10. Walker's inequality and its extension.

by Virgil Nicula, Apr 20, 2010, 12:58 AM

Walker's inequality. Prove that in any acute or right triangle exists the inequality $\boxed {\ a^2 + b^2 + c^2\ \ge\ 4(R + r)^2\ }$ .

Method 1 (own). $ \frac {a^2 + b^2 + c^2}{8RS} =$ $\frac {\sum \left(b^2+c^2-a^2\right)}{2abc}=$ $\frac {\sum 2bc\cdot\cos A}{2abc}=$ $\sum\frac {\cos A}{a}=$ $ \sum\frac {\cos^2A}{a\cdot\cos A}\ \stackrel{(C.B.S.)}{\ge}\ \frac {\left(\sum\cos A\right)^2}{\sum a\cdot\cos A} =$

$ \frac {(R + r)^2}{2RS}\ \implies\ a^2 + b^2 + c^2\ \ge\ 4(R + r)^2$ . I used the well-known identities $\sum\cos A=1+\frac rR$ and $\sum a\cdot\cos A=\frac {2S}{R}$ .

Remark. $ HA = 2\cdot\delta_{BC}(O)$ and $ \sum\delta_{BC}(O) = R + r$ (Euler's relation in an acute triangle) $ \implies\ \sum HA = 2(R + r)$

$ \implies\ \boxed {\ \sum a^2\ge \left(\sum HA\right)^2\ }$ . I denote $ \delta_{BC}(O)$ - the distance of the circumcenter $ O$ of $ \triangle ABC$ to the sideline $ BC$ .

Method 2. Denote the projections $D$ , $E$ and $F$ of the orthocenter $H$ on the sidelines $BC$ , $CA$ and $AB$ respectively. Thus, $\sum\frac {HA}{h_a} =\sum\frac {h_a-HD}{h_a}=$

$3-\sum\frac {HD}{h_a}=$ $3-\sum\frac {[BHC]}{[ABC]}=3-1=2$ $\implies$ $2= \sum\frac {HA^2}{h_a\cdot HA}\ \stackrel{(C.B.S.)}{\ge}\ \frac {\left(\sum HA\right)^2}{\sum h_a\cdot HA} =$ $ \frac {\left(\sum HA\right)^2}{\frac 12\cdot\sum a^2}\ \implies\ \sum a^2\ge\ \left(\sum HA\right)^2$ .

I used well-known relations $ bc = 2Rh_a$ a.s.o. and $ b^2 + c^2 - a^2 = 2bc\cdot\cos A$ a.s.o. See
here the Cezar Lupu's article.

Remark. In an acute triangle $ ABC$ there are the inequalities $ \left\|\begin{array}{c} \sum \tan A\ \ge\ \frac sr\ \ge\ 3\sqrt 3 \\
 \\
\sum\cot A\ \ge\ \frac {(R + r)^2}{S}\ \ge\ \sqrt 3 \\
 \\
\sum\frac {1}{\sin 2A}\ \ge\ \frac {9R^2}{2S}\ \ge\ \frac {s^2 + (R + r)^2}{2S}\ \ge\ \frac {2(4R + r)}{s}\ \ge\ 2\sqrt 3\end{array}\right\|$ .

Can obtain the second inequality with the well-known metrical relation $ 4S=\left(b^2+c^2-a^2\right)\cdot\tan A$ .


Lemma. In any triangle $ABC$ with incenter $I$ the following inequality holds : $\boxed{\ AI+BI+CI\ \le\ 2(R+r)\ }$ .

Proof. Show easily that $AI=\frac{bc}s\cdot\cos\frac A2=\frac 1s\cdot\sqrt{bc}\cdot\sqrt {s(s-a)}$ a.s.o. Thus, we have :

$\left(\sum AI\right)^2=\frac{1}{s^2}\cdot\left(\sum\sqrt {bc}\cdot\sqrt{s(s-a)}\right)^2\ \stackrel{C.B.S.}{\le}\ \frac 1{s^2}\cdot (ab+bc+ca)\cdot\sum s(s-a)$ $=ab+bc+ca\ \le\ 4(R+r)^2$

The last inequality is due to Gerretsen i.e. $\boxed{\ s^2\ \le\ 4R^2+4Rr+3r^2\ }$ . Therefore, we have shown that : $\boxed{\ AI+BI+CI\ \le\ 2(R+r)\ }$ .
[/quote]

Method 3 (M.C.). For an acute triangle $ABC$ denote $H$ its orthocenter and let $AA_1$ , $BB_1$ , $CC_1$ be its altitudes . Thus, $H$ is the incenter of the orthic triangle $A_1B_1C_1$ .

Applying the upper lemma for $\triangle\ A_1B_1C_1$ we have : $HA_1+HB_1+HC_1\ \le\ 2(R_0+r_0)$ , where $R_0$ and $r_0$ are the circumradius and inradius of $\triangle A_1B_1C_1$ .

Taking into account that $\boxed{\ R_0=\frac R2\ }$ and $\boxed{\ r_0=2R\prod\cos A\ }$ , the last inequality becomes : $\sum\ (h_a-AH)\ \le\ 2\left(\frac R2+2R\prod\cos A\right)\ \iff $

$\iff\ h_a+h_b+h_c\ \le\ R+4R\prod\cos A+AH+BH+CH\ \iff\color{white}{.}$ $ \frac{ab+bc+ca}{2R}\ \le\ R+4R\cdot\frac{s^2-(2R+r)^2}{4R^2}+2(R+r)\ \iff$

$\iff\ s^2+r^2+4Rr\ \le\ 2R^2+2s^2-2(2R+r)^2+4R^2+4Rr\color{white}{.}$ $\iff\ \boxed{\ 2R^2+8Rr+3r^2\ \le\ s^2\ }\ \iff\color{white}{.}$
Walker's inequality .

Remark. In the above proof I used the well-known relations $\boxed{\ \prod\cos A=\frac{s^2-(2R+r)^2}{4R^2}\ }$ and $\boxed{\ AH+BH+CH=2(R+r)\ }$ (in an acute triangle) .


Extension of the Walker's inequality (see here).
Quote:
Let $ M$ be an interior point of the triangle $ ABC$ with the barycentrical coordinates $ (x,y,z)$ w.r.t. $ \triangle ABC$

$ (x + y + z = 1)$ . Then there is an inequality $ \boxed {\ \left(MA + MB + MC\right)^2\ \le\ 2\cdot \sum \left(b^2z + c^2y - \frac {a^2yz}{y + z}\right)\ }$ .

Proof. For the point $ M(x,y,z)$ denote $ D\in BC\cap AM$ , $ E\in CA\cap BM$ , $ F\in AB\cap CM$ . Since $ AM = (y + z)\cdot AD$

a.s.o. obtain that $ \left(\sum MA\right)^2 =$ $ \left[\sum (y + z)\cdot AD\right]^2\le \sum (y + z)\cdot\sum (y + z)\cdot AD^2 = 2\cdot\sum (y + z)\cdot AD^2 =$

$ 2\cdot\sum\left(b^2z + c^2y - \frac {a^2yz}{y + z}\right)$ . In conclusion $ \left(\sum MA\right)^2\le 2\cdot$ $ \sum\left(b^2z + c^2y - \frac {a^2yz}{y + z}\right)$ with equality iff $ AD = BE = CF$ .

Particular cases.

$ \odot\ M: = H\ \implies\ \left(\sum HA\right)^2\ \le\ a^2 + b^2 + c^2\ \le \ 3\cdot\sum HA^2$ .

$ \odot\ M: = G\ \implies\ \left(\sum GA\right)^2\ \le\ a^2 + b^2 + c^2\ = \ 3\cdot\sum GA^2$ .

$ \odot\ M: = I\ \implies\ \left(\sum IA\right)^2\ \le\ 2abc\cdot\sum\left(\frac 1a - \frac {1}{b + c}\right)\ \le\ a^2 +$ $ b^2 + c^2\ \le\ \ 3\cdot\sum IA^2$ .
This post has been edited 13 times. Last edited by Virgil Nicula, Nov 22, 2015, 10:01 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404397
  • Total comments: 37
Search Blog
a