153. Geometrical minimum/maximum.

by Virgil Nicula, Oct 11, 2010, 6:13 PM

PP1. Consider $\triangle ABC$ and for a mobile point $M$ construct the parallelogram $AXMY$ , where $\begin{array}{c}
 X\in AC\ ,\ MX\parallel AB\\\
 Y\in AB\ ,\ MY\parallel AC\end{array}$ . Find $\max\ [AXMY]$ and prove that

$\boxed{XY\ge\frac {S}{m_a}}$ , where $S=[ABC]$ and $m_a$ is the length of the $A$-median. Deduce $\left\{\begin{array}{c}
b^2+c^2\le 4Rm_a\\\
m_al_a\ge s(s-a)\end{array}\right\|$ , where $l_a$ is the length of the $A$-angle bisector.


Proof. Denote the midpoint $D$ of the side $[BC]$ and $\left\|\begin{array}{c}
Z\in MY\cap AD\\\
T\in MX\cap AD\end{array}\right\|$ . Observe that $\frac {MX}{AC}+\frac {MY}{AB}=\frac {BM}{BC}+\frac {CM}{CB}=1$ , i.e. $\boxed{\frac {MX}{AC}+\frac {MY}{AB}=1}$ . Thus,

the area $[AXMY]=MX\cdot MY\cdot\sin A$ is maximum $\iff$ $\frac {MX}{AC}\cdot\frac {MY}{AB}$ is maximum $\iff$ $\frac {MX}{AC}=\frac {MY}{AB}=\frac 12$ , i.e. $M\equiv D$ and in this case $[AXMY]=\frac S2$ .

IF $M\in (BD)\implies$ $\frac {ZY}{AB}=$ $\frac {MY-MZ}{AB}=$ $\frac {MY}{AB}-\frac {MZ}{AB}=$ $\frac {MC}{BC}-\frac {MD}{BD}=$ $\frac {MC-2\cdot MD}{BC}=$ $\frac {DC-MD}{BC}\frac {MB}{BC}=\frac {BX}{AB}=$ $\implies$ $\frac {ZY}{AB}=\frac {BX}{AB}$ .

IF $M\in (DC)\implies$ $\frac {ZY}{AB}=$ $\frac {ZM+MY}{AB}=$ $\frac {ZM}{AB}+\frac {MY}{AB}=$ $\frac {DM}{DB}+\frac {CM}{BC}=$ $\frac {CM+2\cdot DM}{BC}=$ $\frac {DM+DC}{BC}=\frac {BM}{BC}=\frac {BX}{AB}$ $\implies$ $\frac {ZY}{AB}=\frac {BX}{AB}$ .

In conclusion, for any $M\in (BC)$ have $YZ=XB$ , i.e. the quadrilateral $BXYZ$ is a parallelogram. Therefore, $XY$ is minimum $\iff$ $BZ$ is minimum $\iff$

$BZ\perp AD$ and in this case $S=2\cdot [ABD]=m_a\cdot XY$ $\iff$ $XY=\frac {S}{m_a}$ .

Particular cases.

$\blacktriangleright$ If $M$ is the foot of the $A$-symmedian, then $XY=\frac {abc}{b^2+c^2}$ and $\frac {S}{m_a}\le \frac {abc}{b^2+c^2}$ , i.e. $b^2+c^2\le 4Rm_a$ and $a^2+b^2+c^2\le$ $ 2R\left(m_a+m_b+m_c\right)\le$ $ 3R\sqrt {a^2+b^2+c^2}$ because $\left(m_a+m_b+m_c\right)^2\le 3\left(m_a^2+m_b^2+m_c^2\right)=\frac 94\cdot \left(a^2+b^2+c^2\right)$ .

$\blacktriangleright$ If $M$ is the foot of the $A$-angle bisector, then $XY=\l_a\cdot \tan\frac A2\ge \frac {S}{m_a}$ $\iff$ $m_al_a\ge S\cdot\tan\frac A2$ $\iff$ $m_al_a\ge s(s-a)$ and $m_al_a+m_bl_b+m_cl_c\ge s^2$ .

Remark. In the first case (from the proof) $C\in XZ$ $\iff$ $MC^2=MB\cdot BC$ and in the second case $B\in TY$ $\iff$ $MB^2=MC\cdot BC$ ("mean and extreme ratio").



PP2. Prove that the symmedian center (Lemoine's point) $S$ of a triangle $ABC$ is the point $M$ for which $\delta_{BC}^2M+\delta_{CA}^2M+\delta_{AB}^2M$ is minimum (Grebe).

Proof. Denote the distancies from $M$ to the sidelines $BC$ , $CA$ , $AB$ respectively. From the evident relation $ax+by+cz=2S$ , where $S=[ABC]$ and the C.B.S. - inequality obtain $4S^2\le \left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)$ $\iff$ $x^2+y^2+z^2\ge\frac {4S^2}{a^2+b^2+c^2}$ with equality iff $\frac xa=\frac yb=\frac zc=$ $\frac {2S}{a^2+b^2+c^2}\ (*)$ . Prove easily

that the point $M$ which verifies the relations $(*)$ is the Lemoine's point $L$ . Indeed, if $D\in AL\cap BC$ , then for any point $M$ of the $A$-symmedian have $\frac zy=\frac {\delta_{AB}M}{\delta_{AC}M}=$

$\frac {\delta_{AB}D}{\delta_{AC}D}=$ $\frac bc\cdot \frac {[ASB]}{[ASC]}=$ $\frac bc\cdot\frac {SB}{SC}=$ $\frac bc\cdot\frac {c^2}{b^2}=\frac cb$ , i.e. $\frac yb=\frac zc$ a.s.o.



PP3. Consider an angle $\widehat{XOY}$ and a fixed point $A\in\left(\widehat{XOY}\right)$ . Find the positions of $M\in (OX$ , $N\in (OY$ so that $A\in MN$ and the area $[MON]$ is minimum.

Proof. Denote $\left\|\begin{array}{ccc}
U\in (OX & , & AU\parallel OY\\\\
V\in (OY & , & AV\parallel OX\end{array}\right\|$ and $[OAU]=[OAV]=a$ , $[MAU]=x$ and $[NAV]=y$ . Observe that $\left\|\begin{array}{c}
\frac xa=\frac {UM}{UO}=\frac {AM}{AN}\\\\
\frac ya=\frac {VN}{VO}=\frac {AN}{AM}\end{array}\right\|\ \ \odot$ $\implies$

$ xy=a^2$ . Area $[MON]=(2a+x+y)$ is minimum $\iff$ $(x+y)$ is minimum $\iff$ $x=y=a$ because $xy=a^2$ , i.e. $AM=AN$ .

Remark. For finding the positions of $M\in (OX$ , $N\in (OY$ for which $AM=AN$ construct the symmetric $B$ of $O$ w.r.t. $A$ and afterwards

construct $M$ , $N$ for which $OMBN$ is a parallelogram. Otherwise, construct the parallel line through the point $A$ (fixed) to the line $UV$ (fixed).


Quote:
Proposed problem. Let an angle $\widehat{XOY}$ and a fixed inner point $A$ of $\widehat{XOY}$ . Find the positions of $M\in (OX$ , $N\in (OY$ so that $A\in MN$ and $[MN]$ is minimum.
Proof (analytic). Consider $O(0,0)$ , $A(a,b)$ , line $y=\frac 1m\cdot x$ and $N(x,0)$ , $M(my,y)$ where $m<\frac ab$ . If $m(\widehat {MON})=\phi$ , then $\cos\phi=\frac {m}{\sqrt{1+m^2}}$ . Observe that

$x>a-mb>0$ , $y>b>0$ and $A\in MN$ $\iff$ $\left|\begin{array}{ccc}
a & b & 1\\\
x & 0 & 1\\\
my & y & 1\end{array}\right|=0$ $\iff$ $\boxed{\frac {a-mb}{x}+\frac by=1}$ . Thus $MN^2=x^2+(m^2+1)y^2-2mxy$ . See
CLIV


PP4. Prove that in any triangle $ABC$ there is the inequality $m_a\left(bc-a^2\right)+m_a\left(ca-b^2\right)+m_c\left(ab-c^2\right)\ge 0$ .

Proof. Denote the centroid $G$ and the midpoints $D$ , $E$ , $F$ of the sides $[BC]$ , $[CA]$ , $[AB]$ respectively. Apply the Ptolemeu's inequality for the

quadrilaterals $AEGF$ , $BDGF$ , $CEGD$ and obtain $\left\|\begin{array}{cc}
2am_a\le cm_b+bm_c & \odot\ a\\\
2bm_b\le am_c+cm_a & \odot\ b\\\
2cm_c\le bm_a+am_b & \odot\ c\end{array}\right\|\ \bigoplus\ \implies \sum m_a\left(bc-a^2\right)\ge 0$ .


PP5. Let $ABC$ be a triangle. Consider the points $M\in (BC)$ , $N\in (CA)$ , $P\in (AB)$ so that $\frac {MB}{MC}=m$ , $\frac {NC}{NA}=n$ , $\frac {PA}{PB}=p$ and $mnp=1$ .

The cevians $AM$ , $BN$ , $CP$ meet again the circumcircle of $\triangle ABC$ in the points $M'$ , $N'$ , $P'$ respectively. Prove that $\frac {MA}{MM'}+\frac {NB}{NN'} +\frac {PC}{PP'}\ge$

$ -3+2\cdot \left[\sqrt {\frac {(m+1)(p+1)}{m}}+\sqrt {\frac {(m+1)(n+1)}{n}}+\sqrt {\frac {(n+1)(p+1)}{p}}\right]\ge$ $-3+4\cdot \left[\sqrt {\frac {p+1}{m+1}}+\sqrt {\frac {m+1}{n+1}}+\sqrt {\frac {n+1}{p+1}}\right]\ge 9$ .
This post has been edited 67 times. Last edited by Virgil Nicula, Nov 22, 2015, 9:14 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404397
  • Total comments: 37
Search Blog
a