxed{\ \sum a\cdot AD^2=2sr(2R+5r)\ }\ (3)\ .$ Apply the well known inequalities $3r\sqrt 3\le s$ and $R\ge 2r\ :$

$\ 2sr(2R+5r)\ge 2\cdot 3r^2\sqrt 3(2\cdot 2r+5r)=6r^2\sqrt 3\cdot 9r=54r^3\sqrt 3\ .$ In conclusion, $2sr(2R+5r)\ge 54r^3\sqrt 3\ \stackrel{(3)}{\implies}\ \sum a\cdot AD^2\ge 54r^3\sqrt 3\ .$

Remark.

$1.\blacktriangleright\ \sum a(s-b)(s-c)=\sum[s(s-b)(s-c)-(s-a)(s-b)(s-c)]=sr(4R+r)-3sr^2=$ $sr[(4R+r)-3r]=sr(4R-2r)=\boxed{\ 2sr(2R-r)\ }\ .$

$2.\blacktriangleright\ \sum a^2(s-a)=\sum x(y+z)^2=$ $\sum \left[x\left(y^2+z^2\right)+2xyz\right]=$ $\sum [yz(x+y+z)-xyz+2xyz]=$ $(x+y+z)(xy+yz+zx)+3xyz=$ $sr(4R+r)+3sr^2=\boxed{\ 4sr(R+r)\ }\ .$

Denoted $s-a=x\ ,$ $s-b=y$ and $s-c=z\ .$ Hence $x+y+z=(s-a)+(s-b)+(s-c)=s\ ,$ $xy+yz+zx=\sum (s-b)(s-c)=r(4R+r)$ and $xyz=\prod (s-a)=sr^2\ .$

Otherwise. $\sum a^2(s-a)=s\cdot \sum a^2-\sum a^3=$ $2s\left(s^2-r^2-4Rr\right)\left[(a+b+c)^3-3(a+b+c)(ab+bc+ca)+3abc\right]=$ $2s^3-2sr^2-8Rsr-8s^3+6s\left(s^2+r^2+4Rr\right)-$

$12Rsr=$ $4sr^2+4Rsr=\boxed{\ 4sr(R+r)\ }\ .$ I used the notations and the identities $\left\{\begin{array}{ccccc}
s_1\ & = & a+b+c & = & 2s\\\
s_2 & = & ab+bc+ca & = & s^2+r^2+4Rr\\\
s_3\ & = & abc & = & 4Rsr\end{array}\right\|$ and $\left\{\begin{array}{ccccc}
S_2 & = & \sum a^2 & = & 2\left(s^2-r^2-4Rr\right)\\\\
S_3  & = & \sum a^3 & = & s_1^3-3s_1s_2+3s_3\end{array}\right\|\ .$



P9 (Hung Nguyen Viet).Prove that $\ (\forall )\ \triangle ABC$ there is the followung inequality $:\ \boxed{\ (a+b+c)\left(ab+bc+ca+R^2\right)\ge a^3+b^3+c^3+7abc\ }\ (*)\ .$

Proof. I"ll use the notations and the identities $\left\{\begin{array}{ccccc}
s_1\ & = & a+b+c & = & 2s\\\
s_2 & = & ab+bc+ca & = & s^2+r^2+4Rr\\\
s_3\ & = & abc & = & 4Rsr\end{array}\right\|$ and $\left\{\begin{array}{ccccc}
S_2 & = & \sum a^2 & = & 2\left(s^2-r^2-4Rr\right)\\\\
S_3  & = & \sum a^3 & = & s_1^3-3s_1s_2+3s_3\end{array}\right\|\ ,$

where prove easily $\boxed{\ s_1^3-3s_1s_2+3s_3=2s\left(s^2-3r^2-6Rrs\right)\ }\ (1)\ .$ Therefore, the required inequality $(*)$ becomes $2s\cdot \left(s^2+r^2+4Rr\right)+2sR^2\ \stackrel{((1)}{\ge}$

${2s}\left(s^2-3r^2-6Rr\right)+28Rsr\iff$ $s^2+r^2+4Rr+R^2\ge s^2-3r^2-6Rr+14Rr\iff$ $R^2-4Rr+4r^2\ge 0\iff$ $(R-2r)^2\ge 0\ ,$ what is true.



P10 (Mehmet Sahin). Prove the identity $\boxed{\ \frac {h_a}{AI_a^2}+\frac {h_b}{AI_b^2}+\frac {h_c}{AI_c^2}=\frac 1{2R}\ }\ (*)$ (standard notations).

Proof 1. Prove easily that $\triangle ABI_a\sim \triangle AIC\ ,$ i.e. $\frac {AB}{AI}=\frac {AI_a}{AC}\iff \boxed{\ AI\cdot AI_a=bc\ }\ (1)\ .$ Therefore, $\sum \frac {h_a}{AI_a^2}=\frac 1{2R}\iff$

$\sum \frac {2Rh_a}{AI_a^2}=1\iff$ $\sum \frac {bc}{AI_a^2}= 1 \stackrel{(1)}{\iff}\ \sum \frac {AI\cdot AI_a}{AI_a^2}= 1\iff$ $\sum \frac {AI}{AI_a}= 1\iff$ $\sum \frac r{r_a}=1\iff$ $\sum \frac 1{r_a}=\frac 1r\ ,$ what is true.

Proof 2. I"ll apply the identities $\boxed{\ \frac{AI_a^2}{bc}=\frac s{s-a}=\frac{bc}{AI^2}\ }\ ,$ $\boxed{\ bc=2Rh_a\ }\ ,$ $\sum (s-b)(s-c)=r(4R+r)$ and $(s-a)(s-b)(s-c)=sr^2\ .$ Hence $\ :$

$\blacktriangleright\ \sum\frac {h_a}{AI^2}=$ $\sum \frac{2Rh_a}{2R\cdot AI^2}=$ $\frac 1{2R}\cdot\sum \frac{\cancel {bc}s}{\cancel {bc}(s-a)}=$ $\frac s{2R}\cdot\sum \frac 1{s-a}=$ $\frac s{2R}\cdot \frac{\sum (s-b)(s-c)}{(s-a)(s-b)(s-c)}=$ $\frac {\cancel s}{2R}\cdot \frac{\cancel r(4R+r)}{\cancel sr^{\cancel 2}}=$ $\frac{4R+r}{2Rr}\implies$ $\boxed{\sum\frac {h_a}{AI^2}=\frac{4R+r}{2Rr}\ }\ .$

$\blacktriangleright\ \sum\frac {h_a}{AI_a^2}=$ $\sum \frac{2Rh_a}{2R\cdot AI^2}=$ $\frac 1{2R}\cdot\sum \frac{\cancel{bc}(s-a)}{\cancel{bc}s}=$ $\frac1{2Rs}\cdot\sum(s-a)=\frac 1{2R\cancel s}\cdot \cancel s=$ $\frac 1{2R}\implies \boxed{\sum\frac {h_a}{AI_a^2}=\frac 1{2R}\ }\ .$ Remark. $\boxed{\ \left(r_a+r_b+r_c\right)\cdot\sum\frac{h_a}{AI_a^2}=r\cdot\sum\frac{h_a}{AI^2}\ }\ .$



P11 (Miguel Ochoa Sanchez). Let $\triangle ABC$ and the midpoints $(D,E,F)$ of its sides $([BC],[CA],[AB])$ respectively. Prove that $\boxed{\ BE\perp CF\implies \cos A\ge\frac 45\ }\ .$

Proof. $BE\perp CF\iff BFEC$ is orthodiagonal $\iff$ $BC^2+EF^2=BF^2+CE^2\iff$ $a^2+\frac{a^2}4=\frac{c^2}4+\frac {b^2}4\iff$

$\boxed{\ b^2+c^2=5a^2\ }\ (*)\ .$ Hence $\cos A=\frac{b^2+c^2-a^2}{2bc}\ \stackrel{(*)}{=}\ \frac{4a^2}{2bc}\ge \frac {4a^2}{b^2+c^2}=\frac {4a^2}{5a^2}=\frac 45\implies \cos A\ge \frac 45\ .$


Generalization (own). Let $\triangle ABC$ and the points $E\in (AC)\ ,$ $F\in (AB)$ so that $\frac {EA}{EC}=m$ and $\frac {FA}{FB}=n\ .$ Prove that

the chain of the relations $BE\perp CF\ \implies \cos A\ge \frac {2\sqrt{mn(m+1)(n+1)}}{mn+(m+1)(n+1)}\ \iff\ \sin A\le \frac {m+n+1}{2mn+m+n+1}\ .$

Proof. $\left\{\begin{array}{ccccc}
\frac{EA}m=\frac {EC}1=\frac b{m+1}\\\\
\frac {FA}n=\frac {FB}1=\frac c{n+1}\end{array}\right\|\implies$ $EF^2=AE^2+AF^2-2\cdot AE\cdot AF\cdot\cos A\implies$ $\boxed{\ EF^2=\frac{m^2b^2}{(m+1)^2}+\frac{n^2c^2}{(n+1)^2}-\frac{2mnbc\cdot\cos A}{(m+1)(n+1)}\ }\ (*)\ .$ Therefore, $BE\perp CF\iff $

$BFEC$ is orthodiagonal $\iff BF^2+CE^2=BC^2+EF^2\iff$ $\frac{c^2}{(n+1)^2}+\frac{b^2}{(m+1)^2}=a^2+\frac{m^2b^2}{(m+1)^2}+\frac{n^2c^2}{(n+1)^2}-\frac{2mnbc\cdot\cos A}{(m+1)(n+1)}\iff$ $\frac{c^2\left(n^2-1\right)}{(n+1)^2}+\frac{b^2\left(m^2-1\right)}{(m+1)^2}+$

$\left(b^2+c^2-2bc\cdot\cos A\right)=\frac{2mnbc\cdot\cos A}{(m+1)(n+1)}\iff$ $\frac{c^2\left(n-1\right)}{(n+1)}+\frac{b^2\left(m-1\right)}{(m+1)}+b^2+c^2=2bc\cdot\cos A\cdot\left[1+\frac{mn}{(m+1)(n+1)}\right]\implies$ $\cos A=\frac {n(m+1)\cdot \frac cb+m(m+1)\cdot\frac bc}{mn+(m+1)(n+1)}\ge$

$\frac {2\sqrt{mn(m+1)(n+1)}}{mn+(m+1)(n+1)}\ \iff\ \sin A\le \frac {m+n+1}{2mn+m+n+1}\ .$ In the particular case $m=n=1$ obtain that $\cos A\ge \frac 45\iff \sin A\le \frac 35\ ,$ i.e. the proposed problem P11.


P12 (Mehmet Sahin). Prove that $(\forall )\ \triangle ABC$ there is the following inequality $:\ \boxed{\ \left[I_aBC\right]+\left[I_bCA\right]+\left[I_cAB\right]\ge 3[ABC]\ }\ .$

Proof. I"ll use the identity $\boxed{\ ar_a=s\left(r_a-r\right)\
 }\ (*)\ .$ Therefore, $\sum\left[I_aBC\right]=\frac 12\cdot\sum ar_a\ \stackrel{(*)}{=}\ \frac 12\cdot \sum s\left(r_a-r\right)=$ $\frac s2\cdot\sum \left(r_a-r\right)=$ $\frac s2\cdot (4R+r-3r)=$$\frac s2\cdot (4R-2r)=$

$s(2R-r)\implies$ $\boxed{\ \sum\left[I_aBC\right]=s(2R-r)\ }\ (1)\ .$ Observe that $\sum\left[I_aBC\right]\ge 3S\ \stackrel{(1)}{\iff}\ \cancel s(2R-r)\ge 3\cancel sr\iff$ $2R-r\ge 3r\iff$ $2R\ge 4r\iff$ $R\ge 2r\ .$ what is true.



P13 (Marian Ursarescu). Prove that $(\forall )$ an acute $\ \triangle ABC$ the following relationship holds $:\ \boxed{\ (b+c)m_a+(c+a)m_b+(a+b)m_c\le 6sR\ }$ (standard notations).

Proof. Let the midpoint $M$ of $[BC]\ ,$ the circumcenter $O$ of $\triangle ABC$ and the midpoint $S$ of $I_aI\ .$ Observe that $m_a=AM\le OA+OM=$ $OA+(OS-MS)=$

$(OA+OS)-MS=$ $2R-\frac {r_a-r}2=\frac {4R+r-r_a}2=$ $\frac{r_b+r_c}2\implies$ $\boxed{\ m_a\le\frac{4R+r-r_a}2\ }\ (1)\ .$ Thus, $\sum (b+c)m_a\ \stackrel{(1)}{\le}\ (b+c)\cdot\frac {(4R+r)-r_a}2=$

$\sum\frac {4R+r}2\cdot (b+c)-\sum\frac {r_a(b+c)}2=$ $\frac{4R+r}2\cdot 4s-\sum \frac {r_a(2s-a)}2=$ $2s(4R+r)-s\sum r_a+\sum\frac{ar_a}2=$ $2s(4R+r)-s(4R+r)+$

$\sum\frac{s\left(r_a-r\right)}2=$ $s(4R+r)+\frac s2\cdot \sum (r_a-r)=$ $s(4R+r)+\frac s2\cdot (4R+r-3r)=$ $s(4R+r)+s(2R-r)=6sR\implies$ $\sum (b+c)m_a\le 6sR\ .$



P14 (Mehmet Sahin). Prove that $\boxed{\ \{a,b,c\}\subset\mathbb R^*_+\ \implies \ \sum\frac 1{a^3+b^3+abc}\le\frac 1{abc}\ }$

Proof. Prove easily that $a^2-ab+b^2\ge ab\iff$ $(a+b)\left(a^2-ab+b^2\right)\ge ab(a+b)\iff$ $\boxed{a^3+b^3\ge ab(a+b)\ }\ (*)\ .$ Hence $:$

$\sum\frac 1{a^3+b^3+abc}\le\sum\frac 1{ab(a+b)+abc}=\sum\frac 1{ab(a+b+c)}=\frac 1{a+b+c}\cdot\sum\frac 1{ab}=\frac 1{a+b+c}\cdot \frac {a+b+c}{abc}=\frac 1{abc}\ .$



P15 (Daniel Florescu). Sa se rezolve ecuatia irationala $\boxed{\ 2\sqrt[3]{2x-1}=x^3+1\ }\ (*)\ .$

Proof. Notam $:\ \left\{\begin{array}{ccc}
x^3+1=2y\\\\
y^3+1=2x\end{array}\right\|\ .$ Se observa ca prin diferenta celor doua relatii se obtine $x^3-y^3=2(y-x)\iff$ $(x-y)\left(x^2+xy+y^2\right)+2(x-y)=0\iff$
$(x-y)\left(x^2+y^2+xy+2\right)=0\iff$ $x=y\iff$ $x^3+1=2x\iff$ $x^3-2x+1=0\iff$ $(x-1)\left(x^2+x-1\right)=0\iff$ $x\in\left\{1,\frac {-1\pm\sqrt 5}2\right\}\ .$


P16 (Seyran Ibrahimov). Prove that $(\forall )\ \triangle ABC$ there is the inequality $\boxed{\ \sum\frac {\left(am_a\right)^2}{b+c}\ge 9sS\ }\ (*)$ (standard notations).

Proof. Prove easily that $\boxed{\ 6sr\le \sum am_a\le 2s(R+r) \ }\ (1)\ .$ Therefore, $\sum\frac {\left(am_a\right)^2}{b+c}\ \stackrel{C.B.S}{\ge}\ \frac {\left(\sum am_a\right)^2}{\sum (b+c)}\ge $ $\frac {36s^2r^2}{4s}=9sr^2\implies$ $\sum\frac {\left(am_a\right)^2}{b+c}\ge 9rS\ .$

Remark. I"ll prove the chain $(1)\ :\ h_a\le m_a\implies ah_a\le am_a\implies 2S\le am_a\implies \boxed{\ 6sr\le \sum am_a\ }\ ;\ $ Let $M$ be the midpoint of $[BC]$ and the circumcircle $w=\mathbb C(O,R)\ .$ Thus,

if $\triangle ABC$ is acute, then $AM\le OA+OM\iff \boxed{m_a\le R(1+\cos A)}\iff$ $am_a\le R(a+a\cdot \cos A)\implies$ $\sum am_a\le R\cdot\left(2s+\sum a\cos A\right)=$ $2sR+2R^2\sum\sin A\cos A=$

$2sR+R^2\sum \sin 2A=$ $2sR+4R^2\prod\sin A=$ $2sR+2S=2sR+2sr=2s(R+r)\implies$ $\boxed{\ am_a+bm_b+cm_c\le 2s(R+r)\ }\ (1)\ .$ Otherwise. $\boxed{m_a\le R(1+\cos A)}\iff$

$am_a\le 2aR\cdot\frac {s(s-a)}{bc}=$ $\cancel 2a\cancel R\cdot\frac {s(s-a)}{\cancel {2R}h_a}=$ $\frac {a^2\cancel s(s-a)}{2\cancel sr}\implies$ $\boxed{am_a\le \frac {a^2(s-a)}{2r}}\implies$ $\sum am_a\le \frac 1{2r}\cdot\sum a^2(s-a)=\frac 1{2r}\cdot 4sr(R+r)=2s(R+r)\implies$ $\boxed{\ \sum am_a\le 2s(R+r)\ }\ .$



P17 (Mehmet Sahin). Prove that $(\forall )\ \triangle ABC$ there is the inequality $\boxed{\ 1+\frac{r_a}{m_a}+\frac {r_b}{m_b}+\frac{r_c}{m_c}\le \frac {2R}r\ }\ (*)$ (standard notations).

Proof. I"ll apply the well known inequality $\boxed{\ 2sr\le am_a\ }$ and the identity $\boxed{\ ar_a=s\left(r_a-r\right)\ }\ .$ Hence $:\ \frac{r_a}{m_a}=\frac {ar_a}{am_a}\le\frac {s\left(r_a-r\right)}{2sr}=\frac {r_a-r}{2r}\implies$ $\frac{r_a}{m_a}\le \frac {r_a-r}{2r}\implies$

$\sum\frac{r_a}{m_a}\le \sum\frac {r_a-r}{2r}=\frac{4R+r-3r}{2r}=\frac {2R-r}r\implies 1+\sum \frac{r_a}{m_a}\le 1+\frac {2R-r}r=\frac {2R}r\ .$ In conclusion, $1+\frac{r_a}{m_a}+\frac {r_b}{m_b}+\frac{r_c}{m_c}\le \frac {2R}r\ .$



Proposed problem (test) P18.

$1.\blacktriangleright$ Find the solutions (zeroes) of the following equations $\ :\ \left[\frac {x+2}3\right]=\frac {x-1}4\ ;\ \left[\frac {x+1}3\right]=\frac {x-1}2\ ;\ \left[\frac {4x+1}{5x+3}\right]=\frac {x}{x+8}\ .$

$2.\blacktriangleright$ Let $\{a,b\}\subset\mathbb R$ so that $0<a\ne 1$ and $0<b\ne 2\ .$ Prove that $\log_a\frac a2=\log_{\frac b2}b\iff ab=2\ .$

$3.\blacktriangleright$ Find $S_{2015}=z_1^{2015}+z_2^{2015}\ ,$ where $\{z_1,z_2\}$ are the roots of the equation $z^2-z+1=0\ .$

(for my friend ema_manole2010).


Proofs.

$1.1\blacktriangleright=\frac {x-1}4=\left[\frac {x+2}3\right]=z\iff$ $\boxed{\ x=4z+1\ }$ and $z\le \frac {x+2}3<z+1\iff$ $3z\le (4z+1)+2<3(z+1)\iff$

$3z\le 4z+3<3z+3\iff$ $-3\le z<0\iff$ $z\in [-3,0)\cap\mathbb Z\iff$ $z\in\{-3,-2,-1\}\iff$ $\boxed{\ x\in\{-11,-7,-3\} }\ .$

$1.2\blacktriangleright\ \frac {x-1}2=\left[\frac {x+1}3\right]=z\in\mathbb Z\implies$ $\boxed{\ x=2z+1\ }$ and $z\le \frac {x+1}3<z+1\iff$ $3z\le (2z+1)+1<3(z+1)\iff$

$3z\le 2z+2<3z+3\iff$ $-1<z\le 2\iff$ $z\in (-1,2]\cap \mathbb Z\iff$ $z\in\{0,1,2\}\iff$ $\boxed{\ x\in \{1,3,5\}\ }\ .$

$1.3\blacktriangleright\ \frac x{x+8}=\left[\frac {4x+1}{5x+3}\right]=z\in \mathbb Z\iff$ $\boxed{\ x=\frac {8z}{1-z}\ }$ and $z\le\frac {4x+1}{5x+3}<z+1\iff$ $z\le\frac {4\cdot\frac {8z}{1-z}+1}{5\cdot \frac {8z}{1-z}+3}<z+1\iff$ $z\le\frac {31z+1}{37z+3}<z+1\iff$

$\left(z-\frac {31z+1}{37z+3}\right)\left[(z+1)-\frac {31z+1}{37z+3}\right]\le 0$ and $\frac {31z+1}{37z+3}\ne (z+1)\iff$ $\left(37z^2-28z-1\right)\left(37z^2+9z+2\right)\le 0\iff$ $f(z)=37z^2-28z-1\le 0$ and $z\in\mathbb Z\iff \boxed{\ z=0\ }\ .$

$2\blacktriangleright\ \log_a\frac a2=\log_{\frac b2}b\iff$ $\frac {\ln\frac a2}{\ln a}=\frac {\ln b}{\ln\frac b2}\iff$ $(\ln a-\ln 2)(\ln b-\ln 2)=\ln a\ln b\iff$ $\cancel{\ln 2}(\ln a+\ln b)=\ln^{\cancel 2}2\iff$ $\ln (ab)=\ln 2\iff$ $\boxed{\ ab=2\ }\ .$

$3\blacktriangleright\ \boxed{\ z_1+z_2=1\ }\ (*)$ and $(\forall )\ k\in\{1,2\}\ ,$ $z_k^2-z_k+1=0\implies$ $\boxed{\ z_k^2=z_k-1\ }\implies$ $z_k^3=z\cdot z_k^2=z_k(z_k-1)=z_k^2-z_k=(z_k-1)-z_k=-1\implies$ $\boxed{\ z_k^3=-1\ }\implies$ $z_k^{2015}=$

$z_k^{3\cdot 671+2}=$ $\left(z_k^3\right)^{671}\cdot z_k^2=$ $(-1)^{671}\cdot z_k^2=-z_k^2=-(z_k-1)=1-z_k\implies$ $\boxed{\ z_k^{2015}=1-z_k\ }\ , (\forall )\ k\in \{1,2\}\implies$ $S_{2015}=$ $z_1^{2015}+z_2^{2015}=$ $(1-z_1)+(1-z_2)\ \stackrel{(*)}{=}\ 1$ $\implies$ $ \boxed{\ S_{2015}=1\ }\ .$

Remark. $\boxed{\ (\forall )\ x>0\ ,\ \ln_a{\frac ax}=\ln_{\frac bx}b\iff\ \frac {\ln\frac ax}{\ln a}=\frac {\ln b}{\ln\frac bx}\iff x\in \{1,ab\}\ }$



P19. Prove that $(\forall )\ \{a,b,c\}\subset\mathbb R$ there is the following inequality $:\ \boxed{\ (a+b+c)\left(a^3+b^3+c^3+3abc\right)\ge 2(ab+bc+ca)\left(a^2+b^2+c^2\right)\ }$

Proof. Let $\left\{\begin{array}{ccccc}
a+b+c & = & s_1 & = & 2s\\\\
ab+bc+ca & = & s_2 & = & s^2+r^2+4Rr\\\\
abc & = & s_3 & = & 4Rrs\end{array}\right\|\ .$ Thus, $:\ S_2=\sum a^2=s_1^2-2s_2=4s^2-2\left(s^2+r^2+4Rr\right)=2s^2-2r^2-8Rr\implies$ $\boxed{\ \sum a^2=2\left[s^2-r^2(4R+r)^2\right]\ }\ ;$

$S_3=\sum a^3=s_1^3-3s_1s_2+3s_3=8s^3-6s\left(s^2+r^2+4Rr\right)+12Rrs=$ $2s^3-6sr^2-12Rrs=$ $2s\left(s^2-3r^2-6Rr\right)\implies$ $3abc+\sum a^3=\cancel {12Rrs}+2s\left(s^2-3r^2-\cancel {6Rr}\right)=$

$2s\left(s^2-3r^2\right)\implies$ $\boxed{\ 3abc+\sum a^3=2s\left(s^2-3r^2\right)\ }\ .$ Hence, $(a+b+c)\left(a^3+b^3+c^3+3abc\right)\ge 2(ab+bc+ca)\left(a^2+b^2+c^2\right)\iff$ $\cancel 4s^2\left(\cancel {s^2}-3r^2\right)\ge \cancel 4\left[\cancel {s^4}-r^2(4R+r)^2\right]\iff$

$r^2(4R+r)^2\ge 3s^4\iff$ $\boxed{\ r(4R+r)\ge s\sqrt 3\ }\ ,$ what is true. Indeed, $3\left(r_ar_b+r_br_c+r_cr_a\right)\le\left(r_a+r_b+r_c\right)^2\iff$ $3s^2\le (4R+r)^2\iff$ $s\sqrt 3\le 4R+r\ .$

Remark. $LHS-RHS=\frac{1}{2}((a-b)^2(a+b-c)^2+(b-c)^2(b+c-a)^2+(c-a)^2(c+a-b)^2)\ge 0\iff$ $\frac16\sum \left[(a-c)^2+b(a+c-2b)\right]\ge 0\iff$

$\sum a^4+abc(a+b+c)-\sum a^3(b+c)\ge 0\iff$ which is fourth degree Schur inequality and holds for all reals.



P20 (Thanos KALOGERAKIS, Greece). Let an acute $\triangle ABC$ with the circumcircle $w=\mathbb C(O,R)$ and the midpoints $(M,N,P)$ of the

arcs $\left(\overarc{BC},\overarc {CA},\overarc {AB}\right)$ respectively. Prove that the area of the convex hexagon $APBMCN$ is equally to $sR\ ,$ where $2s=a+b+c\ .$



Proof. Let $(M,N,P)$ be the midpoints of $\left(\ [BC]\ ,\ [CA]\ ,\ [AB]\ \right)$ respectively. Prove easily that $\boxed{\ ar_a=s\left(r_a-r\right)\ }\ (*)$ a.s.o. and $\boxed{\ XM=\frac {r_a-r}2\ }\ (1)$

a.s.o. where $\left\{r_a,r_b,r_c\right\}$ are the exradii of $\triangle ABC\ .$ Thus, $[APBMCN]=S+\sum [BMC]=S+\frac 12\cdot \sum (BC\cdot XM)\ \stackrel{(1)}{=}\ sr+\sum \frac {a\left(r_a-r\right)}4\ \stackrel{(*)}{=}$

$sr+\frac 14\cdot\left[\sum s\left(r_a-r\right)-2sr\right]=$ $sr+\frac s4\cdot\left[\sum \left(r_a-r\right)-2r\right]=$ $sr+\frac s4\cdot \left(4R-4r\right)=$ $sr+sR-sr=sR\implies$ $\boxed{\ [APBMCN]=sR\ }\ .$



P21 (<= click). Proof. Denote $S\in DE\cap AC$ and apply the Menelaus' theorem for the transversal $BM$ to the triangles $\triangle ADS$ and $\triangle CES$ respectively: $\frac {BA}{BD}\cdot\frac {GD}{GS}\cdot\frac {MS}{MA}=$

$\frac {BC}{BE}\cdot\frac {GE}{GS}\cdot\frac {MS}{MC}=1\ (*)\ .$ From the relations $BD=BE\ ,$ $MA=MC$ and $(*)$ obtain $BA\cdot GD=BC\cdot GE\ .$ There is generally the identity $\frac{GD}{GE}\cdot\frac {BA}{BC}=\frac {MA}{MC}\cdot\frac {BD}{BE}\ .$



P22 (Valentin VORNICU). Let $ABC$ be an acute triangle with $AB \neq AC$. Let $D$ be the foot of the altitude from $A$ and $\omega$ the circumcircle

of the triangle. Let $\omega_1$ be the circle tangent to $AD$, $BD$ and $\omega$. Let $\omega_2$ be the circle tangent to $AD$, $CD$ and $\omega$. Let $\ell$ be the interior common

tangent to both $\omega_1$ and $\omega_2$, different from $AD$. Prove that $\ell$ passes through the midpoint of $BC$ if and only if $2BC = AB + AC$.

Lemma 1. let $w_1$ be a circle which is interior tangent in the point $A$ to the circle $w$. For a point $M\in w_1$, $M\ne A$ denote the intersections

$X,Y$ between the circle $w$ and the tangent-line in the point $M$ to the circle $w_1$. Then the ray $[AM$ is the bisector of the angle $\widehat {XAY}$.

Lemma 2. For the incenter $I$ and the centroid $G$ of the triangle $ABC$ we have

$\blacktriangleright IG\parallel BC\Longleftrightarrow b+c=2a\ .$

$\blacktriangleright IG\perp BC\Longleftrightarrow b=c\ \ \vee\ \ b+c=3a\ .$


Indication for proof the proposed problem. The circles $w_1,w_2$ are interior tangent to the circle $w$. Can

apply the above remarkable lemma for each of the circles $w_1,w_2$ and for each of the lines $BC,AD,l$.
This post has been edited 306 times. Last edited by Virgil Nicula, May 10, 2018, 7:53 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a