308. Some nice and easy properties in a triangle.

by Virgil Nicula, Aug 8, 2011, 2:10 AM

PP1. Let an acute $\triangle ABC$ with orthocenter $H$ . Let midpoints $E$ , $F$ of $[AC]$ , $[AB]$ . Prove that $AH$ is radical axis of circles with diameters $[BE]$ , $[CF]$ .

Let the circles $\left\{\begin{array}{c}
y=C\left(Y,\frac {m_b}{2}\right)\\\\
z=C\left(Z,\frac {m_c}{2}\right)\end{array}\right\|$ with diameters $[BE]$ , $[CF]$ , where $Y$ , $Z$ are the midpoints of $[BE]$ , $[CF]$ . Let $\left\{\begin{array}{c}
N\in BH\cap AC\\\\
P\in CH\cap AB\end{array}\right\|$ and the power $p_w(X)$ of $X$ w.r.t. $w$ .

Proof 1. $\left\{\begin{array}{c}
N\in y\implies p_y(H)=\overline{HB}\cdot \overline{HN}\\\\
 P\in z\implies p_z(H)=\overline{HC}\cdot \overline{HP}\end{array}\right\|$ $\implies$ $p_y(H)=p_z(H)=\overline{HA}\cdot \overline{HM}$ , $M\in AH\cap BC$ and $\left\{\begin{array}{ccc}
N\in y\implies p_y(A)=\overline{AN}\cdot \overline{AF}=c\cdot\cos A\cdot\frac b2=\frac {bc\cdot\cos A}{2}\\\\ 
P\in z\implies p_z(A)=\overline{AP}\cdot \overline{AF}=b\cdot\cos A\cdot\frac c2=\frac {bc\cdot\cos A}{2}\end{array}\right\|$

$\implies$ $p_y(A)=p_z(A)=\frac {bc\cdot\cos A}{2}$ . Thus, $A$ and $H$ belong to the radical axis of $y$ , $z$ , i.e. $AH$ is the radical axis of $y$ , $z\ .$

Proof 2. $4p_y(H)=4\cdot HY^2-m_b^2=$ $2\cdot \left(HB^2+HE^2-m_b^2\right)=$ $2\left[HB^2+HN^2-\left(m_b^2-NE^2\right)\right]=$ $2\left(HB^2+HN^2-BN^2\right)=$

$2\left[\left(HB+HN\right)^2-2\cdot HB\cdot HN-BN^2\right]=-4\cdot HB\cdot HN\implies$ $p_y(H)=-HB\cdot HN$ . Prove analogously that $p_z(H)=-HC\cdot HP$ .

Since $HB\cdot HN=HC\cdot HP$ obtain that $H$ belongs to the radical axis of $y\ ,\ z$ . On the other side $4\cdot p_y(A)=4\cdot AY^2-m_b^2=$ $2\left(c^2+\frac {b^2}{4}-m_b^2\right)=$

$2c^2+\frac {b^2}{2}-\frac {2\left(a^2+c^2\right)-b^2}{2}=$ $2c^2+b^2-a^2-c^2\implies$ $p_y(A)=\frac 14\cdot\left(b^2+c^2-a^2\right)$ . Prove analogously that $p_z(A)=\frac 14\cdot\left(b^2+c^2-a^2\right)$ . Since

$p_y(A)=p_z(A)=\frac {bc\cdot\cos A}{2}$ obtain that $A$ belongs to the radical axis of $y$ , $z$ . Thus, $AH$ is the radical axis of $y$ , $z$ .



An easy extension. In $\triangle ABC$ let $\{E,N\}\subset (AC)$ and $\{F,P\}\subset (AB)$ so that $EF\parallel BC$ and $BCNP$

is cyclically. Let $L\in BN\cap CP$ . Prove that $AL$ is the radical axis of the circumcircles for $\triangle BEN$ and $\triangle CFP$ .


Proof. Denote the circumcircles $y$ , $z$ of $\triangle BEN$ , $\triangle CFP$ and the circumcircle $w$ of $BCNP$ . Observe that $\left\{\begin{array}{ccc}
N\in y & \implies & p_y(L)=\overline{LB}\cdot \overline{LN}\\\\
 P\in z & \implies & p_z(L)=\overline{LC}\cdot \overline{LP}\end{array}\right\|$ $\implies$

$p_y(L)=p_z(L)=p_w(L)$ . Thus, $L$ is the radical center of $y$ , $z$ and $w$ . Particularly, $L$ belongs to the radical axis of $y$ and $z$ . Let $p_w(L)=\overline{AN}\cdot \overline{AC}=\overline{AP}\cdot \overline{AB}=k$

and the common ratio $\frac {AE}{b}=\frac{AF}{c}=l$ . Thus, $\left\{\begin{array}{ccc}
N\in y & \implies & p_y(A)=\overline{AN}\cdot \overline{AE}=\frac kb\cdot AE\\\\ 
P\in z & \implies & p_z(A)=\overline{AP}\cdot \overline{AF}=\frac kc\cdot AF\end{array}\right\|$ $\implies$ $p_y(A)=p_z(A)=kl$ . In conclusion, $A$ and $L$ belong

to the radical axis of the circles $y$ , $z$ , i.e. the line $AL$ is the radical axis of the circles $y$ , $z$ .



PP2 (Cono Sur M.O. - 2007). Let $ABC$ be an acute triangle with the orthocenter $H$ and the orthic triangle $DEF$ , where $D\in BC$ , $E\in CA$ , $F\in AB$ .

Denote midpoint $M$ of $[BC]$ , the circumcircle $w$ of $\triangle AEF$ , $\{A,N\}=AM\cap w$ , $Q\in BN\cap AD$ and $P\in AM\cap CF$ . Prove that $PQ\parallel BC$ .


Proof 1 (synthetic - Sunken Rock). Denote the diameter $[AS]$ in the circumcircle $w=C(O,R)$ of $\triangle ABC$ and the reflection $A^{\prime}$ of $A$ about the midpoint $M$ of $[BC]$ . Observe that

$ABA^{\prime}C$ is evidently a parallelogram, the quadrilateral $BA^{\prime}CH$ is cyclically, where $HA^{\prime}$ ia a diameter of its circumcircle. Since $AH$ and $AS$ are isogonal w.r.t. $\angle BAC$ obtain that

$AHA^{\prime}D$ is a parallelogram as well. So $\angle NBH=\angle NA^{\prime}H=$ $\angle SAM=$ $\angle CAM-\angle CAS=$ $\angle CAM-\angle HAB\ \ (1)$ . From $\triangle ABQ\ :\ \angle AQN=$ $\angle HQN=$

$\angle BAH+\angle ABQ=$ $\angle BAH+$ $\angle ABH+\angle HBN$ . With relation $(1)$ obtain that $\angle HQN=$ $\angle BAH+90^\circ- $ $A+$ $\angle CAM-$ $\angle BAH=$ $\angle CAM+$ $90^\circ-A \ \ (2)$ . Similarly, from

$\triangle ACP\ :\ \angle APH=$ $\angle NPH=$ $\angle CAM+$ $90^\circ-A=$ $\angle NQH$ . So the quadrilateral $HQPN$ is cyclically, but $HDMN$ is cyclic as well. Hence $PQ\parallel BC$ .


Proof 2 (metric). Prove easily that $ME$ and $MF$ are the tangents from the point $M$ to the circle $w$ and $ME=\frac a2$ . From the power $p_w(M)$ of $M$ w.r.t. $w$ obtain that $MN\cdot MA=ME^2$

i.e. $MN=\frac {a^2}{4m_a}$ and $NA=m_a-MN=\frac {4m_a^2-a^2}{4m_a}=\frac {2\left(b^2+c^2-a^2\right)}{4m_a}$ $\implies$ $\frac {NA}{NM}=\frac {2\left(b^2+c^2-a^2\right)}{a^2}\ (1)$ .Apply the Menelaus' theorem to the transversal $\overline {BQN}$ and

$\triangle ADM\ :\ \frac {BD}{BM}\cdot \frac {NM}{NA}\cdot\frac {QA}{QD}=1$ $\iff$ $\frac {QA}{QD}=$ $\frac {BM}{BD}\cdot \frac {NA}{NM}\stackrel{(1)}{=}$ $\frac {\frac a2}{c\cdot\cos B}\cdot\frac {2\left(b^2+c^2-a^2\right)}{a^2}\implies$ $\boxed{\frac {QA}{QD}=\frac {2\left(b^2+c^2-a^2\right)}{a^2+c^2-b^2}}\ (2)$ . Denote the point $S$ for which $SA\parallel BC$ .

Observe that $\frac {SA}{BC}=\frac {FA}{FB}\implies$ $\frac {SA}{a}=\frac {b\cdot\cos A}{a\cdot\cos B}\implies$ $SA=\frac {b\cdot\cos A}{\cos B}$ . Therefore, $\frac {PA}{PM}=\frac {SA}{MC}=$ $\frac {\frac {b\cdot\cos A}{\cos B}}{\frac a2}=\frac {2b\cdot\cos A}{a\cdot\cos B}\cdot \frac {2c}{2c}\implies$ $\boxed{\frac {PA}{PM}=\frac {2\left(b^2+c^2-a^2\right)}{a^2+c^2-b^2}}\ (3)$ .

In conclusion, from the relations $(2)$ and $(3)$ obtain that $PQ\parallel BC$ .



PP3. Let $\triangle ABC$ with circumcircle $\mathbb C(O,R)$ . Its bisectors meet again $C(O,R)$ in $A'$ , $B'$ , $C'$ , i.e. its

incenter $I\in AA'\cap BB'\cap CC'$ . Prove that $\frac{1}{[BA'C]}+\frac{1}{[CB'A]}+\frac{1}{[AC'B]} \ge\ \frac{9}{[ABC]}$ .


Proof. I"ll use the well-known relations $\left\{\begin{array}{cc}
[BA'C]=\frac {ra^2}{4(s-a)} & (1)\\\\
\sum a^2(s-a)=4sr(R+r) & (2)\\\\
\frac {s^2}{r}\ge 16R-5r\ge 9(R+r) & (3)\end{array}\right|$ . Thus, $\sum\frac {1}{[BA'C]}\ \stackrel{(1)}{=}\ \frac 4r$ $\cdot\sum\frac {s-a}{a^2}\ =\ \frac 4r$ $\cdot\sum\frac {(s-a)^2}{a^2(s-a)}\ \stackrel{\mathrm{(C.B.S)}}{\ge }$

$\frac 4r$ $\cdot\frac {s^2}{\sum a^2(s-a)}\ \stackrel{(2)}{=}\ \frac 4r$ $\cdot \frac {s^2}{4sr(R+r)}\ =$ $\frac {s}{r^2(R+r)}\ =\  \frac {s^2}{9r(R+r)}$ $\cdot\frac 9S\ \stackrel{(3)}{\ge}\ \frac {16R-5r}{9(R+r)}$ $\cdot\frac 9S\ =\ \left(1+\frac 79\cdot\frac {R-2r}{R+r}\right)$ $\cdot\frac 9S\ \ge\ \frac 9S$ , where

$S=[ABC]$ is the area of $\triangle ABC$ . So $\boxed{\ \sum\frac {1}{[BA'C]}\ \ge\ \ \left(1+\frac 79\cdot\frac {R-2r}{R+r}\right)\cdot\frac {9}{[ABC]}\ \ge\ \frac {9}{[ABC]}\ }$ .

Remark. $\sum a^2(s-a)=4sr(R+r)\ \iff\ \sum\frac {a^2}{r_a}=4(R+r)$ . Using C.B.S. - inequality obtain that $4(R+r)\ge \frac {4s^2}{4R+r}$ , i.e. $s^2\le (R+r)(4R+r)$ .



PP4. Let $G$ be the centroid of $\triangle ABC$ and $S$ the symmedian point. Show that $\frac{AS}{AG}+\frac{BS}{BG}+\frac{CS}{CG}\le 3$ .

Proof. Denote the midpoint $M$ of the side $[BC]$ and $N\in AS\cap BC$ . Is well-known that $\frac {NB}{c^2}=\frac {NC}{b^2}=\frac {a}{b^2+c^2}$ . Apply van Aubel's relation to $S\ :\ \frac {AS}{b^2+c^2}=\frac {SN}{a^2}=\frac {AN}{a^2+b^2+c^2}$ .

Denote $AM=m_a\ ,\ AN=s_a\ ,\ m\left(\widehat{BAN}\right)=$ $m(\left(\widehat{CAM}\right)=\phi$ . Apply the Sinus' theorem to the triangles $:\ \left\{\begin{array}{cc}
\triangle MAC\ : & \frac {MC}{\sin \phi}=\frac {m_a}{\sin C}\\\\
\triangle NAB\ : & \frac {s_a}{\sin B}=\frac {NB}{\sin\phi}\end{array}\right|\ \bigodot\ \implies\ \frac {s_a}{m_a}=\frac {2bc}{b^2+c^2}\implies$

$\frac {AS}{AG}=$ $\frac {\frac {s_a\left(b^2+c^2\right)}{a^2+b^2+c^2}}{\frac {2m_a}{3}}=$ $\frac {3\left(b^2+c^2\right)}{2\left(a^2+b^2+c^2\right)}\cdot\frac {s_a}{m_a}=$ $\frac {3\left(b^2+c^2\right)}{2\left(a^2+b^2+c^2\right)}\cdot\frac {2bc}{b^2+c^2}=$ $\frac {3bc}{a^2+b^2+c^2}$ a.s.o. $\implies$ $\sum\frac {AS}{AG}=\frac {3(ab+bc+ca)}{a^2+b^2+c^2}\le 3$ .



PP5. Let $\triangle ABC$ with circumcircle $w$ . Let $P\in AA\cap BC$ , the midpoint $M$ of $[AP]$ and $\{B,R\}=MB\cap w$ , $\{R,S\}=PR\cap w$ . Prove that $AP\parallel CS$ (V.N.).

Proof. $MP=MA\iff$ $MP^2=MA^2\iff MP^2=MB\cdot MR\iff$ $\triangle MPB\sim\triangle MRP\implies$

$\widehat{MPB}\equiv\widehat{MRP}\iff$ $\widehat{MPC}\equiv\widehat{BAS}\equiv$ $\widehat{BCS}\equiv\widehat{PCS}\implies$ $\widehat{MPC}\equiv$ $\widehat{PCS}\implies AP\parallel CS$



PP6. Let an isosceles $\triangle ABC$ with $b=c$ and a mobile $P\in BC$ so that $B\in (CP)$ . Let the incircle $w_1=C\left(I_1,r_{1}\right)$

of $\triangle APB$ and the $P$-excircle $w_2=C\left(I_2,r_{2}\right)$ of $\triangle APC$ . Prove that the sum $r_{1}+r_{2} $ is constant.


Proof. Denote the incircle $w=C(I,r)$ of $\triangle ABC\ ,\ D\in w\cap BC$ and the tangent points $\left\{\begin{array}{cc}
U\in w_1\cap BC\ ; & BU=u\\\\
V\in w_2\cap BC\ ; & CV=v\end{array}\right\|$ . Observe that

$\left\{\begin{array}{c}
2u=PB+c-PA\\\\
2v=PA+b-PC\\\\
a=PC-PA\end{array}\right\|$ $\bigoplus\implies \boxed{u+v=s-a}\ (*)$ . Thus, $\left\{\begin{array}{ccccccc}
\triangle BI_1U\sim\triangle IBD & \implies & \frac {BU}{ID}=\frac {I_1U}{BD} & \implies & \frac ur=\frac {r_1}{\frac a2} & \implies & 2rr_1=au\\\\
\triangle CI_2V\sim\triangle ICD & \implies & \frac {CV}{ID}=\frac {I_2V}{CD} & \implies & \frac vr=\frac {r_2}{\frac a2} & \implies & 2rr_2=av\end{array}\right\|$ $\bigoplus\stackrel{(*)}{\implies} $

$2r\left(r_1+r_2\right)=a(s-a)\implies$ $r_1+r_2=\frac {\frac a2}{\tan\frac A2}=\frac {BD}{\tan\frac A2}=AD\implies$ $r_1+r_2=h_a$ (constant)..



An easy extension. Let $\triangle ABC$ and a line $d$ so that $A\in d$ and $P\in BC\cap d\ ,\ B\in (PC)$ . Denote

the inradius $r_1$ of $\triangle APB$ and the $P$-exradius $r_2$ of $\triangle APC$ . Prove that $\frac {r_1}{s-b}+\frac {r_2}{s-c}=\cot\frac A2$ .


Proof 1. Let the incircle $w=C(I,r)$ of $\triangle ABC\ ,\ D\in w\cap BC$ , the incircle $w_1=C\left(I_1,r_1\right)$ of $\triangle APB$ , the $P$-excircle $w_2=C\left(I_2,r_2\right)$ of $\triangle APC$ and the

tangent points $\left\{\begin{array}{cc}
U\in w_1\cap BC\ ; & BU=u\\\\
V\in w_2\cap BC\ ; & CV=v\end{array}\right\|$ . Thus, $\left\{\begin{array}{ccccc}
\triangle I_1BU\sim\triangle BID & \implies & \frac {I_1U}{BD}=\frac {BU}{ID} & \implies & \frac {r_1}{s-b}=\frac ur\\\\
\triangle I_2CV\sim\triangle CID & \implies & \frac {I_2V}{CD}=\frac {CV}{ID} & \implies & \frac {r_2}{s-c}=\frac vr\end{array}\right\|$ $\implies$ $\frac {r_1}{s-b}+\frac {r_2}{s-c}=\frac {u+v}{r}\ (*)$ .

In conclusion, $\left\{\begin{array}{c}
2u=BX+BA-AX\\\\
2v=AX+AC-CX\\\\
BC=CX-BX\end{array}\right\|\bigoplus$ $\implies$ $2(u+v)+BC=BA+AC\implies$ $u+v=s-a\stackrel{(*)}{\implies}$ $\frac {r_1}{s-b}+\frac {r_2}{s-c}=\frac {s-a}{r}\implies$

$r_1\tan\frac B2+r_2\tan\frac C2=r\cot\frac A2\implies$ $\boxed{\frac {r_1}{s-b}+\frac {r_2}{s-c}=\cot\frac A2}\implies$ $r_1(s-c)+r_2(s-b)=rs$ . Remark that $b=c\implies r_1+r_2=h_a$ .

Proof 2. The incircle $C(I_{1},r_{1})$ of $\triangle APB$ touches its sides in $X\in (AP)\ ,\ U\in (PB)\ ,\ R\in (AB)$ . The $P$- exincircle $C(I_{2},r_{2})$ of $\triangle APC$ touches its sidelines in

$Y\in AP\ ,\ V\in PC\ ,\ S\in (AC)$ . Denote $AX=AR=x$ , $AY=AS=y$ . Thus, $BR=BU=c-x$ , $CS=CV=b-y$ and $UV=UB+BC+CV$ $\Longrightarrow$

$UV=(c-x)+a+(b-y)=$ $2s-(x+y)$ . From the relation $XY=UV$ obtain $x+y=2s-(x+y)$ , i.e. $\boxed{\ x+y=s\ }\ \ (1)$ . From the right $\triangle BI_{1}U$ obtain

$\tan\frac{B}{2}=\frac{RB}{RI_{1}}=\frac{c-x}{r_{1}}$, i.e. $\boxed{\ x=c-r_{1}\tan\frac{B}{2}\ }\ \ (2)$ . From the right triangle $CI_{2}V$ obtain $\tan\frac{C}{2}=\frac{VC}{VI_{2}}=\frac{b-y}{r_{2}}$, i.e. $\boxed{\ y=b-r_{2}\tan\frac{C}{2}}\ \ (3)$ . Adding $(2)\ ,\ (3)$

and using $(1)$ obtain $\boxed{\ r_{1}\tan\frac{B}{2}+r_{2}\tan\frac{C}{2}=s-a\ }\ \ (*)$ $\frac{p-c}{\tan \frac{B}{2}}=\frac{p-b}{\tan\frac{C}{2}}=\frac {S}{p-a}\iff$ $r_{1}(p-c)+r_{2}(p-b)=S$ $\Longrightarrow$ $\frac{r_{1}}{p-b}+\frac{r_{2}}{p-c}=\frac{S}{(p-b)(p-c)}\iff$

$\boxed{\ \frac{r_{1}}{p-b}+\frac{r_{2}}{p-c}=\cot\frac{A}{2}\ }$ .



PP7. Let $ I $ be the incenter of $\triangle ABC $ and let $w_a $ be the $A$-exincircle which touches $ BC $ at $ D $ . If $ ID $ meets $w_a $ again at $ S $ , then prove that $ DS $ bisects $ \angle BSC $ .

Proof. Suppose w.l.o.g. $b\ne c$ . Denote $L\in BC$ for which $IL\perp BC$ and $N\in BC$ so that $D$ , $N$ are harmonical conjugate w.r.t the pair $\{B,C\}$ , i.e. $\frac {NB}{NC}=\frac {DB}{DC}=\frac {s-c}{s-b}$ . Prove

easily that $DN=\frac {2(s-b)(s-c)}{|b-c|}$ and $\boxed{DN\cdot DL=2(s-b)(s-c)}\ (1)$ . Observe that $DI\cdot DS=ID\cdot (IS-ID)=$ $p_{w_a}(I)-ID^2=$ $II_a^2-r_a^2-r^2-(b-c)^2=$

$\frac {a^2}{s^2}\cdot AI_a^2-r_a^2-r^2-(b-c)^2=$ $\frac {a^2}{s^2}\cdot\left(s^2+r_a^2\right)-r_a^2-r^2-(b-c)^2=$ $4(s-b)(s-c)+$ $\frac {a^2r^2}{(s-a)^2}-$ $\frac {s^2r^2}{(s-a)^2}-r^2=$ $4(s-b)(s-c)-$

$\frac {r^2}{(s-a)^2}\cdot\left\{(s-a)^2+s^2-\left[s-(s-a)\right]^2\right\}=$ $4(s-b)(s-c)-\frac {r^2}{s-a}\cdot 2s=$ $4(s-b)(s-c)-2(s-b)(s-c)$ $\implies$ $\boxed{DI\cdot DS=2(s-b)(s-c)}\ (2)$ . Thus, from

$(1)$ , $(2)$ results that $DI\cdot DS=DN\cdot DL$ , i.e. $ILSN$ is cyclic. Thus, $SD\perp SN$ , i.e. the ray $[SD$ bisects the angle $\widehat{BSC}$ because the division $(B,D,C,N)$ is harmonically.

Remark. I used the power $p_{w_a}(I)$ of $I$ w.r.t. $w_a$ . If the circle $w_a$ touches $AC$ , $AB$ on $U$ , $V$ respectively, then $N\in UV$ . Indeed, apply the Menelaus' theorem to

the transversal $\overline{NUV}$ and $\triangle ABC\ :\ N\in UV\iff$ $\frac {VB}{VA}\cdot \frac {UA}{UC}\cdot\frac {NC}{NB}=1\iff$ $\frac {s-c}{s}\cdot\frac {s}{s-b}\cdot\frac {NC}{NB}=1\iff$ $\frac {NB}{NC}=\frac {s-c}{s-b}$ , what is truly.



PP8. Let $A_i\ ,\ i=\overline{1,n}$ be the points that divide the side $[BC]$ into $n+1$ equal segments such that $BA_1=A_1A_2=\ldots=A_{n-1}A_n=A_nC$ and also let $\Gamma_a=\sum_{i=1}^nAA_i^2$ .

Similarly we define $B_i$ and $C_i$ , where $i=\overline{1,n}$ as well as $\Gamma_b$ and $\Gamma_c$ . With the mentioned notations, we will prove that : $\boxed{\ \frac {\Gamma_a+\Gamma_b+\Gamma_c}{a^2+b^2+c^2}=\frac {n\left(5n+4\right)}{6\left(n+1\right)}\le\frac {5n}{6}\ }$ .


Proof. Apply the Stewart's theorem to the cevian $AA_k$ in the triangle $ABC$ for any $k\in\overline {1,n}$ . Since $\left\{\begin{array}{c}
A_kB=\frac {ka}{n+1}\\\\
A_kC=\frac {(n+1-k)a}{n+1}\end{array}\right|$ , so $AA_k^2=-\frac {k(n+1-k)}{(n+1)^2}\cdot a^2+\frac {k}{n+1}\cdot b^2+$

$\frac {n+1-k}{n+1}\cdot c^2\implies$ $\Gamma_a\equiv\sum_{k=1}^nAA_k^2=$ $-\frac {a^2}{(n+1)^2}\cdot\left[\frac {n(n+1)^2}{2}-\frac {n(n+1)(2n+1)}{6}\right]+$ $\frac {b^2}{n+1}\cdot \frac {n(n+1)}{2}+\frac {c^2}{n+1}\cdot \left[n(n+1)-\frac {n(n+1)}{2}\right]\implies$

$\Gamma_a=-\frac {na^2}{n+1}\cdot\left[\frac {n+1}{2}-\frac {2n+1}{6}\right]+$ $b^2\cdot \frac {n}{2}+c^2\cdot \left[n-\frac {n}{2}\right]\implies$ $\boxed{\Gamma_a=-\frac {n(n+2)}{6(n+1)}\cdot a^2+\left(b^2+c^2\right)\cdot \frac n2}\ \ (*)$ . In conclusion, from the relation $(*)$ obtain that

$\frac {\Gamma_a+\Gamma_b+\Gamma_c}{a^2+b^2+c^2}=-\frac {n(n+2)}{6(n+1)}+n=\frac {n\left(5n+4\right)}{6\left(n+1\right)}$ .



PP9. Let $ABC$ be a triangle with the circumcircle $w$ . The $A$-symmedian of $\triangle ABC$ meet again the circle $w$ at $D$ . Denote the midpoint $E$ of $[AD]$ . Prove that $m\left(\widehat{BEC}\right)=2A$ .

Proof. Denote the midpoints $M$ , $N$ , $P$ of $[BC]$ , $[CA]$ , $[AB]$ respectively and the intersection $S\in AD\cap BC$ .

Thus, $\left\{\begin{array}{ccc}
\triangle ABD\sim\triangle AMC & \implies & m(\angle BED)=m(\angle MNC)=A\\\\
\triangle ACD\sim\triangle AMB & \implies & m(\angle CED)=m(\angle MPB)=A\end{array}\right|\implies$ $m(\angle BEC)=2A$ .


An easy extension. Let $ABC$ be a triangle with the circumcircle $w$ . Consider two points $\{M,S\}\subset (BC)$ so that $S\in (BM)$ and $\widehat{SAB}\equiv\widehat {MAC}$ . Denote

$AS\cap w=\{A,D\}$ and the points $\{E,F\}\subset (AS)$ so that $\frac {EA}{ED}=\frac {MB}{MC}=\frac {FD}{FA}$ . Denote $K\in BE\cap CF$ . Prove that $KE=KF$ and $m(\angle BKC)=2A$ .



PP10. Let $ABC$ be an acute triangle with the circumcircle $w=C(O,R)$ and the orthocenter $H$ . Denote the diameter

$[AS]$ of circle $w$ , the point $D\in AH\cap BC$ and $\left\{\begin{array}{c}
K\in (AB)\ ,\ BD\\\
L\in (AC)\ ,\ CL=CD\end{array}\right|$ . Prove that $SK=SL$ .


Proof 1 (luisgeometria, nice). Denote the reflections $U$ , $V$ of $K$ , $L$ w.r.t. $B$ , $C$ respectively, i.e. $SB$ and $SC$ are the perpendicular bisectors of $[KU]$

and $[LV]$ respectively. The linee $AD$ is the common tangent of the circles $w_b=C(B,BH)$ and $w_c=C(C,CH)$ $\implies$ $AD$ is their radical axis $\Longrightarrow$

$p_{w_b}(A)=p_{w_c}(A)$ $\Longrightarrow$ $AK \cdot AU=AL \cdot AV$ $\Longrightarrow$ $KLVU$ is a cyclical quadrilateral with circumcenter $S$ $\Longrightarrow$ $SK=SL$ as desired.

Proof 2 (metric). $\triangle SBK$ is right $\implies$ $SK^2+AD^2=\left(BK^2+BS^2\right)+AD^2=$ $BS^2+\left(DB^2+DA^2\right)=$

$BS^2+BA^2=AS^2\implies$ $SK^2=4R^2-h_a^2$ (symmetrically w.r.t. $b$ , $c$). In conclusion, $\boxed{SK=SL=\sqrt {4R^2-h_a^2}}$ .

Proof 3 (metric). $HBSC$ is a parallelogram $\iff$ $\left\{\begin{array}{c}
HB=SC\\\
HC=SB\end{array}\right|$ . Thus, $HD\perp BC\iff$ $HB^2-HC^2=DB^2-DC^2\iff$

$SC^2-SB^2=BK^2-CL^2\iff$ $BS^2+BK^2=CS^2+CL^2\iff$ $SK^2=SL^2\iff$ $SK=SL$ .

Proof 4 (trigonometric). $BK=BD=c\cdot \cos B=2R\cdot\sin C\cos B$ and $BS=2R\cdot \cos C\implies$ $SK=BK^2+BS^2=$

$4R^2\cdot \left(\sin^2C\cos^2B+\cos^2C\right)=$ $4R^2\cdot \left(\sin^2C\cos^2B+1-\sin^2C\right)=$ $4R^2\cdot \left[1-\sin^2C\left(1-\cos^2B\right)\right]=$ $4R^2\cdot \left(1-\sin^2B\sin^2C\right)=$

$4R^2- b\sin C\cdot c\sin B=$ $4R^2-h_a^2\implies$ $SK^2=4R^2-h_a^2$ (symmetrically w.r.t. $b$ , $c$). In conclusion, $\boxed{SK=SL=\sqrt {4R^2-h_a^2}}$ .



PP11. $ABC$ is an equilateral triangle and $d$ is a line tangent to its circumcircle $w=C(O,R)$ . Let the distances from

$A$ , $B$ , $C$ onto $d$ be $d_1$ , $d_2$ , $d_3$ . Prove that one of the values $\sqrt{d_1}$ , $\sqrt{d_2}$ , $\sqrt{d_3}$ equals the sum of the other two.


Proof. Suppose that $d$ is tangent to $w$ at $ P $ and $ P' $ is the antipode of $ P $ . If $ AX\perp d$ , where $X\in d$ , then $AX=d_1$ and $\Delta PAX\equiv \Delta P'PA $ , i.e. $\frac {PA}{AX}=\frac {P'P}{PA}$ . So $ PA^2=d_1\cdot 2R$

So $ \sqrt {d_1}=\frac {PA}{\sqrt {2R}}$ . So from the Pompeiu's theorem the result follows. Apply the Ptolemy's theorem to the cyclical $PABC$ and obtain that one of the values $PA$ , $PB$ , $PC$ is equally to

the sum of the other two, i.e. one of the values $\sqrt{d_1}$ , $\sqrt{d_2}$ , $\sqrt{d_3}$ is equally to the sum of the other two.



PP12. Let $\triangle ABC$ with the incircle $w=C(I,r)$ and the $A$-exincircle $w_a$ . The circle $w$ touches $\triangle ABC$ in $D\in (BC)$ , $E\in (CA)$ and $F\in (AB)$ .

Denote $\{D,Q\}=DI\cap w$ , $M\in BC\cap w_a$ , $N\in AB\cap w_a$ and $P\in QE\cap MN$ . Prove that $CP\perp BC$ .


Proof. Denote $\left\{\begin{array}{cc}
X\in MN\ ; & XC\perp BC\\\\
Y\in EQ\ : & YC\perp BC\end{array}\right\|$ , i.e. $C\in XY$ and $\overline {XYC}\perp BC$ . Prove easily that $\left\{\begin{array}{ccccccc}
DB=MC & \mathrm{and} & MN\parallel BI & \implies & \triangle DBI\equiv\triangle CMX & \implies & CX=r\\\\
IQ\parallel CY & \mathrm{and} & QE\parallel CI & \implies & CIQY\ \mathrm{is\ parallelogram} & \implies & CY=r\end{array}\right\|$ $\implies$

$X\equiv Y\equiv P\implies$ $CP\perp BC$ . Remark. Denote $R\in AC\cap w_a$ and $S\in QF\cap RM$ . Prove analogously that $SB\perp BC$ .



PP13. Let $A_1$ be the center of the rectangle $MNPR$ inscribed in acute triangle $ABC$ with $\{M,N\}\subset BC$ and $P\in (AC)$ , $R\in (AB)$ so that $\frac {PN}{PR}=k$ (constant).

The points $B_1$ and $C_1$ are defined in a similar way for inscribed rectangles with two vertices on $AC$ and $AB$ respectively. Prove that $AA_1\cap BB_1\cap CC_1\ne\emptyset$ .


Proof 1. Let $X\in AA_1\cap PR\ ,\ A_2\in AA_1\cap BC$ and $m\left(\widehat{PRN}\right)=\phi$ . Thus, $A_1P=A_1R$ , $\tan\phi =k$ and $\frac {A_2B}{A_2C}=$ $\frac {XR}{XP}=$ $\frac {[ARA_1]}{[APA_1]}=$ $\frac {RA\cdot RA_1\cdot\sin\widehat{ARA_1}}{PA\cdot PA_1\cdot\sin\widehat{APA_1}}=$

$\frac {AR}{AP}\cdot \frac {\sin (B+\phi )}{\sin (C+\phi )}$ $\implies$ $\boxed{\frac {A_2B}{A_2C}=\frac cb\cdot\frac {\sin (B+\phi )}{\sin (C+\phi )}}$ . Get analogously that $\frac {B_2C}{B_2A}=\frac ac\cdot\frac {\sin (C+\phi )}{\sin (A+\phi )}$ and $\frac {C_2A}{C_2B}=\frac ba\cdot\frac {\sin (A+\phi )}{\sin (B+\phi )}$ . Apply the Ceva's theorem

to the cevians $AA_2$ , $BB_2$ , $CC_2$ and obtain $\frac {A_2B}{A_2C}\cdot\frac {B_2C}{B_2A}\cdot\frac {C_2A}{C_2B}=1\iff$ $AA_2\cap BB_2\cap CC_2\ne\emptyset$ , i.e. $AA_1\cap BB_1\cap CC_1\ne\emptyset$ .

Proof 2. Let $X\in AA_1\cap PR\ ,\ A_2\in AA_1\cap BC$ , $MN=PR=u$ , $MR=NP=v$ and $m\left(\widehat{PRN}\right)=\phi$ . Thus, $\tan\phi =\frac vu=k$ (constant), $XR=A_2N$ , $XP=A_2M$ ,

$BM=v\cdot \cot B$ and $CN=v\cdot \cot C$ . Thus, $\frac {A_2B}{A_2C}=$ $\frac {XR}{XP}=$ $\frac {A_2N}{A_2M}=$ $\frac {A_2B+A_2N}{A_2C+A_2M}=$ $\frac {BM+u}{CN+u}=$ $\frac {v\cdot\cot B+u}{v\cdot \cot C+u}=$ $\frac {\frac vu+\tan B}{\frac vu+\tan C}\implies$ $\boxed{\frac {A_2B}{A_2C}=\frac {k+\tan B}{k+\tan C}}$ a.s.o.



PP14. Let an acute $\triangle ABC$ with orthocentre $H$ and circumcircle $w=C(O)$ so that $c<a$ . For $P\in (AC)$ define $\left\{\begin{array}{ccc}
R\in (BP)\ : & OR\parallel AC\\\
Q\in (AC)\ : & HQ\parallel BP\end{array}\right\|$ . Prove that $RP=RQ$ .

Remark. For $P\in BO\cap AC$ obtain the Yasinsky's problem P414 from "Words of mathematics" (see
here).

Proof. Let $\{B,H\}\cap w=\{B,K\}$ and $Q'\in KR\cap AC$ , $E\in BH\cap AC$ . Thus, $EH=EK$ and $BE\perp AC$ $\implies Q'H=Q'K\implies$ $\widehat{Q'HK}\equiv$ $\widehat{Q'KH}\equiv$ $\widehat{RKB}$ and

$RB=RK\implies$ $\widehat{RKB}$ $\equiv\widehat{RBK}$ . Thus, $\widehat{Q'HK}\equiv\widehat{RBK}$ , i.e. $HQ'\parallel BP\implies$ $Q'\equiv Q$ . Hence $\widehat{RQP}\equiv\widehat{EQK}\equiv\widehat{EQH}\equiv\widehat{QPR}\implies$ $\widehat{RQP}\equiv\widehat{QPR}\implies$ $RP=RQ$ .



Lemma. Let $\triangle ABC$ with $AB<AC$ , the median $AM$ and the bisector $AD$ , where $\{M,D\}\subset BC$ . Prove that $\tan\widehat{MAD}=\frac {b-c}{b+c}\cdot\tan\frac A2=\tan^2\frac A2\tan\frac {B-C}{2}$ .

Proof 1. Let $\phi =m\left(\widehat{MAD}\right)$ and prove easily that $MD=\frac {a(b-c)}{2(b+c)}$ . Apply an well-known property to the ray $[AM$ in the triangle $ACD\ :\ \frac {MD}{MC}=$ $\frac {AD}{AC}\cdot\frac {\sin\widehat{MAD}}{\sin\widehat{MAC}}$ $\implies$ $\frac {b-c}{b+c}=$

$\frac {2bc\cdot \cos\frac A2}{b(b+c)}\cdot \frac {\sin\phi}{\sin \left(\frac A2-\phi \right)}$ $\implies$ $\frac {b-c}{2c}=$ $\frac {\cos\frac A2\sin\phi}{\sin\frac A2\cos\phi -\cos\frac A2\sin\phi}$ $\implies$ $\frac {b-c}{2c}=$ $\frac {\tan\phi}{\tan\frac A2-\tan\phi}$ $\implies$ $\boxed{\tan\phi =\frac {b-c}{b+c}\cdot\tan\frac A2}$ . Prove easily that $\frac {b-c}{b+c}=$ $\tan\frac A2\tan\frac {B-C}{2}$ .

Indeed, $\frac {b-c}{b+c}=\frac {\sin B-\sin C}{\sin B+\sin C}=$ $\frac {\sin\frac {B-C}{2}\cos\frac {B+C}{2}}{\sin\frac {B+C}{2}\cos\frac {B-C}{2}}=$ $\cot\frac {B+C}{2}\tan\frac {B-C}{2}=$ $\tan\frac A2\tan\frac {B-C}{2}$ . Thus, $\boxed{\tan\phi =\tan^2\frac A2\tan\frac {B-C}{2}}$ .

Proof 2 (similar). Let $\phi =m\left(\widehat{MAD}\right)$ and prove easily that $MD=\frac {a(b-c)}{2(b+c)}$ . Apply an well-known property to the ray $[AM$ in $\triangle ABD\ :$ $\frac {MD}{MB}=$ $\frac {AD}{AB}\cdot\frac {\sin\widehat{MAD}}{\sin\widehat{MAB}}$ $\iff$

$\frac {\frac {a(b-c)}{2(b+c)}}{\frac  a2}=$ $\frac {\frac {2bc\cdot \cos\frac A2}{(b+c)}}{c}\cdot \frac {\sin\phi}{\sin \left(\frac A2+\phi \right)}$ $\iff$ $\frac {b-c}{2b}=\frac {\cos\frac A2\sin\phi}{\sin\frac A2\cos\phi +\sin\phi \cos\frac A2}$ $\iff$ $\frac {2b}{b-c}=1+\tan\frac A2\cot\phi\iff$ $\frac {b+c}{b-c}=\tan\frac A2\cot\phi\iff$ $\boxed{\tan\phi =\frac {b-c}{b+c}\cdot \tan\frac A2}$ .


PP15. Give $\triangle ABC$ , medians $AM$ , $AN$ and bisector of $ABC$ . The line passing $N$ which perpendicular with $AN$ meet

$AB$ , $AM$ at $P$, $Q$. The line pasing through $P$ which perpendicular with $AB$ meet $AN$ at $O$ . Prove that $OQ \bot BC$ .


Proof 1 (metric). Suppose w.l.o.g. $c<a$ and denote $AQ=l$ , $\phi =m\left(\widehat{MAN}\right)$ and the projections $U$ , $V$ of $Q$ , $O$ on $BC$ . Observe that $m\left(\widehat{QNC}\right)=$ $\frac {B-C}{2}$

and $m\left(\widehat{ONC}\right)=$ $90^{\circ}-\frac {B-C}{2}$ . Thus, $NQ=AQ\cdot\sin\widehat{MAN}=$ $l\sin\phi$ $\implies$ $NU=NQ\cdot\cos\widehat{QNC}=$ $l\sin\phi\cos\frac {B-C}{2}$ $\implies$ $\boxed{NU=l\sin\phi\cos\frac {B-C}{2}}\ (1)$ .

Analogously $AN=AQ\cos\widehat{MAN}=$ $l\cos\phi$ $\implies$ $PN=AN\cdot\tan\frac A2=$ $l\cos\phi\tan\frac A2$ $\implies$ $PN^2=NA\cdot NO$ $\implies$ $ON=l\cos\phi\tan^2\frac A2$ $\implies$

$NV=ON\cos\widehat{ONC}=$ $l\cos\phi\tan^2\frac A2\sin\frac {B-C}{2}$ $\implies$ $\boxed{NV=l\cos\phi\tan^2\frac A2\sin\frac {B-C}{2}}\ (2)$ . Thus, $OQ \bot BC\iff$ $NU=NV\stackrel{1\wedge 2}{\iff}$

$l\sin\phi\cos\frac {B-C}{2}=l\cos\phi\tan^2\frac A2\sin\frac {B-C}{2}\iff$ $\boxed{\tan\phi=\tan^2\frac A2\tan\frac {B-C}{2}}$ (see
here).

Remark. Let $S\in AC\cap PQ$ and Menelaus' theorem to $:\ \overline{NQS}/\triangle ACM\ : \frac {NM}{NC}$ $\cdot\frac {SC}{SA}\cdot\frac {QA}{QM}=1\iff$ $\frac {\frac {a(b-c)}{2(b+c)}}{\frac {ab}{b+c}}\cdot \frac {\frac {b(b-c)}{b+c}}{\frac {2bc}{b+c}}\cdot\frac {QA}{QM}=1\iff$ $\boxed{\frac {QA}{4bc}=\frac{QM}{(b-c)^2}=\frac {m_a}{(b+c)^2}}$ .

Proof 2. Menelaus' theorem to $:\ \overline{AQM}/\triangle PBN\ : \frac {QN}{QP}$ $\cdot\frac {AP}{AB}\cdot\frac {MB}{MN}=1\iff$ $\frac {QN}{QP}\cdot\frac {\frac {2bc}{b+c}}{c}\cdot\frac {\frac a2}{\frac {a(b-c)}{2(b+c)}}=1\iff$ $\boxed{\frac {QN}{b-c}=\frac {QP}{2b}=\frac {PN}{b+c}}\ (*)$ . Let $\left\{\begin{array}{c}
D\in BC\\\
AD\perp BC\end{array}\right\|$ . Thus,

$OQ\perp BC\iff$ $OQ\parallel AD\iff$ $\triangle ADN\sim\triangle ONQ\iff$ $\frac {AD}{DN}=\frac {ON}{NQ}\iff$ $\frac {AD}{DN}=\frac {ON}{PN}\cdot\frac {PN}{NQ}\stackrel{(*)}{\iff}$ $\cot\frac {B-C}{2}=\tan\frac A2\cdot \frac {b+c}{b-c}$ , what is true.



PP16. Let an $A$-isosceles $\triangle ABC$ and a mobile $P\in BC$ so that $B\in (PC)$ . Let $r_{1}$ be inradius of $\triangle APB$ and let $r_{2}$ be $P$-exradius of $\triangle APC$. Prove that the sum $r_{1}+r_{2}$ is constant.

Proof. Apply the Stewart's relation to the cevian $AB$ in $\triangle APC\ :\ AP^2\cdot BC+AC^2\cdot PB=AB^2\cdot PC+PB\cdot PC\cdot BC\iff$ $\boxed{PA^2=PB\cdot PC+AB^2}\ (*)$ .

Let the midpoint $M$ of $[BC]$ , $AM=h$ , $x$ - the length of the inradius for $\triangle APB$ and $y$ - the length of the $P$-exradius for $\triangle APC$ . Therefore, $x+y=h\iff$ $\frac xh+\frac yh=1\iff$

$\frac {PB}{PA+PB+AB}+$ $\frac {PC}{PA+PC-AC}=1$ $\stackrel{(\mathrm{AB=AC})}{\iff}$ $PB(PA+PC-AB)+\underline{PC}(PA+PB+AB)=$ $(PA+PB+AB)(PA+\underline{PC}-AB)$ $\iff$

$\underline{PB}(PA+PC-AB)=$ $(PA+\underline{PB}+AB)(PA-AB)\iff$ $PB\cdot PC=(PA+AB)(PA-AB)\iff$ $PA^2=PB\cdot PC+AB^2\iff (*)$ .

Remark. Other proof of the relation $(*)\ :\ AM\perp PB\iff$ $AP^2-AB^2=MP^2-MB^2\stackrel{(\mathrm{MB=MC})}{\iff}$ $AP^2-AB^2=(MP-MB)(MP+MC)\iff$

$PA^2=PB\cdot PC+AB^2$ .Observe that an interesting property: if $x'$ is the length of the inradius for $\triangle PAC$ and $y'$ is the length of the $P$-exradius for $\triangle PAB$ ,

then $x'+y'=h$ . Its proof is symmetrically w.r.t. $B$ and $C$ .



PP17. Let $\triangle ABC$ with circumcircle $w=C(O,R)$ and the exincircle $w_a=C(I_a,r_a)$ . Let the feet $E\in AC$ , $F\in AB$ of bisectors from $B$ and $C$ . Prove that $ OI_{a} \perp EF $ .

Proof 1. Suppose w.l.o.g. $c<b$ and denote $L\in EF\cap BC$ , $T\in BC\cap w_a$ .

$\blacktriangleright\ m\left(\widehat{CLE}\right)=\phi\implies$ $\frac {LB}{\sin (B-\phi )}=\frac {BF}{\sin \phi}\iff$ $\frac {ac}{(b-c)\sin (B-\phi )}=\frac {ac}{(a+b)\sin\phi}\iff$ $(b-c)\sin (B-\phi )=(a+b)\sin\phi\iff$

$(b-c)(\sin B-\cos B\tan\phi )=(a+b)\tan\phi\iff$ $\tan\phi =\frac {(b-c)\sin B}{(b-c)\cos B+(a+b)}\iff$ $\boxed{\tan\phi =\frac {(b-c)\sin B}{b(1+\cos B+\cos C)}}\ (1)$. I used the identity $a=b\cos C+c\cos B$ .

$\blacktriangleright\ m\left(\widehat{AI_aT}\right)=\psi$ . Denote $S\in I_aT$ so that $OS\perp I_aT\implies$ $\tan\psi =\frac {OS}{I_aS}\implies$ $\boxed{\tan\psi =\frac {b-c}{2(r_a+R\cos A)}}\ (2)$ . Therefore, $OI_a\perp EF\iff \widehat{CLE}\equiv \widehat{AI_aT}\iff$

$\tan\phi =\tan\psi\stackrel{(1\wedge 2)}{\iff}$ $\frac {\sin B}{b(1+\cos B+\cos C)}=\frac {1}{2(r_a+R\cos A)}\iff$ $R(1+\cos B+\cos C)=r_a+R\cos A\iff$ $\boxed{r_a=R(1+\cos B+\cos C-\cos A)}$ , what is well

known or can show easily. Indeed, $(1-\cos A)+(\cos B+\cos C)=$ $2\sin^2\frac A2+2\sin\frac A2\cos \frac {B-C}{2}=$ $2\sin \frac A2\left(\cos\frac {B+C}{2}+\cos\frac {B-C}2\right)=$ $4\sin \frac A2\cos\frac B2\cos\frac C2=$

$4\sqrt{\frac {(s-b)(s-c)}{bc}\cdot\frac {s(s-b)}{ac}\cdot\frac {s(s-c)}{ab}}=$ $\frac {4s(s-b)(s-c)}{abc}=$ $\frac {4S^2}{4RS(s-a)}=\frac {S}{R(s-a)}=\frac {r_a}{R}$ .

Proof 2. Suppose w.l.o.g. $c<b$ . Is well-known the equivalence $\boxed{OI_{a} \perp EF \iff I_aF^2-I_aE^2=OF^2-OE^2}\ (*)$ .

$\blacktriangleright\ \left\{\begin{array}{c}
I_aF^2=r_a^2+\left(s-\frac {bc}{a+b}\right)^2\\\\
I_aE^2=r_a^2+\left(s-\frac {bc}{a+c}\right)^2\end{array}\right|\implies$ $I_aF^2-I_aE^2=\left (2s-\frac {bc}{a+b}-\frac {bc}{a+c}\right)\left(\frac {bc}{a+c}-\frac {bc}{a+b}\right)\implies$ $I_aF^2-I_aE^2=\frac {abc(b-c)\left[a^2+2a(b+c)+\left(b^2+bc+c^2\right)\right]}{(a+b)^2(a+c)^2}$

$\blacktriangleright\ \left\{\begin{array}{c}
R^2-OF^2=FA\cdot FB\\\\
R^2-OE^2=EA\cdot EC\end{array}\right|\implies$ $OF^2-OE^2=EA\cdot EC-FA\cdot FB=$ $\frac {bc}{a+c}\cdot\frac {ba}{a+c}-\frac {bc}{a+b}\cdot\frac {ca}{a+b}=$ $\frac {abc\left[b(a+b)^2-c(a+c)^2\right]}{(a+b)^2(a+c)^2}=\implies$

$OF^2-OE^2=\frac {abc(b-c)\left[a^2+2a(b+c)+\left(b^2+bc+c^2\right)\right]}{(a+b)^2(a+c)^2}$ . So $I_aF^2-I_aE^2=$ $OF^2-OE^2$ $\stackrel{(1\wedge 2)}{=}\frac {abc(b-c)\left[a^2+2a(b+c)+\left(b^2+bc+c^2\right)\right]}{(a+b)^2(a+c)^2}$ $\stackrel{(*)}{\implies}$ $OI_a\perp EF$ .


Lemma. Let $ABC$ be a triangle with the orthocenter $H$ , the circumcircle $w=C(O,R)$ and the orthic triangle $DEF$ , where $\left\{\begin{array}{c}
D\in BC\ ;\ AD\perp BC\\\
E\in CA\ ;\ BE\perp CA\\\
F\in AB\ ;\ CF\perp AB\end{array}\right|$ .

Denote $\left\{\begin{array}{c}
X\in EF\cap BC\\\
Y\in FD\cap CA\\\
Z\in DE\cap AB\end{array}\right|$ . Then $Z\in XY$ , where $d=\overline {XYZ}$ is the orthic axis of $\triangle ABC$and $OH\perp d$ , i.e. the Euler's line $OH$ is perpendicular on the orthic axis.


Proof. Suppose w.l.o.g. $c<b$ . Thuse, $\frac {XB}{XC}=\frac {DB}{DC}\implies$ $\frac {XB}{c\cdot \cos B}=\frac {XC}{b\cdot \cos C}=$ $\frac {a}{b\cdot\cos C-c\cdot\cos B}\ (*)$ . Thus, $XO^2-XH^2=$ $XB\cdot XC+R^2-\left(XD^2+DH^2\right)=$

$R^2+XB\cdot XC-(XB+BD)^2-\left(HB^2-BD^2\right)=$ $R^2+XB\cdot XC-XB^2-2\cdot XB\cdot BD-HB^2=$ $R^2+XB(DC-DB)-HB^2=$

$R^2+XB(b\cdot \cos C-c\cdot\cos B)-4R^2\cos^2B\stackrel{(*)}{=}$ $R^2-4R^2\left(1-\sin^2B\right)+ac\cdot\cos B=$ $-3R^2+b^2+\frac 12\cdot\left(a^2+c^2-b^2\right)\implies$

$\boxed{XO^2-XH^2=\frac {a^2+b^2+c^2}{2}-3R^2}$ , what is a symmetrical form w.r.t. $\{a,b,c\}$ Thus, $XO^2-XH^2=YO^2-YH^2=ZO^2-ZH^2$ , i.e. $Z\in XY$ and $OH\perp \overline {XYZ}$ .

Proof 3 (synthetic). Observe that for the triangle $II_bI_c$ we have: $ABC$ is its orthic triangle; $EF$ is its orthic axis; $OI_a$ is its Euler's line. In conclusion, $OI_a\perp EF$ .



PP18. Let $\triangle ABC$ with $B=60^{\circ}$ , its incenter $I$ and $\left\{\begin{array}{cc}
F\in (AC)\ ; & FC=2\cdot FA\\\\
E \in (AB)\ ; & IE\parallel BC\end{array}\right|$ . Prove that $m\left(\widehat{AEF}\right)=\frac A2$ .

Proof 1 (metric - own). I"ll use the well-known property: $\triangle ABC\implies$ $\boxed{A=2B\ \iff\ a^2=b(b+c)}\ (*)$ . Thus, $\frac {EA}{EB}=$ $\frac {IA}{ID}=$ $\frac {b+c}{a}$ , where $D\in AI\cap BC$ . Hence

$\frac {EA}{b+c}=\frac {EB}{a}=\frac {c}{a+b+c}\implies$ $\boxed{EA=\frac {c(b+c)}{a+b+c}}$ . Observe that $ AF=\frac b3$ and $B=60^{\circ}\iff \boxed{b^2=a^2+c^2-ac}\ (1)$ . Apply the property $(*)$ to $\triangle AEF\ :$

$m\left(\widehat{EAF}\right)=$ $2\cdot m\left(\widehat{AEF}\right)\iff$ $EF^2=AF\cdot(AF+AE)\iff$ $EA^2+AF^2-2\cdot EA\cdot AF\cdot\cos A=AF^2+AF\cdot AE\iff$ $EA=(1+2\cos A)\cdot AF\iff$

$\frac {3c(b+c)}{b(a+b+c)}=1+2\cos A\iff$ $\frac {3c(b+c)}{b(a+b+c)}=1+\frac {b^2+c^2-a^2}{bc}\iff$ $3c^2(b+c)=(a+b+c)\left(b^2+c^2+bc-a^2\right)\stackrel{(1)}{\iff}$

$3c(b+c)=[b+(a+c)][b+(2c-a)]\stackrel{(1)}{\iff}$ $3c(b+c)=\left(a^2+c^2-ac\right)+3bc+(a+c)(2c-a)\iff$ $3c^2=a^2+c^2-ac+ac-a^2+2c^2$ , what is truly.

Proof 2 (Sunken Rock). $AI$ will intersect the arc $ BC$ of the circle $ (ABC)$ at $ N$ , $ CI$ the arc $ AB$ at $ M$ , $ MN$ will intersect $ AB$ at $ E$ and $ BC$ at $ D$ . Next take $ P$ as symmetrical of $ C$

about $ D$ and $ Q$ the symmetrical of $ A$ about $ E$ . $ M$ and $ N$ being the midpoints of the arcs $ AB$ and $ BC$ respectively, it's easy to see that a $ 60^\circ$ rotation around $ I$ will map $ E$ to $ D$ and $ A$ to $ M$

so $ DM = AE$ , similarly $ NE = CD$ (actually, the triangles $ MAI$ and $CNI$ are equilateral). It's also easy to see that $ MEIA$ and $ NCID$ are cyclic and, as previously mentioned

since the two triangles are equilateral, we shall easily get $ AE = ME + EI$ and $ CD = ND + DI$ . We have also $ BD=DI=IE=BE=DE$ . From all these we get

$ ND=BP\ ( 1 )$ and $ ME=BQ\ ( 2 )$ . From the two cyclic quads we shall get that $ \triangle DNI \sim  \triangle EIM$, and from their similarity: $ \frac {DI}{ND} = \frac {ME}{EI}\ ( 3 )$ . From $(1)$ , $(2)$ and $(3)$ we get

$ \frac {BP}{BD} = \frac {BE}{BQ}$, i.e. $ PE \parallel DQ$. If $ F' = PE \cap AC$ and $ G = QD \cap AC$, from $ E$ - midpoint of $ AQ$ and $ D$ - midpoint of $ CP$ we get $ AF' = GF' = CG$, hence $ F' \equiv F$ . Last, seeing

for instance, that $ \triangle DNI \equiv \triangle BPE$ (s.a.s.), we get the required angle equality as well. Even easier using the above proof, one can show the following: $ \frac {1}{CD} + \frac {1}{AE} = \frac {1}{DE}$ .
This post has been edited 253 times. Last edited by Virgil Nicula, Nov 20, 2015, 2:40 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a