301. Some trigonometrico-geometrical inequalities.

by Virgil Nicula, Jul 22, 2011, 9:32 PM

PP1. $\triangle\, ABC\ \ \implies\ \ \boxed{\ \cos A\cos B\cos C\le \frac {r^2}{2R^2}\ }$ .

Proof. Prove easily an interesting and nice identity $2\cdot \sum bc-\sum a^2=\sum (a+c-b)(a+b-c)$ .

Apply this identity in $\triangle ABC\ :\ 16S^2=\left\{\begin{array}{c}
2\sum b^2c^2-\sum a^4\\\\
\sum \left(a^2+c^2-b^2\right)\left(a^2+b^2-c^2\right)\\\\
4abc\cdot \sum a\cdot\cos B\cos C\end{array}\right\|\implies$ $\sum a\cdot\cos B\cos C=\frac SR$ . Therefore,

$\frac {S}{R\cos A\cos B\cos C}=$ $\sum\frac {a}{\cos A}=$ $\sum\frac {a^2}{a\cos A}\ge\frac {4s^2}{\sum a\cos A}=$ $\frac {4s^2}{4R\sin A\sin B\sin C}=$ $\frac {2Rs^2}{S}$ $\implies$ $\cos A\cos B\cos C\le\frac {r^2}{2R^2}$ .

Otherwise. Prove easily or is well-known that the powers of $H$ (orthocenter) and $G$ (centroid) w.r.t. the circumcircle $w$ of $\triangle ABC$ are

$p_w(H)=OH^2-R^2=-8R^2\cdot \prod\cos A$ and $p_w(G)=OG^2-R^2=-\frac {a^2+b^2+c^2}{9}$ . Thus, $OH^2=9OG^2\implies$

$8R^2\cdot\prod\cos A=\sum a^2-8R^2=2s^2-2(2R+r)^2\implies$ $\boxed{\prod\cos A=\frac {s^2-(2R+r)^2}{4R^2}}$ . I used $\sum bc=s^2+r^2+4Rr$ .

Using this well-known identity $\prod\, \cos A=\frac {s^2-\left(2R+r\right)^2}{4R^2}$ , our inequality becomes $\frac {s^2-\left(2R+r\right)^2}{4R^2}\, \le\, \frac {r^2}{2R^2}$

i.e. $ s^2$ $-\left(2R+r\right)^2\, \le\, 2r^2\iff$ $\boxed{s^2\, \le\, 4R^2+4Rr+3r^2}$ which is just Gerretsen's inequality. Nice and easy inequality !

Otherwise. If $A\ge 90^{\circ}$ , then $\prod\cos A\le 0<\frac {r^2}{2R^2}$ . Can suppose that $\triangle ABC$ is acute. In this case

$\prod\tan A=\sum\tan A=$ $2\cdot\sum\frac {\sin^2A}{\sin 2A}\stackrel{\mathrm{(C.B.S)}}{\ \ge\ }$ $\frac {2\cdot\left(\sum \sin A\right)^2}{\sum\sin 2A}=$ $\frac {2\cdot\left(\sum \sin A\right)^2}{4\prod \sin A}=$ $\frac {s^2}{R^2}\cdot \frac {R^2}{S}$ $\implies$

$\boxed{\prod\tan A\ge \frac sr}\ (*)$ . Therefore, $\prod\cos A=\frac {\prod\sin A}{\prod\tan A}\ \stackrel{(*)}{\le}\ \frac rs\cdot\prod\sin A=$ $\frac rs\cdot \frac {S}{2R^2}\implies$ $\prod\cos A\le \frac {r^2}{2R^2}$ . See and inequalities


PP2. Prove that in any triangle $ABC$ there are the following inequalities :

(click ==>)
here $\boxed{\frac {R^2-r^2}{R^2}\le \cos^2A+\cos^2B+\cos^2C\le 3\left(1-\frac rR\right)^2}\ (1)$

(click ==>) here $\boxed{\frac {2R^2-2Rr-r^2}{4R^2}\le\sin^{4}\frac{A}{2}+\sin^{4}\frac{B}{2}+\sin^{4}\frac{C}{2}\le\frac{(2R-3r)(2R-r)}{4R^{2}}}\ (2)$ .

Proof. Prove easily that $(2)\iff (1)\iff$ $3\left[1-\left(1-\frac rR\right)^2\right]\le $ $\sum\sin^2A\le 3-\frac {R^2-r^2}{R^2}\iff$ $12\left(2Rr-r^2\right)\le\sum a^2\le 4\left(2R^2+r^2\right)\iff$

$6\left(2Rr-r^2\right)\le s^2-r^2-4Rr\le 2\left(2R^2+r^2\right)\iff$ $\boxed{16Rr-5r^2\le s^2\le 4R^2+4Rr+3r^2}$ - the Gerrretsen's inequality.

Remark. Observe that $4\cdot\sum\sin^4\frac A2=\sum\left(2\sin^2\frac A2\right)^2=$ $\sum\left(1-\cos A\right)^2=$ $3-2\cdot\sum\cos A+\sum\cos^2A=$

$6-\frac {2(R+r)}{R}-\sum\sin^2A=$ $\frac {2(2R-r)}{R}-\frac {\sum a^2}{4R^2}=$ $\frac {2(2R-r)}{R}-\frac {s^2-r^2-4Rr}{2R^2}\implies$ $\boxed{\sum\sin^4\frac A2= \frac {8R^2+r^2-s^2}{8R^2}}$ .

Thus, $\frac {2R^2-2Rr-r^2}{4R^2}\le\sin^{4}\frac{A}{2}+\sin^{4}\frac{B}{2}+\sin^{4}\frac{C}{2}\le\frac{(2R-3r)(2R-r)}{4R^{2}}\iff$ $2\left(2R^2-2Rr-r^2\right)\le $

$\boxed{8R^2+r^2-s^2\le 2\left(4R^2-8Rr+3r^2\right)}\iff$ $16Rr-5r^2\le s^2\le 4R^2+4Rr+3r^2$ - the Gerrretsen's inequality.



PP3. $\triangle\, ABC\ \ \implies\ \ \boxed{\ \sum\frac{\sin B\cdot \sin C}{\sin^2 \frac{A}{2}}\ge 9\ \ \ (1)}$ and $\boxed{\ \sum \frac {\cos^2\frac A2}{\sin^3A}\ge\, \frac 9{4\sin A\sin B\sin C}\ \ \ (2)}$ .

Proof. Show easily that the inequality $(2)$ is equivalently with the inequality $(1)$ .

$\blacktriangleleft (1)\blacktriangleright\ \sum\frac{\sin B\cdot \sin C}{\sin^2 \frac{A}{2}}=$ $\sum\frac {bc}{4R^2}\cdot\frac {bc}{(s-b)(s-c)}\cdot\frac {s(s-a)}{s(s-a)}=$ $\sum\frac {b^2c^2s(s-a)}{4R^2S^2}\cdot\frac {4a^2}{4a^2}=$

$\sum\frac {(abc)^2\cdot 4s(s-a)}{(abc)^2\cdot a^2}=$ $\sum\frac {(b+c)^2-a^2}{a^2}\ge \sum\left(\frac {4bc}{a^2}-1\right)=$ $4\sum\frac {bc}{a^2}-3\ge 4\cdot 3-3=9$ .

$\blacktriangleleft (2)\blacktriangleright$ Using the well known identities $\left\{\begin{array}{c} 
\cos\frac A2=\sqrt{\frac {s(s-a)}{bc}} \\ \\ 
a=2R\sin A\end{array}\right\|$ the given inequality $(2)$ becomes $\sum\, \left[\frac {s(s-a)}{bc}\cdot\frac 1{\frac {a^3}{8R^3}}\right]\, \ge\, \frac 9{4\cdot\frac {abc}{8R^3}}$

$\iff \sum\, \frac {s-a}{a^2}\, \ge\, \frac 9{4s}$ . By Cauchy-Schwarz inequality one has : $\sum\, \frac {s-a}{a^2}=\sum\, \frac {\left(s-a\right)^2}{(s-a)a^2}\, \stackrel{C.S.}{\ge}\, \frac {s^2}{s\sum\, a^2-\sum\, a^3}$

and taking into account that : $\left\{\begin{array}{c}
a^2+b^2+c^2=2(s^2-4Rr-r^2) \\ \\ 
a^3+b^3+c^3=2s(s^2-6Rr-3r^2)\end{array}\right|$ the last inequality is now equivalent to the following :

$\sum\, \frac {s-a}{a^2}\, \ge\, \frac s{4r(R+r)}$ . Consequently, it suffices to show that : $\frac s{4r(R+r)}\, \ge\, \frac 9{4s}\iff s^2\, \ge\, 9Rr+9r^2$ .

But this inequality is true because it is weaker than Gerretsen's inequality i.e. $\ s^2\, \ge\, 16Rr-5r^2$ .



PP4. Prove that the remarkable inequality $\boxed{\ \sum a\cdot\sin\frac A2\ge s\ }$ .

Proof. I"ll use the inequality $\boxed{\sin\frac{A}{2}\leq\frac{a}{b+c}}\ (*)$ and the identity $a=b\cdot\cos C+c\cdot\cos B$ . So, we get $\sum a\cdot \sin\frac{A}{2}\geq\sum (b+c)\sin^{2}\frac{A}{2}=$

$\sum\frac {b+c}{2}\cdot (1-\cos A)=$ $2s-\frac 12\cdot\sum (b+c)\cdot\cos A=$ $2s-\frac 12\cdot \sum (b\cdot\cos C+c\cdot\cos B)=$ $2s-\frac 12\cdot\sum a=2s-s=s$ .


Application. Let $ABC$ be a triangle. Its excircles touch sides $BC$, $CA$ , $AB$ at $D$ , $E$ , $F$

respectively. Prove that the perimeter of triangle $ABC$ is at most twice that of triangle $DEF$ .


Proof 1 (Luisgeometria). Denote the projections $X$ , $Y$ of $E$ , $F$ on exterior $A$-bisector of $\triangle ABC$ . Observe that

$AX=(s-c)\sin\frac A2$ , $AY=(s-b)\sin\frac A2$ and $EF\ge XY=AX+AY=[(s-b)+(s-c)]\cdot \sin \frac A2=$

$a\cdot\sin\frac A2$ . Using the inegality from the proposed problem PP4 obtain that $\sum EF\ge \sum a\cdot\sin\frac A2\ge s$ .

Proof 2 (Zephyredx). Denote $\{U,V\}\subset (BC)$ for which $EU$ , $FV$ are parallely with the (interior) $A$-bisector of $\triangle ABC$ . Prove easily

that $EF\ge UV$ , $CU=BV=\frac {a(s-a)}{b+c}$ and $UV=\frac {a^2}{b+c}$ . In conclusion, $\sum EF\ge \sum\frac {a^2}{b+c}\stackrel{(C.B.S.)}{\ge}\frac {\left(\sum a\right)^2}{\sum (b+c)}=\frac {4s^2}{4s}=s$.

Remark. Observe that $\boxed{EF\ge UV=\frac {a^2}{b+c}\stackrel{(*)}{\ge} a\cdot\sin\frac A2=XY}$ and $\sum EF\ge\sum UV=\sum\frac {a^2}{b+c}\ge \sum XY=\sum a\cdot\sin\frac A2\ge s$ .

$EF^2=(s-b)^2+(s-c)^2-2(s-b)(s-c)\cos A=$ $[(s-b)-(s-c)]^2+2(s-b)(s-c)(1-\cos A)=$ $(b-c)^2+\frac {4(s-b)^2(s-c)^2}{bc}$

$\implies$ $\boxed{EF\ge\frac {2(s-b)(s-c)}{\sqrt {bc}}}$ . If $M$ , $L$ are the midpoints of $[BC]$ , $[EF]$ , then $ML$ is parallely with $A$-bisector of $\triangle ABC$ and $2\cdot LM=EU+FV$ .



PP5. Prove that in any triangle there is the following chain of the equivalencies

$ \boxed {\ \cos\ (B - C)\ \le\ \frac {2bc}{b^2 + c^2} \ \Longleftrightarrow\ A\ \le\ 90^{\circ}\ \ \vee\ \ B = C\ \Longleftrightarrow\ \frac rR\ \le\ \frac {2a(p - a)}{b^2 + c^2}\ \Longleftrightarrow\ \frac {2a(p - b)(p - c)}{p\left(b^2 + c^2\right)}\ \le\ \frac rR\ }$
.

Proof 1.

Show easily that $ \cos (B-C)=\frac {b\cdot\cos B+c\cdot\cos C}{a}$ . Therefore, $ \boxed {\ \cos (B-C)\le\frac {2bc}{b^2+c^2}\ }\Longleftrightarrow$

$ \frac {b^2\cdot 2ac\cdot\cos B+c^2\cdot 2ab\cdot\cos C}{2a^2bc}\le \frac {2bc}{b^2+c^2}$ $ \Longleftrightarrow (b^2+c^2)\left[b^2(a^2+c^2-b^2)+c^2(a^2+b^2-c^2)\right]\le 4a^2b^2c^2$ . Denote

$ \boxed {\ a^2=x\ ,\ b^2=y\ ,\ c^2=z\ }$ . Thus, $ (y+z)\left[x(y+z)+2yz-(y^2+z^2)\right]\le 4xyz\Longleftrightarrow$ $ x(y+z)^2-(y+z)(y-z)^2\le 4xyz$ $ \Longleftrightarrow$

$ x(y-z)^2\le (y+z)(y-z)^2\Longleftrightarrow y=z\ \vee\ x\le y+z$ $ \Longleftrightarrow b=c\ \vee\ a^2\le y^2+z^2\Longleftrightarrow \boxed {\ B=C\ \vee\ A\le 90^{\circ}\ }$ .

Proof 2.

$ \boxed{\ \cos (B - C)\le \frac {2bc}{b^2 + c^2}\ }$ . Add $ 1$ left/right and use the relation $ 1 + \cos x = 2\cos^2\frac x2$ .

$ \Longleftrightarrow\ \left\|\ 2\cos^2\frac {B - C}{2}\le \frac {(b + c)^2}{b^2 + c^2}\ \right\|$ . Multiply by $ 2\sin ^2\frac {B + C}{2} = 2\cos^2\frac A2 > 0$ .

Use the relations $ 2\sin\frac {B + C}{2}\cos\frac {B - C}{2} = \sin B + \sin C$ si $ \cos^2\frac A2 = \frac {p(p - a)}{bc}$ .

$ \Longleftrightarrow\ \left\|\ (\sin B + \sin C)^2\le \frac {(b + c)^2}{b^2 + c^2}\cdot\frac {2p(p - a)}{bc}\ \right\|$ . But $ \sin B = \frac {b}{2R}$ , $ \sin C = \frac {c}{2R}$ .

$ \Longleftrightarrow\ \left\|\ bc\left(b^2 + c^2\right)\le 4R^2\cdot 2p(p - a)\ \right\|$ . Multiply by $ r$ and use the relation $ 4Rpr = abc$ .

$ \Longleftrightarrow\ \left\|\ rbc\left(b^2 + c^2\right)\le R\cdot abc\cdot 2(p - a)\ \right\|$ . Simplify by $ bc > 0$ and $ 2(p - a) = b + c - a$ .

$ \Longleftrightarrow\ \boxed {\frac rR\le\frac {a(b + c - a)}{b^2 + c^2}\ }$ $ \Longleftrightarrow\ \frac {4(p - a)(p - b)(p - c)}{abc}\le \frac {2a(p - a)}{b^2 + c^2}$

$ \Longleftrightarrow\ 2\left(b^2 + c^2\right)(p - b)(p - c)\le a^2bc$ $ \Longleftrightarrow\ \left(b^2 + c^2\right)\left[a^2 - (b - c)^2\right]\le 2a^2bc$

$ \Longleftrightarrow\ a^2\left[\left(b^2 + c^2\right) - 2bc\right]\le\left(b^2 + c^2\right)(b - c)^2$ $ \Longleftrightarrow\ a^2(b - c)^2\le \left(b^2 + c^2\right)(b - c)^2$

$ \Longleftrightarrow\ \boxed {\ B = C\ \ \vee\ \ A\ \le\ 90^{\circ}\ }$ because $ a^2\le b^2 + c^2\ \Longleftrightarrow\ A\ \le\ 90^{\circ}$ .

Remark. For the last one on right side : $ \boxed {\frac {2a(p-b)(p-c)}{p\left(b^2+c^2\right)}\le\frac rR}\Longleftrightarrow$

$ \frac {2a(p - b)(p - c)}{p\left(b^2 + c^2\right)}\le\frac {4(p - a)(p - b)(p - c)}{abc}\Longleftrightarrow$ $ 2a^2bc\le 4p(p - a)(b^2 + c^2)\Longleftrightarrow$

$ 2a^2bc\le \left[(b + c)^2 - a^2\right](b^2 + c^2)$ $ \Longleftrightarrow a^2(b + c)^2\le (b + c)^2(b^2 + c^2)\Longleftrightarrow a^2\le b^2 + c^2$ $ \Longleftrightarrow \boxed {\ A\le 90^{\circ}\ }$ .



PP6. Let $D$, $E$, $F$ be points on the sides $BC$, $CA$, $AB$ respectively of a triangle $ABC$ (distinct from the vertices).
If the quadrilateral $AFDE$ is cyclic, prove that $\frac{ 4\cdot [DEF] }{[ABC] } \leq \left( \frac{EF}{AD} \right)^2$ (Balkan MO - 1992, Greece).


Proof. Denote the second intersection $L$ of $AD$ with the circumcircle $w$ of $\triangle ABC$ . Observe that $DA\cdot DL=DB\cdot DC\implies$

$4\cdot DA\cdot DL\le (DB+DC)^2=BC^2\ (*)$ and $\left\{\begin{array}{ccc}
\widehat{DEF}\equiv\widehat{DAF}\equiv\widehat{LAB}\equiv\widehat{LCB} & \implies & \widehat{DEF}\equiv\widehat{LCB}\\\\
\widehat{DFE}\equiv\widehat{DAE}\equiv\widehat{LAC}\equiv\widehat{LBC} & \implies & \widehat{DFE}\equiv\widehat{LBC}\end{array}\right\|\implies$

$\triangle DEF\sim\triangle LCB\implies$ $\frac {4\cdot [DEF]}{[ABC]}=\frac {4\cdot [DEF]}{[LCB]}\cdot$ $\frac {[LCB]}{[ABC]}=$ $\frac {4\cdot EF^2}{BC^2}\cdot\frac {LD}{AD}=$ $\left(\frac {EF}{AD}\right)^2\cdot\frac {4\cdot DA\cdot DL}{BC^2}\stackrel{(*)}{\le}$ $\left(\frac {EF}{AD}\right)^2$ .



PP7. Prove that in any triangle $ABC$ there is thetrigonometric inequality $\frac {\sin B}{\sin ^2\frac C2}+\frac {\sin C}{\sin^2\frac B2}\ge\frac {4\cos\frac A2}{1-\sin\frac A2}$ .

Proof 1. $\frac {\sin B}{\sin ^2\frac C2}+\frac {\sin C}{\sin^2\frac B2}\ge\frac {4\cos\frac A2}{1-\sin\frac A2}\iff$ $\frac{\frac{2S}{ac}}{\frac{(p-b)(p-a)}{ab}}+\frac{\frac{2S}{ab}}{\frac{(p-c)(p-a)}{ac}}\geq\frac{4\cdot\sqrt{\frac{p(p-a)}{bc}}}{1-\sqrt{\frac{(p-b)(p-c)}{bc}}}\iff$

$\frac{2S}{p-a}\cdot\left[\frac{b}{c(p-b)}+\frac{c}{b(p-c)}\right]\geq\frac{4\cdot\sqrt{p(p-a)}}{\sqrt{bc}-\sqrt{(p-b)(p-c)}}\iff$

$\frac{\sqrt{(p-b)(p-c)}}{p-a}\cdot\left[\frac{b}{c(p-b)}+\frac{c}{b(p-c)}\right]\geq\frac{2\left[\sqrt{bc}+\sqrt{(p-b)(p-c)}\right]}{p(p-a)}\iff$

$p\sqrt{(p-b)(p-c)}\cdot\left[\frac{b}{c(p-b)}+\frac{c}{b(p-c)}\right]\geq2\left[\sqrt{bc}+\sqrt{(p-b)(p-c)}\right]$ , what is the product of these

simple inequalities $p\ge\sqrt{bc}+\sqrt{(p-b)(p-c)}$ and $\sqrt{(p-b)(p-c)}\cdot\left[\frac{b}{c(p-b)}+\frac{c}{b(p-c)}\right]\ge 2$ .



PP8. Let $ABCD$ be a square with circumcircle $\Gamma$. Let $M$ be a point on the minor arc of $AB$. Prove that $\boxed{\ MC\cdot MD\, \ge\, \left(3+2\sqrt 2\right)\cdot MA\cdot MB\ }\ \ (*)$ .

Proof. Suppose w.l.o.g. $AB=1$ and note $\left\{\begin{array}{c}
m\left(\widehat{MCB}\right)=x\\\\
m\left(\widehat{MCA}\right)=y\\\\
x+y=45^{\circ}\end{array}\right|$ . Thus, $\left\{\begin{array}{ccc}
MA=\sqrt 2\cdot \sin y & ; & MB=\sqrt 2\cdot \sin x\\\\
MC=\sin x+\cos x & ; & MD=\sin y+\cos y\end{array}\right|$ .

In conclusion, $\left\{\begin{array}{c}
MA\cdot MB=\cos (x-y)-\frac {\sqrt 2}{2}\\\\
MC\cdot MD=\cos (x-y)+\frac {\sqrt 2}{2}\end{array}\right|\ \implies$ $\boxed{MA\cdot MB+\sqrt 2=MC\cdot MD}$ - an interesting identity.

Observe that $MC\cdot MD\ge \left(3+2\sqrt 2\right)\cdot MA\cdot MB\iff$ $\left[\cos (x-y)+\frac {\sqrt 2}{2}\right]\ge\left(3+2\sqrt 2\right)\left[\cos (x-y)-\frac{\sqrt 2}{2}\right]$

$\iff$ $\cos (x-y)\le 1$ , what is evidently. In my opinion and $\boxed{\frac {MC}{MB}+\frac{MD}{MA}\ge 2\left(1+\sqrt 2\right)}$ is an interesting inequality.



PP9. Let $ABC$ be a triangle and let $\lambda\in\mathbb{R}$ . Prove that the following inequalities hold :

$(1)\blacktriangleright\ \boxed{\cos A+\lambda\left(\cos B+\cos C\right)\, \le\, 1+\frac {\lambda^2}2}$ with equality iff $B=C$ and $\sin\frac A2=\frac {\lambda}{2}$ only for $|\lambda|\le 2$ .

$(2)\blacktriangleright\ \boxed{\cos 2A+\lambda\left(\cos 2B+\cos 2C\right)\, \ge\, -1-\frac {\lambda^2}2}$ with equality iff $B=C$ and $\cos A=\frac {\lambda}{2}$ only for $|\lambda|\le 2$ .


Proof.

$\blacktriangleright (1)\iff$ $1-\cos A-\lambda\left(\cos B+\cos C\right)+\frac {\lambda^2}2\ge 0\iff$ $2\sin^2\frac A2-2\lambda\cos\frac {B-C}{2}\sin\frac A2+\frac {\lambda^2}2\ge 0\iff$ os

$2\left(\sin\frac A2-\frac{\lambda}{2}\cos\frac {B-C}{2}\right)^2+\frac {\lambda^2}{2}\sin^2\frac {B-C}{2}\ge 0$ , what is truly. Observe that have equality if and only if $B=C$ and $\sin \frac A2=\frac {\lambda}{2}$ .

$\blacktriangleright (2)\iff$ $1+\cos 2A+\lambda\left(\cos 2B+\cos 2C\right)+\frac {\lambda^2}2\ge 0\iff$ $2\cos^2A-2\lambda\cos (B-C)\cos A+\frac {\lambda^2}2\ge 0\iff$

$2\left[\cos A-\frac{\lambda}{2}\cos (B-C)\right]^2+\frac {\lambda^2}{2}\sin^2(B-C)\ge 0$ , what is truly. Observe that have equality if and only if $B=C$ and $\cos A=\frac {\lambda}{2}$ .

Remark 1. For $\lambda =1$ obtain the well-known inequalities

$\left\{\begin{array}{c}
\cos A+\cos B+\cos C\le\frac 32=1+4\sin\frac A2\sin\frac B2\sin\frac C2=1+\frac {4(s-a)(s-b)(s-c)}{abc}=1+\frac {4sr^2}{4srR}=1+\frac rR\le\frac 32\\\\
\cos 2A+\cos 2B+\cos 2C=2\cos^2A-1-2\cos (B-C)\cos A=-1-4\cos A\cos B\cos C\ge -\frac 32\end{array}\right\|$ .

Remark 2. If the triangle $ABC$ is acute, then the second inequality rezults from the first by the substitution $\left\{\begin{array}{c}
A:=\pi -2A\\\
B:=\pi -2B\\\
C:=\pi -2C\end{array}\right\|$ .



PP10. Prove that $(\forall )\ \{a,b\}\subset\mathbb R\  , \left|\frac{(a+b)(1-ab)}{(1+a^2)(1+b^2)}\right|\le\frac 12\ (*)$ .

Proof 1. For any $\{a,b\}\subset\mathbb R$ exist unique $\{x,y\}\subset \left(-\frac {\pi}{2},\frac {\pi}{2}\right)$ so that $\left\{\begin{array}{c}
a=\tan x\\\
b=\tan y\end{array}\right\|$ . Our inequality $(*)$ becomes $|\sin 2(x+y)|\le 1$ .

Proof 2. We have $\frac{1}{2}-\frac{(a+b)(1-ab)}{(1+a^2)(1+b^2)}=\frac{1}{2}\frac{(ab+b+a-1)^2}{(1+a^2)(1+b^2)}\geq0$ and $\frac{(a+b)(1-ab)}{(1+a^2)(1+b^2)}+\frac{1}{2}=\frac{1}{2}\frac{(ab-b-a-1)^2}{(1+a^2)(1+b^2)}\geq0$ .

Another similar exercises. $\left\{\begin{array}{ccccc}
1\blacktriangleright & 4\left|x\left(x^2-1\right)\right|\le \left(x^2+1\right)^2 & , & (\forall ) & x\in\mathbb R\ .\\\\
2\blacktriangleright & 8\left|x\left(x^4-6x^2+1\right)\right|\le \left(x^2+1\right)^4 & ,  & (\forall ) &  x\in\mathbb R\ .\\\\
3\blacktriangleright & \left|x\left(x^2-1\right)\left(16x^4-20x^2+5\right)\right|\le 1& ,  & (\forall ) & |x|\le 1\ .\end{array}\right\|$



PP11. Prove that in a triangle $ABC$ thee is the inequality $a^2 + b^2 + c^2 \geq \frac{36}{35}\cdot \left(\frac{abc}{s} + s^2\right)$ , where $2s=a+b+c$ .

Proof 1. Since $abc=4Rrs$ and $a^2+b^2+c^2=2\cdot\left(s^2-r^2-4Rr\right)$ obtain that $a^2 + b^2 + c^2 \geq \frac{36}{35}\cdot \left(\frac{abc}{s} + s^2\right)\iff$

$35\cdot \left(s^2-r^2-4Rr\right)\ge 18\cdot \left(4Rr + s^2\right)\iff$ $\boxed{17s^2\ge 212Rr+35r^2}$ . Using the well-known inequality $s^2\ge 16Rr-5r^2$

remain to show $17\left(16Rr-5r^2\right)\stackrel{?}{\ge}  212Rr+35r^2$ . Indeed, $17\left(16Rr-5r^2\right)\ge  212Rr+35r^2\iff R\ge 2r$ , what is true.

Proof 2 (for any positive numbers a,b,c). $a^2 + b^2 + c^2 \geq \frac{36}{35}\cdot \left(\frac{abc}{s} + s^2\right)\iff$ $35(a+b+c)\left(a^2+b^2+c^2\right)\ge 72abc+9(a+b+c)^3$ .

$\left\{\begin{array}{ccc}
(1) & 3(a+b+c)\left(a^2+b^2+c^2\right)\ge (a+b+c)^3 & \odot \ \ 9\\\\
(2) & (a+b+c)\left(a^2+b^2+c^2\right)\ge 9abc & \odot\ \ 8\end{array}\right\|\ \bigoplus \implies$ $35(a+b+c)\left(a^2+b^2+c^2\right)\ge 72abc+9(a+b+c)^3$ .

The inequality $(2)$ is evidently and the ineguality $(1)$ is equivalently with $3\left[\sum a^3+\sum a^2(b+c)\right]\ge \sum a^3+3\prod (b+c)\iff$

$2\sum a^3+3\sum a^2(b+c)\ge 3\left[2abc+\sum a^2(b+c)\right]\iff$ $a^3+b^3+c^3\ge 3abc$ , what is evidently by A.M-G.M.



PP12. Let $\{x,y,z\}$ be three positive numbers so that $x^2 + y^2 + z^2 = 1$ . Prove that $\frac{x}{x^2+1} + \frac{y}{y^2+1} + \frac{z}{z^2+1}\le\frac {3\sqrt 3}{4}$ .

$\blacktriangleright$ Proof 1. Consider the function $f(t)=\frac {\sqrt t}{t+1}\ ,\ t\in (0,1)$ . Since $f''(t)=\frac {3t^2-6t-1}{4t(t+1)^3\sqrt t}<0$ for any $t\in (0,1)$ obtain

that the function $f$ is concave $\stackrel{(\mathrm{Jensen})}{\implies} \sum\frac {x}{x^2+1}=\sum f\left(x^2\right)\le 3\cdot f\left(\frac {x^2+y^2+z^2}{3}\right)=$ $3\cdot f\left(\frac 13\right)=\frac {3\sqrt 3}{4}$ .



PP13. Prove that $\{x,y,z\}\subset \mathbb R^*_+\implies \left(x + y + z\right)^2 \left(yz + zx + xy\right)^2 \leq$ $ 3\left(y^2 + yz + z^2\right)\left(z^2 + zx + x^2\right)\left(x^2 + xy + y^2\right)$ .

Proof 1. Exist a triangle $ABC$ for $BC=a,CA=b,AB=c$ and point $M$ in it such that $MA=x$ , $MB=y$ , $MC=z$ and $\widehat{AMB}=$

$\widehat{BMC}=\widehat{CMA}=120^{0}$ . We have $c^{2}=x^{2}+y^{2}+xy$ , $b^{2}=$ $z^{2}+x^{2}+zx$ , $a^{2}=$ $y^{2}+z^{2}+yz$ and $xy+yz+zx=\frac{4S}{\sqrt{3}}$

and $(x+y+z)^{2}=\frac{1}{2}\cdot \left(a^{2}+b^{2}+c^{2}+4S\sqrt{3}\right)$. Where $S$ is area of triangle $ABC$ . By $4RS=abc$ we have the relation

$(*)\Leftrightarrow a^{2}+b^{2}+c^{2}+4S\sqrt{3}\leq 18R^{2}$ . But this is truly because $a^{2}+b^{2}+c^{2}\leq 9R^{2}$ and $4S\sqrt{3}\leq a^{2}+b^{2}+c^{2}$ .

Remark. Problem is trivial using inherent properties of the point $M$ (Fermat's point) using $c^{2}=x^{2}+y^{2}+xy$ , $b^{2}=z^{2}+x^{2}+zx$ ,

$a^{2}=y^{2}+z^{2}+yz$ and $xy+yz+zx=\frac{4S}{\sqrt{3}}$ and $4RS=abc$ . The inequality gets reduced to $x+y+z \leq 3R$ , i.e. if $O$ is

the circumcentre, then we have to prove that $MA+MB+MC \leq OA+OB+OC$ , which is true by original definition of

the Fermat's point (a point $P$ inside triangle $ABC$ (with each angle less than $120^{\circ}$) such that $PA+PB+PC$ is minimum).

Proof 2. We have $ 4\left(x^{2} + xy + y^{2}\right) - 3\left(x + y\right)^{2} = \left(x - y\right)^{2}\ge 0$ . Multiplying the inequalities $\left\{\begin{array}{c}
4\left(x^{2} + xy + y^{2}\right)\ge 3\left(x + y\right)^2\\\\
4\left(y^{2} + yz + z^{2}\right)\ge 3\left(y + z\right)^2\\\\
4\left(z^{2} + zx + x^{2}\right)\ge 3\left(z + x\right)^2\end{array}\right\|$

we get $64\left(y^{2} + yz + z^{2}\right)\left(z^{2} + zx + x^{2}\right)\left(x^{2} + xy + y^{2}\right)\ge 27\left(x + y\right)^{2}\left(y + z\right)^{2}\left(z + x\right)^{2}$ .

Thus, it suffices to show that $ 81\left(x + y\right)^{2}\left(y + z\right)^{2}\left(z + x\right)^{2}\ge 64\left(x + y + z\right)^{2}\left(yz + zx + xy\right)^{2}$ $\Longleftrightarrow$

$ 9\left(x + y\right)\left(y + z\right)\left(z + x\right)\ge 8\left(x + y + z\right)\left(ab + bc + ca\right)$ $\Longleftrightarrow $ $x\left(y - z\right)^{2} + y\left(z - x\right)^{2} + z\left(x - y\right)^{2}\ge 0$ .

Proof 3. Be cause of homogeneity normalize it as $z=1$ . Need to prove that $3\left(x^2+y^2+xy\right)\left(1+x^2+x\right)\left(1+y^2+y\right)>(1+x+y)^2(x+y+xy)^2$ .

Put $x+y=u$ and $xy=v$ . On expanding it becomes $3\left(u^2+u^4-2u^2v+u^3+u^2v^2+u^3v-v+v^2-uv-v^3-uv^2\right)\ge$

$\left(u^2+u^4+2u^3+v^2+u^2v^2+2uv^2+2uv+2u^3v+4u^2v\right)\iff$ $\left(2u^4-8u^2v\right)+$ $\left(u^3-4uv\right)+\left(2u^2-8v\right)+$

$\left(u^3v-4uv^2\right) +\left(2u^2v^2-8v^3\right)-$ $\left(2u^2v-8v^2\right)+$ $\left(uv^2+uv+5v+5v^3-6v^2\right)\ge 0\iff$

$\left(u^2-4v\right)\left[2\left(u^2-4v\right)+6v+u+2+uv+2v^2\right]+\left(uv^2+uv\right)+5\left( v3/2-v1/2\right)^2+4v^2\ge 0$ , what is true.



PP14. Let $ABC$ be a triangle. Prove that $\sin A+\sin B+\sin C\le \frac {3\sqrt 3}{2}$ .

Proof 1 (trigonometric). Prove easily that if $\sin\frac {x+y}{2}\ge 0$ , then $\sin x+\sin y=2\cdot\sin\frac {x+y}{2}\cos\frac {x-y}{2}\le 2\cdot\sin\frac {x+y}{2}$ , i.e. $\frac {\sin x+\sin y}{2}\le\sin\frac {x+y}{2}$ .

Therefore, $\left\{\begin{array}{c}
\sin B+\sin C\le  2\cdot\sin \frac{B+C}{2}\\\\
\sin A+\sin 60^{\circ} \le  2\cdot \sin \frac{A+60^{\circ}}{2}\\\\
\sin \frac{B+C}{2}+\sin \frac{A+60^{\circ}}{2}\le 2\cdot\sin \frac{A+B+C+60^{\circ}}{4}\end{array}\right\|\implies$ $(\sin B+\sin C)+\left(\sin A+\sin 60^{\circ}\right)\le $

$2\cdot\sin \frac{B+C}{2}+2\cdot \sin \frac{A+60^{\circ}}{2}\le$ $4\cdot \sin\frac {A+B+C+\frac {\pi}{3}}{4}=4\cdot\sin 60^{\circ}\implies$ $\sin A+\sin B+\sin C\le 3\cdot \sin 60^{\circ}=\frac {3\sqrt 3}{2}$ .

Proof 2 (algebraic/geometric). From the relations $a=2R\sin A$ a.s.o. obtain that $\sum\sin A\le\frac {3\sqrt 3}{2}\iff 2s\le 3R\sqrt 3$ .

Therefore,$\left\{\begin{array}{cccc}
\sum (s-a)\ge 3\cdot\sqrt [3]{\prod (s-a)}\iff s^3\ge 27sr^2 & \iff & \boxed{3r\sqrt 3\le s} & (1)\\\\
3s^2=3\sum r_br_c\le \left(\sum r_a\right)^2=(4R+r)^2 & \iff &  \boxed{s\sqrt 3\le 4R+r} & (2)\end{array}\right\|$ . In conclusion, from the

upper remarkable inequalities obtain the chain $s\sqrt 3\stackrel{(2)}{\le}$ $ 4R+r\stackrel{(1)}{\le} 4R+\frac {s}{3\sqrt 3}\implies$ $9s\le 12R\sqrt 3+s\implies$ $2s\le 3R\sqrt 3$ .See
here.


PP15. Let $ABC$ be a triangle. Prove that $ \sum\left(\frac{c}{b}+\frac{b}{c}\right)\cdot\cos A=3 $ and deduce that $\left\{\begin{array}{ccc}
\cos C+\cos B+\cos A & \le & \frac{3}{2}\\\\
\sin \frac A2\sin\frac B2\sin\frac C2 & \le & \frac{1}{8}\end{array}\right\|$ .

Proof. From the well-known identity $b\cdot\cos C+c\cdot\cos B=a$ obtain that $\frac ba\cdot \cos C+\frac ca\cdot\cos B=1$ .Therefore, obtain similarly $\left\{\begin{array}{c}
\frac ba\cdot \cos C+\frac ca\cdot\cos B=1\\\\
\frac cb\cdot \cos A+\frac ab\cdot\cos C=1\\\\
\frac ac\cdot \cos B+\frac bc\cdot\cos A=1\end{array}\right\|\bigoplus\implies$ $\sum\left(\frac{c}{b}+\frac{b}{c}\right)\cdot\cos A=3 $ .

If $ABC$ is nonobtuse, then from $\frac bc+\frac cb\ge 2$ obtain that $3= \sum\left(\frac{c}{b}+\frac{b}{c}\right)\cdot\cos A\ge 2\sum\cos A\implies$ $\sum\cos A\le \frac 32$ . If $ABC$ is obtuse, then you must find another proof. For example, see lower remark,

where we used only the remarkable inequality $2r\le R$ . Thus, $(-1+\cos A)+(\cos B+\cos C)=$ $-2\sin^2\frac A2+2\cos\frac {B+C}{2}\cos\frac {B-C}{2}=$ $2\sin\frac A2\left(\cos\frac {B-C}{2}-\cos\frac {B+C}{2}\right)=$

$4\sin\frac A2\sin\frac B2\sin\frac C2\implies$ $4\sin\frac A2\sin\frac B2\sin\frac C2=-1+\sum\cos A\le -1+\frac 32=\frac 12\implies$ $\sin\frac A2\sin\frac B2\sin\frac C2\le\frac 18$ .

Remark. $\prod\sin\frac A2=\prod\sqrt{\frac {(s-b)(s-c)}{bc}}=$ $\frac {(s-a)(s-b)(s-c)}{abc}=\frac {sr^2}{4Rsr}=\frac {r}{4R}\le\frac 18$ $\implies$ $\sum\cos A=$ $1+4\prod\sin\frac A2=1+\frac rR\le 1+\frac 12=\frac 32$ .



PP16 Let $ABC$ be a triangle. Prove that $\sum \cos{A}+\sum \cos{2A}=0\iff A=B=C$ .

Proof. Is evidently the implication $A=B=C\implies\sum\cos A+\sum\cos 2A=0$ . Suppose that the relation $\sum \cos A+\sum\cos 2A=0$ is truly. I"ll use

the relations $\boxed{\sum\cos A=1+\frac rR}$ and $\boxed{\sum \cos 2A=-1-4\prod\cos A}$ . I"ll show that $\boxed{\prod\cos A=\frac {s^2-(2R+r)^2}{4R^2}}$ . So $\cos 2A=1-2\sin^2A=$

$1-2\left(\frac {a}{2R}\right)^2\implies$ $\cos 2A=1-\frac {a^2}{2R^2}$ . Thus, $\sum\cos 2A=3-\frac {s^2-r^2-4Rr}{R^2}$ and $4\prod\cos A=$ $-1-\sum\cos 2A=$ $-4+\frac {s^2-r^2-4Rr}{R^2}=$

$\frac {s^2-(2R+r)^2}{R^2}\implies$ $\sum\cos 2A=-1- \frac {s^2-(2R+r)^2}{R^2}$ . In conclusion, $\sum\cos A+\sum\cos 2A=0\implies$ $1+\frac rR-1-\frac {s^2-(2R+r)^2}{R^2}=0$

$\implies$ $s^2=(4R+r)(R+r)$ . Since $s^2\le 4R^2+4Rr+3r^2$ get that $4R^2+5Rr+r^2\le 4R^2+4Rr+3r^2 \iff$ $R\le 2r\implies A=B=C$ .



PP17 Prove that $x+y+z=\frac {\pi}{2}\implies \sin x\sin y\sin z\le\frac 18$ .

Proof 1. $\sin x\sin y\sin z\le\frac 18\iff$ $1-8\sin x\sin y\sin z\ge 0\iff$ $1-4\sin x\left[\cos (y-z)-\sin x\right]\ge 0\iff$ $4\sin^2x-4\sin x\cos (y-z)+1\ge 0\iff$

$\left[2\sin x-\cos (y-z)\right]^2+\sin^2(y-z)\ge 0$ , what is truly. We have equality if and only if $\sin (y-z)=0$ and $2\sin x=\cos (y-z)$ $\iff$ $y=z$ and $x=\frac {\pi}{6}$ , i.e. $x=y=z=\frac {\pi}{6}$ .

Proof 2. $\sin x\sin y\sin z\le \left(\frac {\sin x+\sin y+\sin z}{3}\right)^3\le$ $\sin^3\frac {x+y+z}{3}=\sin^3\frac {\pi}{6}=\frac 18$ . I used AM-GM and the concavity of the function SIN on $\left[0,\frac {\pi}{2}\right]$ .



PP18. Prove that $\boxed{\begin{array}{ccccc}
\cos A+\cos B+\cos C & = & 1+\frac rR & \le & \frac 32\\\\
(*)\ \ \ \ \ \cos A\cos B\cos C & = & \frac {a^2+b^2+c^2}{8R^2}-1 & \le & \frac 18\\\\
\cos 2A+\cos 2B+\cos 2C & = & -1-4\prod\cos A & \ge & -\frac 32\end{array}}$ .

Proof 1. $1-8\prod\cos A=1-4\cos A[\cos (B+C)+\cos (B-C)]=$ $1-4\cos A[-\cos A+\cos (B-C)]=$ $4\cos^2A-4\cos A\cos (B-C)+1=$

$[2\cos A-\cos (B-C)]^2+\sin^2(B-C)\ge 0$ with equality iff $\left\{\begin{array}{c}
\sin (B-C)=0\\\\
2\cos A=\cos (B-C)\end{array}\right|\iff$ $B=C$ and $\cos A=\frac 12\iff$ $ABC$ is an equilateral triangle.

Proof 2. $\sum a^2\left(b^2+c^2-a^2\right)=16S^2\iff$ $\sum a^2\cdot 2bc\cos A=16S^2\iff$ $2abc\sum a\cos A=16S^2\iff$ $8RS=\sum a\cos A=16S^2\iff$ $\boxed{\sum a\cos A=\frac {2S}{R}}$ .

On the other hand, $\left\{\begin{array}{c}
a=b\cos C+c\cos B\\\
b=c\cos A+a\cos C\\\
c=a\cos B+b\cos A\end{array}\right|\bigoplus\implies$ $\left\{\begin{array}{c}
\sum (b+c)\cos A=2s\\\\
\sum a\cos A=\frac {2S}{R}\end{array}\right|\bigoplus\implies$ $2s\sum\cos A=2s\left(1+\frac rR\right)\iff$ $\boxed{\sum\cos A=1+\frac rR}\le \frac 32$

because $R\ge 2r$ . Now suppose w.l.o.g. that $ABC$ isn't obtuse. Then $\prod\cos A\le \left(\frac {\sum\cos A}{3}\right)^3\le \left(\frac {\frac 32}{3}\right)^3\implies$ $\cos A\cos B\cos C\le\frac 18$ .

Proof 3. . Is well-known the inequality $xyz\ge (y+z-x)(z+x-y)(x+y-z)$ , where $\{x,y,z\}\subset\mathbb R^*_+$ . Suppose w.l.o.g. that

$ABC$ isn't obtuse. For $\left\{\begin{array}{c}
x:=a^2\\\
y:=b^2\\\
z:=z^2\end{array}\right|$ obtain that $a^2b^2c^2\ge\prod \left(b^2+c^2-a^2\right)\iff$ $a^2b^2c^2\ge \prod 2bc\cos A\iff$ $(*)$ .

Proof 4. Observe that $\sum \cos 2A=\cos 2A+2\cos (B+C)\cos (B-C)=$ $2\cos^2A-1-2\cos A\cos (B-C)=$ $-1-2\cos A[(\cos (B+C)+\cos (B-C)]\implies$

$\boxed{\sum\cos 2A=-1-4\prod\cos A}$ . Therefore, $\frac{a^2+b^2+c^2}{2R^2}=$ $2\sum\sin^2A=\sum(1-\cos 2A)=$ $4+4\prod\cos A$ . Since $\boxed{OG^2=R^2-\frac {a^2+b^2+c^2}{9}\ge 0}\implies$

$a^2+b^2+c^2\le 9R^2$ obtain that $\boxed{1+\prod\cos A=\frac {a^2+b^2+c^2}{8R^2}}\le\frac 98$ . In conclusion, $\cos A\cos B\cos C\le\frac 18$ .

Remarks. $\boxed{\sum\cos 2A=-1-4\prod\cos A\ge -\frac 32}$ and $\cos A\cos B\cos C\le \frac 2{27}\left(\frac S{R^2}\right)^2$ $=\prod\frac {1-\cos 2A}{3}\le\frac 12$ .
This post has been edited 130 times. Last edited by Virgil Nicula, Nov 21, 2015, 7:43 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404397
  • Total comments: 37
Search Blog
a