323. Easy, nice and interesting problems for high school.

by Virgil Nicula, Oct 17, 2011, 8:29 AM

ALGEBRA.

PP1. Eliminate the variables $x$ and $y$ between the relations $x+\frac{1}{x}=a\ \ \wedge\ \ y+\frac{1}{y}=$ $b\ \ \wedge\ \ xy+\frac{1}{xy}=c\ .$

Proof. Denote $\left\{\begin{array}{c}
x+y=S\\\
xy=P\end{array}\right|$ . Observe that $xy+\frac{1}{xy}= c\iff \boxed{P^2+1=cP}\ \ (*)\ .$

$\blacktriangleright\ a+b=$ $\left(x+\frac 1x\right)+\left(y+\frac 1y\right)=$ $\frac {S(P+1)}{P}\implies$ $S^2\left[\left(P^2+1\right)+2P\right]=$ $(a+b)^2P^2\stackrel{(*)}{\implies}$ $\boxed{(c+2)S^2=(a+b)^2P}\ \ (1)\ .$

$\blacktriangleright\ ab=$ $\left(x+\frac 1x\right)\left(y+\frac 1y\right)=$ $\frac {S^2+P^2+1-2P}{P}$ $\stackrel{(*)}{\implies}$ $S^2+(c-2)P=abP\implies \boxed {S^2=(ab+2-c)P}\ \ (2)\ .$

From the relations $(1)\ \wedge\ (2)$ obtain that $(c+2)(ab+2-c)=(a+b)^2\iff$ $ab(c+2)+4-c^2=(a+b)^2\iff$ $\boxed{a^2+b^2+c^2=abc+4}$ .



PP2. Prove that $\left\{\begin{array}{c}
a+b+c=1\\\\
a^3+b^3+c^3=1\end{array}\right|\ \implies\ (1-a)(1-b)(1-c)=0\ .$

Proof 1. $\sum a^3-3abc=\sum a\cdot\left(\sum a^2-\sum bc\right)\iff$ $\sum a^2-\sum bc+3abc=1\iff$

$\left(\sum a\right)^2-3\sum bc+3abc=1\iff$ $abc=\sum bc$ $\iff$ $1-\sum a+\sum bc-abc=0$ $\iff$ $(1-a)(1-b)(1-c)=0$ .

Proof 2. Denote $\left\{\begin{array}{ccc}
s_1 & = & a+b+c\\\\
s_2 & = & ab+bc+ca\\\\
s_3\ & = & abc\end{array}\right|$ and $S_3=\sum a^3$ . Prove easily that $\left\{\begin{array}{cc}
 S_3=s_1^3-3s_1s_2+3s_3 & (1)\\\\
(1-a)(1-b)(1-c)=1-s_1+s_2-s_3 & (2)\end{array}\right|$ .

Therefore, $S_3=1\ \ \wedge\ \ s_1=1\stackrel{(1)}{\iff} s_2=s_3$ $\iff 1-s_1+s_2-s_3=0\stackrel{(2)}{\iff}\prod (1-a)=0$ .



PP3. Prove that for any $\{x,y\}\subset\mathbb R^*\ ,\ \left\{\begin{array}{cccc}
(1) & (x+\sqrt{x^2+1})(y+\sqrt{y^2+1})=1 & \implies & x +y=0\\\\
(2) & (x+\sqrt{y^2+1})(y+\sqrt{x^2+1})=1 & \implies & x +y=0\end{array}\right|$ .

Proof 1. $(x+\sqrt{x^2+1})(y+\sqrt{y^2+1})=1$ $\implies$ $\begin{array}{c}
y+\sqrt{y^2+1}=\sqrt{x^2+1}-x\iff x+y=\sqrt{x^2+1}-\sqrt{y^2+1}\\\\
x+\sqrt{x^2+1}=\sqrt{y^2+1}-y\iff x+y=\sqrt{y^2+1}-\sqrt{x^2+1}\end{array}$ $\implies$ $x+y=0$ .

Proof 2. The function $f:\mathbb R^*_+\rightarrow \mathbb R\ ,\ f(t)=\frac 12\cdot\left(t-\frac 1t\right)$ is surjectively $\implies (\forall )\{x,y\}\subset \mathbb R\ (\exists )\{u,v\}\subset R^*_+$ so that $x=f(u)\ ,\ y=f(v)$ .

Therefore, $\left(x+\sqrt{y^2+1}\right)\left(y+\sqrt{x^2+1}\right)=1\iff$ $\left(\frac {u^2-1}{2u}+\frac {v^2+1}{2v}\right)\cdot\left(\frac {v^2-1}{2v}+\frac {u^2+1}{2u}\right)=1\iff$

$\left[ uv(u+v)+(u-v)\right]\cdot\left[uv(u+v)-(u-v)\right]=1\iff$ $u^2v^2(u+v)^2-(u-v)^2=4u^2v^2\ (*)$ . Denote $uv=z$ . Thus, the relation $(*)$ becomes

$z^2\left(u^2+v^2+2z\right)-\left(u^2+v^2\right)+2z-4z^2=0\iff$ $P(z)\equiv 2\cdot \underline z^3+\left(u^2+v^2-4\right)\cdot \underline z^2+2\cdot \underline z-\left(u^2+v^2\right)=0$ . Observe that $P(1)=0$ .

Therefore, $P(z)=(z-1)\left[2z^2+\left(u^2+v^2-2\right)z+\left(u^2+v^2\right)\right]=0$ . Since $2z^2+\left(u^2+v^2-2\right)z+\left(u^2+v^2\right)=$

$2(uv)^2+uv\left(u^2+v^2\right)+(u-v)^2>0$ obtain that $uv=1$ . Hence $y=\frac {v^2-1}{2v}=\frac {\frac {1}{u^2}-1}{\frac 2u}=\frac {1-u^2}{2u}=-x$ . In conclusion, $x+y=0$ .

Proof 3. $\left\{\begin{array}{c}
x+\sqrt {y^2+1}=a\\\\
y+\sqrt {x^2+1}=b\end{array}\right\|\iff$ $\left\{\begin{array}{c}
a^2+x^2=2ax+y^2+1\\\\
b^2+y^2=2by+x^2+1\end{array}\right|\left|\begin{array}{c}
\odot\ b\\\\
\odot\ a\end{array}\right\|\stackrel{(ab=1)}{\implies}$ $\left\{\begin{array}{c}
a+bx^2=2x+by^2+b\\\\
b+ay^2=2y+ax^2+a\end{array}\right\|\ \bigoplus$ $\implies$

$(a-b)\left(y^2-x^2\right)=2(x+y)$ . Suppose against all reason that $x+y\ne 0$ . Thus, $(a-b)(x-y)=-2\ (*)$ . Since $a-b=$

$(x-y)+\frac {y^2-x^2}{\sqrt{x^2+1}+\sqrt{y^2+1}}=$ $(x-y)\cdot \frac {\left(\sqrt{x^2+1}-x\right)+\left(\sqrt{y^2+1}-y\right)}{\sqrt{x^2+1}+\sqrt{y^2+1}}$ and $\frac {\left(\sqrt{x^2+1}-x\right)+\left(\sqrt{y^2+1}-y\right)}{\sqrt{x^2+1}+\sqrt{y^2+1}}>0$

obtain that $(a-b)(x-y)\ge 0$ , what is absurd with $(*)$ . In conclusion, $x+y=0$ .



PP4. Solve the systems $\left\{\begin{array}{c}
xy+x+y=1\\\
yz+y+z=5\\\
xz+x+z=2\end{array}\right\|\ ,\ \left\{\begin{array}{c}
x+y+z=9\\\\
\frac{1}{x+1}+\frac{1}{y+2}+\frac{1}{z+3}=\frac{3}{5}\end{array}\right\|$ and prove that $\left\{\begin{array}{c}
x^3+y^3+z^3=0\\\
x^5+y^5+z^5=0\end{array}\right\|\ \iff\ x=0\ \vee\ y=0\ \vee\ z=0$ .

Proof. $1\blacktriangleright$ This system is equivalent with $\left\{\begin{array}{c}
(x+1)(y+1)=2\\\
(y+1)(z+1)=6\\\
(z+1)(x+1)=3\end{array}\right\|$ . Using the substitution

$\left\{\begin{array}{c}
x+1=a\\\
y+1=b\\\
z+1=c\end{array}\right\|$ obtain the system $\left\{\begin{array}{c}
ab=2\\\
bc=6\\\
ca=3\end{array}\right\|$ . Observe that $(abc)^2=36$ . Appear two cases :

$\odot\ abc=6\ \implies\ \left\{\begin{array}{c}
a=1\\\
b=2\\\
c=3\end{array}\right\|\ \implies\ \left\{\begin{array}{c}
x=0\\\
y=1\\\
z=2\end{array}\right\|$ .

$\odot\ abc=-6\ \implies\ \left\{\begin{array}{c}
a=-1\\\
b=-2\\\
c=-3\end{array}\right\|\ \implies\ \left\{\begin{array}{c}
x=-2\\\
y=-3\\\
z=-4\end{array}\right\|$ .

In conclusion, the solutions of the given system are $(0,1,2)$ and $(-2,-3,-4)$ .

$2\blacktriangleright$ Substitution $\left\{\begin{array}{c}
x+1=a\\\
y+2=b\\\
z+3=c\end{array}\right\|\implies$ $\left\{\begin{array}{c}
a+b+c=15\\\\
\frac 1a+\frac 1b+\frac 1c=\frac 35\end{array}\right\|$ . Observe that $9=15\cdot\frac 35=(a+b+c)\left(\frac 1a+\frac 1b+\frac 1c\right)\iff$

$\sum a\cdot\sum bc=9abc\iff$ $\sum\left(b^2+c^2\right)=6abc\iff$ $\sum (b-c)^2=0\iff$ $a=b=c=5\iff$ $\left\{\begin{array}{c}
x=4\\\
y=3\\\
z=2\end{array}\right\|$ .

$3\blacktriangleright$ Consider the equation $t^3-mt^2+nt-p=0$ with the roots $\{x,y,z\}$ . Prove easily that $\left\{\begin{array}{ccc}
S_3 & = & m^3-3mn+3p\\\\
S_5 & = & m^5-5m^3n+5m^2p+5mn^2-5np\end{array}\right\|$ .

Eliminate $p$ between $\left\{\begin{array}{ccc}
m^3-3mn+3p & = & 0\\\\
m^5-5m^3n+5m^2p+5mn^2-5np & = & 0\end{array}\right\|$ and obtain $2m^5=5m^3n$ from where results the conclusion of our problem.



PP5. Ascertain $\min_{x^2y=k} (x^2+4xy)$ , where $x>0$ and $y>0$ (a box with open top).

Proof. $x^2+4xy=$ $x^2+\frac {4k}{x}=$ $x^2+\frac {2k}{x}+\frac {2k}{x}$ and $x^2\cdot \frac {2k}{x}\cdot\frac {2k}{x}=4k^2$ (constant). The sum $x^2+\frac {2k}{x}+\frac {2k}{x}$ is minimum iff $x^2=\frac {2k}{x}$ , i.e. $x=\sqrt[3]{2k}$ .


PP6. Prove that $a + b + c = 0\implies 6\cdot\left(a^5 + b^5 + c^5\right) = 5\cdot \left(a^2 + b^2 + c^2\right)\cdot\left( a^3 + b^3 + c^3\right)$ .

Proof. Let $f(x)=(x-a)(x-b)(x-c)=x^3-s_1x^2+s_2x-s_3=0$ be the equation with the roots $\{a,b,c\}$ , where $\left\{\begin{array}{c}
s_1=a+b+c\\\
s_2=ab+bc+ca\\\
s_3=abc\end{array}\right|$ . Denote

$S_n=a^n+b^n+c^n$ , where $n\in\mathbb N$ . Observe that $\left\{\begin{array}{ccc}
a^3-s_1a^2+s_2a-s_3=0 & \odot & a^n\\\\
b^3-s_1b^2+s_2b-s_3=0 & \odot & b^n\\\\
c^3-s_1c^2+s_2c-s_3=0 & \odot & c^n\end{array}\right|\ \bigoplus$ $\implies\ \boxed{S_{n+3}=s_1\cdot S_{n+2}-s_2\cdot S_{n+1}+s_3\cdot S_n}$ ,

where $n\in\mathbb N$ and $S_0=3\ ,\ S_1=s_1\ ,\ S_2=$ $s_1^2-2s_2\ ,\ S_3=s_1^3-3s_1s_2+3s_3$ . In the particular case when $s_1=0$ obtain that

$S_0=3\ ,\ S_1=0\ ,\ S_2=-2s_2$ and $\ \left\{\begin{array}{ccc}
S_3=s_1S_2-s_2S_1+s_3S_0 & \implies & S_3=3s_3\\\\
S_4=s_1S_3-s_2S_2+s_3S_1 & \implies & S_4=2s_2^2\\\\
S_5=s_1S_4-s_2S_3+s_3S_2 & \implies & S_5=-5s_2s_3\end{array}\right|\ \implies\ 6\cdot S_5=5\cdot S_2\cdot S_3$ .



PP7. Find the number of common real roots of the polynomials $\left\{\begin{array}{c}x^5+3x^4-4x^3-8x^2+6x-1\\\
x^5-3x^4-2x^3+10x^2-6x+1\end{array}\right|$ .

Proof. $\left\{\begin{array}{ccc}
x^5+3x^4-4x^3-8x^2+6x-1 & \odot & 1\\\
x^5-3x^4-2x^3+10x^2-6x+1 & \odot & (-1)\end{array}\right\|\ \oplus$

$\left\{\begin{array}{ccc}
3x^4-x^3-9x^2+6x-1 & \odot & \left(-x\right)\\\
x^5+3x^4-4x^3-8x^2+6x-1 & \odot & 3\end{array}\right\|\ \oplus$

$\left\{\begin{array}{ccc}
10x^4-3x^3-30x^2+19x-3 & \odot  & 3\\\
3x^4-x^3-9x^2+6x-1 & \odot & \left(-10\right)\end{array}\right\|\ \oplus$

$\left\{\begin{array}{ccc}
x^3-3x+1 & \odot & (3x)\\\
3x^4-x^3-9x^2+6x-1 & \odot & (-1)\end{array}\right\|\ \oplus$

$\left\{\begin{array}{ccc}
x^3-3x+1 & \odot & 1\\\
x^3-3x+1 & \odot & (-1)\end{array}\right\|\ \oplus$

$\mathrm{STOP}$ . In conclusion, the common roots are $x^3-3x+1=0$ , i.e. the number of common real roots of these polynomials is $3$ (three).



PP8. Find the solution of the equation $\sqrt{\frac{x-7}{3}}+\sqrt{\frac{x-6}{4}}+\sqrt{\frac{x-8}{2}}=\sqrt{\frac{x-3}{7}}+\sqrt{\frac{x-4}{6}}+\sqrt{\frac{x-2}{8}}$ .

Proof. $\sqrt{\frac{x-7}{3}}+\sqrt{\frac{x-6}{4}}+\sqrt{\frac{x-8}{2}}=\sqrt{\frac{x-3}{7}}+\sqrt{\frac{x-4}{6}}+\sqrt{\frac{x-2}{8}}\Longleftrightarrow$

$\Longleftrightarrow(x-10)\left(\frac{\frac{4}{21}}{\sqrt{\frac{x-7}{3}}+\sqrt{\frac{x-3}{7}}}+\frac{\frac{1}{12}}{\sqrt{\frac{x-6}{4}}+\sqrt{\frac{x-4}{6}}}+\frac{\frac{3}{8}}{\sqrt{\frac{x-8}{2}}+\sqrt{\frac{x-2}{8}}}\right)=0$ $\Longleftrightarrow x=10$.



GEOMETRY.


PP1. Ascertain the dimensions of a cylinder with the constant volume and with the minimum total surface.

Proof. Denote $x$ - the length of the radius and $y$ - the length of the altitude. Thus, $x^2y=k$ (constant) and the product $x^2+xy$ must be minimum. Therefore, can write

$x^2\cdot \frac {xy}{2}\cdot\frac {xy}{2}= $ $\frac {k^2}{4}$ (constant) and the sum $\left(x^2+\frac {xy}{2}+\frac {xy}{2}\right)$ must be minimum, i.e. $x^2=\frac {xy}{2}=\sqrt [3]{\frac {k^2}{4}}$ $\implies$ $\frac x1=\frac y2=\sqrt [3]{\frac k2}$ (the axial section is a square).



PP2. For the triangle $ ABC$ denote $ \left\|\ \begin{array}{c}
 A=(b+c)(c+a)(a+b)-8abc\\\\
 B=abc-(b+c-a)(c+a-b)(a+b-c)\end{array}\ \right\|$ . Prove that

$ A\ge B\ge 0$ , i.e. $ \boxed{\prod (b+c)+\prod (b+c-a)\ge 9abc}$ (Virgil Nicula & Cosmin Pohoata, Mathematical Reflections).


Proof. Indeed, $A=\sum a\cdot\sum bc-9abc=2p(p^2+r^2+4Rpr)-36Rpr=2p(p^2+r^2-14Rr)\ge 0$ because

$ p^2\ge 16Rr-5r^2\ge 14Rr-r^2$ . On other hands, $ B=abc-8\prod (p-a)=4Rpr-8pr^2=4pr(R-2r)\ge 0$ .

In conclusion, $ A-B=2p(p^2+r^2-14Rr-2Rr+4r^2)=2p(p^2+5r^2-16Rr)\ge 0$ .


PP3. Let $ABC$ be a triangle. Denote the midpoint $M$ of the side $[BC]$ . Suppose that

$\mathrm m\left(\widehat {MAB}\right)=90^{\circ}-C$ . Prove that $ABC$ is an $A$-right triangle or $A$-isosceles.


Proof. Observe that $\mathrm m\left(\widehat {MAC}\right)=90^{\circ}-B$ . Therefore, $1=\frac {MB}{MC}=\frac {AB}{AC}\cdot\frac {\sin\widehat {MAB}}{\sin\widehat{MAC}}=$ $\frac  {\sin C}{\sin B}\cdot\frac {\cos C}{\cos B}=$ $\frac {\sin 2C}{\sin 2B}$ .

In conclusion, $\sin 2B=\sin 2C\iff$ $B=C\ \ \vee\ \ B+C=90^{\circ}$ $\iff$ $ABC$ is an $A$-right triangle or $A$-isosceles.



PP4. For $C\in (AB)$ , in the same semiplane w.r.t. the line $AB$ construct the $C$-isosceles triangles $ACD$ and $BCE$

so that $\widehat{ACD} \equiv\widehat{BCE}$ . Denote $F\in AE \cap BD$ . Prove that the ray $[FC$ is the bisector of the angle $\widehat{AFB}$ .


Proof. Observe that $\widehat{CDA}\equiv\widehat{CEB}$ and $\left\{\begin{array}{c}
AC=DC\\\\
CE=CB\\\\
\widehat {ACE}\equiv\widehat{DCB}\end{array}\right|\stackrel{(s.a.s)}{\implies}$ $\triangle ACE\equiv\triangle DCB\implies$ $\left\{\begin{array}{c}
\widehat{CAE}\equiv\widehat{CDB}\\\\
\widehat {AEC}\equiv\widehat{DBC}\end{array}\right|\implies$ the quadrilaterals $ADFC$

and $BEFC$ are cyclically $\implies$ $\widehat{CFA}\equiv\widehat{CDA}\equiv \widehat{CEB}\equiv\widehat{CFB}$ , i.e. $\widehat{CFA}\equiv\widehat{CFB}\implies$ the ray $[FC$ is the bisector of $\widehat{AFB}$ . Nice problem !



PP5. Let $ABC$ be an $C$-isosceles with the circumcircle $w$ . Let $P\in w$ be between $A$ and $B$ and on the opposite

side of the line $AB$ to $C$ . Denote $D\in PB$ so that $CD\perp PB$ . Show that $PA + PB = 2 \cdot PD$ .


Proof 1. Denote $CA=CB=a$ , $AB=c$ and the midpoint $M$ of $[AB]$ . Thus, $\widehat {CAM}$ $\equiv\widehat {CPD}$ $\Longrightarrow $ $\triangle CAM\sim\triangle CPD\Longrightarrow$ $\frac{CA}{AM}=\frac{CP}{PD}$ $\Longrightarrow $

$PC=\frac{2a}{c}\cdot PD$ . Apply Ptolemy's theorem $:\ a\cdot (PA+PB)=c\cdot PC$ $\Longrightarrow$ $PA+PB=\frac ca\cdot PC=\frac ca\cdot \frac{2a}{c}\cdot PD$ $\Longrightarrow $ $PA+PB=2PD$ .

Proof 2. Denote $E\in PB$ so that $B\in (PE)$ and $BE=PA$ and define $F\in w$ so that $\{C,F\}=CE\cap w$ . Observe that

$\widehat{CBE}\equiv$ $\widehat{CBF}+\widehat{FBE}\equiv$ $\widehat{CBF}+\widehat{PCF}=$ $\widehat{CAP}$ , i.e. $\widehat{CBE}\equiv\widehat{CAP}$ $\implies$ $\triangle CBE\stackrel{(s.a.s)}{\equiv}\triangle CAP\implies$

$CP=CE\implies$ $\triangle CPE$ is $C$-isosceles, i.e. $PE=2\cdot PD$ . In conclusion, $PA+PB=BE+PB=PE=2\cdot PD$ .


An equivalent enunciation. Let $ABC$ be a triangle with the circumcircle $w$ . Denote the midpoint $M$ of the side $[BC]$ and the diameter

$[NS]$ of $w$ so that line $BC$ separates $A$ and $S$ . Denote $X\in AB$ so that $SX\perp AB$ . Prove that $MX\perp AS$ and $AX=\frac {b+c}{2}$ .


Proof 1. Apply Ptolemy's theorem to $ABSC\ :\ (b+c)\cdot SC=a\cdot SA$ . Prove easily that $\triangle AXS\sim\triangle CMS$ , i.e. $\frac {AX}{CM}=\frac {AS}{SC}$ . Thus, $\frac {b+c}{a}=\frac {SA}{SC}=$

$\frac 2a\cdot AX$ $\implies$ $AX=\frac {b+c}{2}$ . Since $MXBS$ is cyclically, obtain that $\widehat{MXS}\equiv$ $\widehat{MBS}\equiv$ $\widehat{SAX}$ , i.e.in the $X$-right triangle $AXS$ we have $MX\perp AS$ .

Proof 2. Denote $D\in BC\cap BC$ . Using well-known relations $AD\cdot AS=bc$ and $AD=\frac {2bc\cos\frac A2}{b+c}$ obtain that $AX=AS\cdot \cos\frac A2=$ $\frac {bc\cdot\cos\frac A2}{AD}=$ $\frac {b+c}{2}$ .



PP6. Let $P$ be an interior point of $\triangle ABC$ . Denote $\left\{\begin{array}{c}
D\in PA\cap BC\\\
E\in PB\cap CA\\\
F\in PC\cap AB\end{array}\right\|$ . Prove that $\frac{PA}{PD}\frac{PB}{PE}\frac{PC}{PF}=\frac{PA}{PD}+\frac{PB}{PE}+\frac{PC}{PF}+2$ (Euler's relation).

Proof. Denote $\left\{\begin{array}{c}
\frac {DB}{DC}=x\\\\
\frac {EC}{EA}=y\\\\
\frac {FA}{FB}=z\end{array}\right\|$ . From the Ceva's theorem obtain that $xyz=1$ and from the Aubel's theorem obtain that $\left\{\begin{array}{c}
\frac {PA}{PD}=z+\frac 1y\\\\
\frac {PB}{PE}=x+\frac 1z\\\\
\frac {PC}{PF}=y+\frac 1x\end{array}\right\|$ .

Thus, the relation from the conclusion becomes $\left(z+\frac 1y\right)+\left(x+\frac 1z\right)+\left(y+\frac 1x\right)+2=$ $\left(z+\frac 1y\right)\cdot\left(x+\frac 1z\right)\cdot \left(y+\frac 1x\right)\iff$

$z(1+x)+x(1+y)+y(1+z)+2=$ $z(1+x)\cdot x(1+y)\cdot y(1+z)\iff$ $(x+y+z)+$ $(xy+yz+zx)+2=$

$(1+x)(1+y)(1+z)\iff$ $1+(x+y+z)+$ $(xy+yz+zx)+xyz=$ $(1+x)(1+y)(1+z)$ , what is truly. I replaced $2=1+xyz$ .



PP7. Let $AC$ be a line segment in the plane and $B$ between $A$ and $C$. Construct isosceles triangles $PAB$ and $QAC$ on one side of the segment $AC$ such that

$m(\angle APB) =m( \angle BQC) = 120^{\circ}$ and an isosceles triangle $RAC$ on the other side of $AC$ such that $m(\angle ARC) = 120^{\circ}.$ Show that $\triangle PQR$ is equilateral.

A equivalent enunciation. Let $ABCD$ be a rhombus with $m(\widehat {ABC})=60^{\circ}$ . For a point $M\in (BD)$ denote the

points $N\in (AB)$ , $P\in (AD)$ so that $MN\parallel AD$ and $MP\parallel AB$ . Prove that $CNP$ is an equilateral triangle.


Proof 1. $\left\{\begin{array}{c}
CD=CA\\\\
DP=AN\\\\
\widehat{CDP}\equiv\widehat{CAN}\end{array}\right\|\implies$ $\triangle CDP\stackrel{(s.a.s.)}{\equiv}\triangle CAN\implies$ $\boxed{CP=CN}$ and $\widehat{DCP}\equiv\widehat{ACN}\implies$ $\widehat{DCA}\equiv\widehat{PCN}\implies$ $\boxed{m(\widehat{PCN})=60^{\circ}}$ .

Proof 2. Let the reflections $P_1$ and $N_1$ w.r.t. the line $BD$ of $P$ and $N$ respectively. Thus, $\implies\triangle CP_1P\equiv\triangle PAN\equiv\triangle NN_1C\implies \boxed{CP=PN=NC}$ .


Proof 3 (using complex numbers). Denote $\omega =\cos \frac{2\pi}{3}+i\sin \frac{2\pi}{3}$, i.e. $\omega ^3=1$ , $\omega ^2=-1-\omega$ . Choose the origin $M(0)$ and

the line $BD$ as the axis $Ox$ . Thus, $B(-1)$ , $D(d)$ , $A(a)$ , $C(c)$ , $N(n)$, $P(p)$ , where $d\in R$ , $d>0$ and $\{a,c,n,p\}\subset \Im\setminus \Re$ .

$\blacktriangleright NB=NM,\ m(\widehat {BNM})=120^{\circ}\Longrightarrow 0-n=(-1-n)\omega\Longrightarrow n=\frac{\omega}{1-\omega }\ .$
$\blacktriangleright PM=PD,\ m(\widehat {DPM})=120^{\circ}\Longrightarrow d-p=(0-p)\omega \Longrightarrow p=\frac{d}{1-\omega }\ .$
$\blacktriangleright CB=CD,\ m(\widehat {BCD})=120^{\circ}\Longrightarrow -1-c=(d-c)\omega\Longrightarrow c=\frac{-1-d\omega}{1-\omega}\ .$

$\bigstar \ \ \triangle CNP$ is equilateral $\Longleftrightarrow c^2+n^2+p^2=cn+np+pc\Longleftrightarrow$

$\omega^2 +d^2+(1+d\omega )^2=d\omega -\omega (1+d\omega )-d(1+d\omega )\Longleftrightarrow$

$(d^2+d+1)(\omega ^2+\omega +1)=0\iff$ $w^2+w+1=0$ , what is truly.


A generalization of the proposed problem. If $PA=PB\ ,\ QB=QC\ ,\ RA=$ $RC\ ,\ m(\widehat {APB})=m(\widehat {BQC})=m(\widehat {ARC})=\phi$ ,

then $PR=PQ\Longleftrightarrow RP=RQ\Longleftrightarrow QP=QR\Longleftrightarrow \phi=120^{\circ}$ and in this case $PQR$ is an equilateral triangle.



PP8. Let $P$ be an interior point w.r.t. the equlateral $\triangle ABC$ . Know that $AB$ . $\left\{\begin{array}{c}
PA=x\\\
PB=y\\\
PC=z\end{array}\right\|$ . Prove that

$2\cdot AB^2=\sum x^2+4\sqrt 3\cdot S(x,y,z)$ , where $S(x,y,z)$ is area of the triangle with the lengths $\{x,y,z\}$ of its sides.


Proof. Denote $AB=l$ . Construct equilateral $\triangle APQ$ so that $AC$ separates $P$ and $Q$ . Observe that $\triangle ABP\stackrel{(s.a.s)}{\equiv}\triangle ACQ\implies$ $BP=CQ=y$ .

Apply the generalized Pytagoras' theorem in $\triangle APC$ , where $m\left(\widehat{APC}\right)=60^{\circ}+\phi$ and $\phi = m\left(\widehat{CPQ}\right)$ . Thus, $l^2=x^2+z^2-2xz\cdot\cos \left(\phi +60^{\circ}\right)=$

$x^2+z^2-xz\cdot\cos\phi+xz\sqrt 3\cdot \sin\phi =$ $x^2+z^2-\frac 12\cdot\left(x^2+z^2-y^2\right)+xz\sqrt 3\cdot\sin\phi =$ $\frac 12\cdot \left(x^2+y^2+z^2\right)+2\sqrt 3\cdot S(x,y,z)\implies$

\[\boxed{2\cdot AB^2=x^2+y^2+z^2+4\sqrt 3\cdot S(x,y,z)}\].



PP9. Let $M\ ,\ N$ be the midpoints of the sides $[AC]\ ,\ [BD]$ respectively in the cyclical quadrilateral $ABCD$ . Prove that $\frac{|AC-BD|}{2}\le MN\le \frac{AC+BD}{2}$ .

Proof. Denote $\left\{\begin{array}{c}
AB=a\ ;\ BC=b\ ;\ CD=c\\\
DA=d\ ;\ AC=e\ ;\ BD=f\end{array}\right\|$ and the midpoints $X$ and $Y$ of the sides $AB$ and $BC$ respectively. I"ll use

the well-known relations $ef=ac+bd$ (Ptolemeu) and $e^2+f^2+4\cdot MN^2=$ $a^2+b^2+c^2+d^2$ (Euler). Since $XM=\frac b2$

and $XN=\frac d2$ obtain that $\frac {|b-d|}{2}\ \le\ MN\ \le\ \frac {b+d}{2}$ . From $YM=\frac a2$ and $YN=\frac c2$ obtain that $\frac {|a-c|}{2}\ \le\ MN\ \le\ \frac {a+c}{2}$ .

The relations Euler & Ptolemeu $\Longrightarrow$ $(e-f)^2+4\cdot  MN^2=$ $(a-c)^2+(b-d)^2\ \le\ 8\cdot MN^2$ $\Longrightarrow$ $\frac {|e-f|}{2}\ \le\ MN$ .

The Relations Euler & Ptolemeu $\Longrightarrow$ $(e+f)^2+4\cdot MN^2=$ $(a+c)^2+(b+d)^2\ge$ $8\cdot MN^2\ \Longrightarrow$ $\frac {|e+f|}{2}\ \ge\ MN$ .



PP10. Consider three circles $w_k\ ,\ k\in\overline {1,3}$ with only a common point $D$ , i.e. $\{D\}=w_1\cap w_2\cap w_3$ . Prove that

$\left\|\begin{array}{ccc}
 \{D,A\}=w_2\cap w_3 & , & A_1\in (AD\cap w_1\\\\
 \{D,B\}=w_3\cap w_1 & , & B_1\in (BD\cap w_2\\\\
 \{D,C\}=w_1\cap w_2 & , & C_1\in (CD\cap w_3\end{array}\ \right\|\ \ \Longrightarrow\ \ \frac {AD}{AA_1}+\frac {BD}{BB_1}+\frac {CD}{CC_1}=1$ .


Proof. Denote $\begin{array}{c}
 \{B,C_2\}=A_1B\cap w_3\\\\
 \{C,B_2\}=A_1C\cap w_2\end{array}$ . Prove easily that $A\in B_2C_2$ and $\begin{array}{c}
 B_1B_2\parallel A_1C_2\\\\
 C_1C_2\parallel A_1B_2\end{array}$ . Denote $\begin{array}{c}
 B_0\in DB_2\cap A_1C_2\\\\
 C_0\in DC_2\cap A_1B_2\end{array}$ .

Thus, $\left\|\begin{array}{c}
 B_1B_2\parallel A_1C_2\ \Longrightarrow\ \frac {BD}{BB_1}=\frac {B_0D}    {B_0B_2}\\\\
 C_1C_2\parallel A_1B_2\ \Longrightarrow\ \frac {CD}{CC_1}=\frac {C_0D}{C_0C_2}\end{array}\right\|$ $\Longrightarrow$ $\sum \frac {AD}{AA_1}=\frac {AD}{AA_1}+\frac {B_0D}{B_0B_2}+\frac {C_0D}{C_0C_2}=$ because $D\in AA_1\cap B_0B_2\cap C_0C_2$ in $\triangle A_1B_2C_2$ .



P11. The circles $(O_1)$ and $(O_2)$ are secant in $A$ and $B$ . A line $d$ which pass through the point $A$ cut again $(O_1)$ and $(O_2)$ in $C$ and

$D$ respectively. Let $M$ be a point of $[CD]$ . The line $BM$ cut again the circles $(O_1)$ and $(O_2)$ in $E$ and $F$ . Prove that $CE\parallel DF$ .


Proof. $\left\{\begin{array}{c}
ME\cdot MB=MA\cdot MC\\\\
MF\cdot MB=MA\cdot MD\end{array}\right\|\ \implies\ \frac {ME}{MF}=$ $\frac {MC}{MD}\ \implies\ CE\parallel DF$ .


PP12. Let $ABC$ be an acute triangle with $b\ne c$ . Let $H$ be the orthocenter of $\triangle ABC$ . Denote the midpoint $M$ of $[BC]$ . Let $D\in (AB)$ and $E\in (AC)$ be two

points such that $AE=AD$ and $H\in ED$ . Prove that $HM$ is perpendicular to the common chord of the circumscribed circles of triangles $ABC$ and $ADE$ .

Lemma. Denote the circumcircle $c=C(O)$ and the orthocentre $H$ of $\triangle ABC$ , the midpoint $M$ of $[BC]$ , the intersection $N$ between $MH$ and the bisector

of the angle $\widehat {BAC}$ and $D\in AB\ ,\ E\in AC$ so that $H\in DE$ and $AD=AE$ . Then $N$ belongs to the circumcircle $w=C(O_a)$ of $\triangle ADE$ .


A metrical proof. $AH=2R\cos A$ and $P\in c\cap (AO_a\Longrightarrow$ $AP=2R\cos \frac{B-C}{2}\ ,$ $MP=R(1-\cos A)$ . Thus, $\frac{AN}{AP}=\frac{AH}{AH+MP}=$

$\frac{2\cos A}{1+\cos A}\Longrightarrow $ $\boxed {AN=\frac{2\cos A}{1+\cos A}\cdot AP}$ . Denote the point $N'\in AP\cap w$ , i.e. $DN'\perp AB$ . Thus, $\frac{AD}{\sin \left(B+\frac A2\right)}=\frac{AH}{\cos \frac A2}$ $\Longrightarrow$ $AD=\frac{\cos\frac{B-C}{2}}{\cos \frac A2}\cdot AH$

and $AN'=\frac{AD}{\cos \frac A2}$ $\Longrightarrow$ $AN'=\frac{\cos \frac{B-C}{2}}{\cos^2\frac A2}\cdot AH=$ $\frac{2\cos \frac{B-C}{2}}{1+\cos A}\cdot AH=$ $\frac{AP}{R}\cdot\frac{2R\cos A}{1+\cos A}=$ $\frac{2\cos A}{1+\cos A}\cdot AP$ $\Longrightarrow$ $ AN'=AN$ $\Longrightarrow$ $N\equiv N'$ ,

i.e. the point $N$ belongs to the circumcircle of $\triangle ADE$ .

Proof of the proposed problem. Denote: $A'\in c\cap (AO$ ; the middlepoint $A_1$ of $[AH]$ ; $N\in w\cap (AO_a$ . From the above lemma results

$N\in MH$ . But $AA_1=HA_1=OM$ (the point $M$ is the middlepoint of $[HA']$) , $OA=OA'$ and $O_aA=O_aN$ . Thus, $A_1$, $O$, $O_a$ are

the middlepoints of $AH$ , $AA'$ , $AN$ respectively and $N\in HM\equiv HA'$ $\Longrightarrow$ $O_a\in OA_1$ and $OA_1\parallel MH$ . Therefore, $MH\parallel OO_a$ .

Remark. I denote ray $(XY$ without the point $X$.


PP13 (Jayme). Let $ABCD$ be a square. For $E\in (AD)$ construct externally the square $AEFG$ .

Denote the middlepoint $I$ of $[DE]$ and $K\in BE\cap DG$ . Prove that $IK\cap CE\cap AB\ne\emptyset$ .


Proof (Yetti). Denote $J\in KI\cap AB$ and the midpoint $M$ of $[GB]$ . Thus, $\triangle ADG \sim \triangle ABE$ $\Longrightarrow $ $GK \perp KB$ and $\triangle KBG \sim \triangle ABE\Longrightarrow$

$\frac{GK}{KB} = \frac{GA}{AB}$ $\Longrightarrow$ $KA$ bisects $\angle BKG$ . From $\triangle KBG \sim \triangle KDE$ obtain that $KM \perp KI$ $\Longrightarrow$ $JKI$ is tangent to the circumcircle of $KBG$

and $JK = JA$ $\Longrightarrow$ $\triangle JKG \sim \triangle JBK$ $\Longrightarrow$ $\frac{JA}{JB} = \frac{JK}{JB} = \frac{GK}{KB} = \frac{EA}{CB}$ $\Longrightarrow$ $J \in CE$ .


An easy extension. Let $ABCD$ be a rhombus. For $E\in (AD)$ construct externally the rhombus $AEFG$ .

Denote the middlepoint $I$ of $[DE]$ and $K\in BE\cap DG$ . Prove that $IK\cap CE\cap AB\ne\emptyset$ .


Proof. Denote $L\in CE\cap AB$ . Observe that $\frac {LA}{LB}=\frac {EA}{BC}\ (1)$ and $GB=GA+AB=AE+AD=2\cdot AI\implies$ $\frac {IE}{IA}=\frac {2\cdot IE}{2\cdot IA}\implies$

$\frac {IE}{IA}=\frac {DE}{GB}\ (2)$ . Apply the Menelaus' theorem to the transversal $\overline {DKG}$ for $\triangle AEB\ :\ \frac {GA}{GB}\cdot\frac {KB}{KE}\cdot\frac {DE}{DA}=1$ $\implies$ $\frac {KB}{KE}=\frac {DA}{DE}\cdot\frac {GB}{GA}\ (3)$ .

Therefore, $\frac {LA}{LB}\cdot\frac {KB}{KE}\cdot\frac {IE}{IA}\ \stackrel{(1)\wedge (2)\wedge (3)}{=}\ \frac {EA}{BC}$ $\cdot \left(\frac {DA}{DE}\cdot\frac {GB}{GA}\right)\cdot\frac {DE}{GB}=1\implies$ $L\in IK$ . In conclusion, $IK\cap CE\cap AB\ne\emptyset$ .



PP14. Let $ C$ and $ D$ be intersection points of circles $ w_1=C(O_1)$ and $w_2=C( O_2)$ . A line passing through $ D$ intersects

again $ O_1$ and $ O_2$ at $ A$ and $ B$ respectively. For $P\in w_1$ and $Q\in w_2$ denote $H\in PD\cap AC$ and $M\in QD\cap BC$ .

Suppose that $ O$ is the circumcenter of the triangle $ABC$ . Prove that $OD\perp MH\ \iff\ PQMH$ is cyclically.


Proof. I"ll use the power of a point. Thus, $PQMH$ is cyclically $\iff DP\cdot DH=DM\cdot DQ \iff$ $ HD\cdot HP-HD^2=MD\cdot MQ-MD^2\iff$

$ DM^2-DH^2=MD\cdot MQ-HP\cdot HD=MB\cdot MC-$ $HC\cdot HA=(OM^2-R^2)-(OH^2-R^2)=$ $OM^2-OH^2\iff$ $OD \perp MH$ .



PP15. Let $ABCD$ be a square and let $H\in (BC)$ and $G\in (CD)$ so that $\left(\widehat{HAG}\right)=45^{\circ}$ . Denote $Y\in AH\cap BD$ and

$Z\in AG\cap BD$ . Prove that $YZGH$ is a cyclical quadrilateral with its circumcenter on $GH$ and $GH^{2}=2\cdot\left(BY^{2}+CZ^{2}\right)$ .


Proof. $\left\{\begin{array}{ccccc}
m\left(\widehat{HAZ}\right)=m\left(\widehat{HBZ}\right) & \iff & ABHZ\ \mathrm{is\ cyclically} & \iff & HZ\perp AG\\\\
m\left(\widehat{GAY}\right)=m\left(\widehat{GDY}\right) & \iff & ADGY\ \mathrm{is\ cyclically} & \iff & GY\perp AH\end{array}\right\|$ $\implies$ $YZGH$ is inscribed in the circle

with the diameter $[HG]$ . Remark that $X\in HZ\cap GY\implies$ $AX\perp HG$ , i.e. $X$ is the orthocenter of $\triangle AHG$ . Suppose w.l.o.g. $AB=1$ ,

i.e. $AC=\sqrt 2$ . Denote $BY=x$ and $DG=y$ . Observe that $\tan\widehat{BAH}=x\ ,\ \tan\widehat {CAG}=y$ and $m\left(\widehat{BAH}\right)+\left(\widehat {CAG}\right)=45^{\circ}$

$\implies$ $\frac {x+y}{1-xy}=1\implies$ $(x+y)+xy=1$ , i.e. $(x+1)(y+1)=2$ . Therefore, $\left\{\begin{array}{ccc}
\frac {BY}{x}=\frac {YD}{1}=\frac {\sqrt 2}{x+1} & \implies & BY=\frac {x\sqrt 2}{x+1}\\\\
\frac {DZ}{y}=\frac {ZB}{1}=\frac {\sqrt 2}{y+1} & \implies & DZ=\frac {y\sqrt 2}{y+1}\end{array}\right\|$ .

Thus, $GH^2-2\cdot\left(BY^2+DZ^2\right)=$ $(1-x)^2+(1-y)^2-2\cdot\left[\frac {2x^2}{(x+1)^2}+\frac {2y^2}{(y+1)^2}\right]=$ $2(1-x-y)+x^2+y^2-x^2(y+1)^2-$

$y^2(y+1)^2=$ $(x+y)^2-(1-y)^2-(1-x)^2=0$ because $x(y+1)=1-y$ and $y(x+1)=1-x$ . Otherwise, $X\in AC\cap BD\implies$

$\left\{\begin{array}{ccccc}
\triangle ABC\sim\triangle AYG\sim\triangle AXD & \implies & \frac{BY}{BX}=\frac {CG}{CD} & \implies & CG=BY\cdot\sqrt 2\\\\
\triangle ADC\sim\triangle AZH\sim\triangle AXB & \implies & \frac{DZ}{DX}=\frac {CH}{CB} & \implies & CH=DZ\cdot\sqrt 2\end{array}\right\|$ $\implies$ $GH^2=$ $CH^2+CG^2=$ $2\cdot\left(BY^2+DZ^2\right)$ .



Lemma. Let $\triangle ABC$ and $D\in BC$ , $E\in CA$ , $F\in AB$ . Denote $P\in AD\cap EF$ . Prove that $\boxed{\frac {PF}{PE} = \frac {DB}{DC}\cdot\frac {AF}{AE}\cdot \frac {AC}{AB}}$ .

Proof. Denote $\left\{\begin{array}{c}
m\left(\widehat {DAB}\right)=x\\\\
m\left(\widehat {DAC}\right)=y\end{array}\right\|$ and apply the well-known relations $\left\{\begin{array}{c}
\frac {PF}{PE}=\frac {AF}{AE}\cdot\frac {\sin x}{\sin y}\\\\
\frac {DC}{DB}=\frac {AC}{AB}\cdot\frac {\sin y}{\sin x}\end{array}\right\|\ \bigodot\ \implies \frac {PF}{PE} = \frac {DB}{DC}\cdot\frac {AF}{AE}\cdot \frac {AC}{AB}$ .


Application. Let $\triangle ABC$ with the incircle $w=C(I)$ and the points $D\in (BC)$ , $E\in (CA)$ , $F\in (AB)$ so

that $\frac {DB}{DC}=\frac {BF}{CE}$ . For a point $P\in AI$ denote $K\in DF\cap BP$ , $L\in DE\cap CP$ . Prove that $LK\parallel EF$ .


Proof. Denote $X\in AI\cap BC$ , $S\in BP\cap CA$ , $R\in CP\cap AB$ . Observe that $P\in AX\cap BS\cap CR\iff$

$\frac {XB}{XC}\cdot\frac {SC}{SA}\cdot\frac {RA}{RB}=1\iff$ $\frac {AB}{AC}\cdot\frac {SC}{SA}\cdot\frac {RA}{RB}=1\ (1)$ . Apply the upper lemma : $\left\{\begin{array}{c}
\frac {LE}{LD}=\frac {RA}{RB}\cdot\frac {CE}{CD}\cdot\frac{CB}{CA}\\\\
\frac {KF}{KD}=\frac {SA}{SC}\cdot\frac {BF}{BD}\cdot\frac {BC}{BA}\end{array}\right\|$ .

Using the relations $\frac {DB}{DC}=\frac {BF}{CE}$ from the hypothesis and the relation $(1)$ obtain that $\frac {LE}{LD}=\frac {KF}{KD}$ , i.e. $LK\parallel EF$ .


PP16. Let $ABC$ be a triangle and let $D\in (BC)$ , $E\in (CA)$ and $F\in (AB)$ be three points such that $AD\cap BE\cap CF\ne\emptyset$ .

Let the points $M\in (EF)$ , $N\in (FD)$ and $P\in (DE)$ . Prove that $AM\cap BN\cap CP\ne\emptyset\iff$ $DM\cap EN\cap FP\ne\emptyset$ .


Proof. Denote $\left\{\begin{array}{c}
X\in AM\cap BC\\\
Y\in BN\cap CA\\\
Z\in CP\cap AB\end{array}\right\|$ . Observe that $AD\cap BE\cap CF\ne\emptyset\iff$ $\frac {AF}{AE}\cdot \frac {CD}{CA}\cdot\frac {CD}{CA}=1$ . Apply the upper well-known

remarkable lemma : $\left\{\begin{array}{c}
\frac {MF}{ME}=\frac {XB}{XC}\cdot\frac {AF}{AE}\cdot \frac {AC}{AB}\\\\
\frac {PE}{PD}=\frac {ZA}{ZB}\cdot \frac {CD}{CA}\cdot\frac {CA}{CB}\\\\
\frac {ND}{NF}=\frac {YC}{YA}\cdot\frac {CD}{CA}\cdot\frac {BC}{BA}\end{array}\right\|\ \bigodot\ \implies\ \frac {MF}{ME}\cdot\frac {PE}{PD}\cdot\frac {ND}{NF}=\frac {XB}{XC}\cdot\frac {ZA}{ZB}\cdot \frac {YC}{YA}$ . In conclusion,

$DM\cap EN\cap FP\ne\emptyset\iff\frac {MF}{ME}\cdot\frac {PE}{PD}\cdot\frac {ND}{NF}=1\iff$ $\frac {XB}{XC}\cdot\frac {ZA}{ZB}\cdot \frac {YC}{YA}=1\iff$ $AM\cap BN\cap CP\ne\emptyset$ .



PP17. Let $ \triangle ABC$ with the incenter $ I$ , the $A$-exincenter $I_a$ and $ c>b$ . Denote $ D\in (AB)$ and $ \{E,F\}\subset  AA$ (the tangent in a point $ A$ to the

circumcircle of $ \triangle ABC$) so that $ AD=AE=AF=b$ and the sideline $ AB$ doesn't separate $ C$ , $ E$ . Prove that $ I\in DE$ and $I_a\in FD$ .


Proof 1. $ X\in AI\cap DE$ and $ Y\in BC\cap AI\ \implies\ m(\angle BAE)=A+B$ , $ YD=YC=\frac {ab}{b+c}$ , $ m(\angle ADY)=C$ .

Thus, $ DY\parallel AE\ \implies\ \frac {XA}{XY}=\frac {AE}{DY}=$ $ \frac {b}{\frac {ab}{b+c}}\ \implies\ \frac {XA}{XY}=\frac {b+c}{a}$ $ \stackrel{\mathrm{Van\ Aubel}}{\ \ \implies\ \ }X: =I$ . In conclusion, $ I\in DE$ .

Proof 2. Denote $E_0\in DI\cap AA$ . Since $m(\angle BIC)=m(\angle BDC)=90^{\circ}+\frac A2$ it follows that $BDIC$ is a cyclical quadrilateral $\Longrightarrow$ $m(\angle E_0IC)=B\implies$

$m(\angle E_0AC)=B$ $\implies$ $AICE_0$ is a yclical quadrilateral. Since $m(\angle AID)=(\angle AIC)$ , then the chords $AC=AE_0$ are equally $\Longrightarrow$ $E \equiv E_0,$ as desired.

Remark. Similarly, we show that $DF$ passes through the $A$-excenter of $\triangle ABC$ . Denote $F_0\in DI_a\cap AA$ . Since $m(\angle BI_aC)=m(\angle ADC)=90^{\circ}-\frac A2$

it follows that $BDCI_a$ is a cyclical quadrilateral $\Longrightarrow$ $m(\angle F_0I_aC)=B$ and $m(\angle F_0AC)=180^{\circ}-B$ $\implies$ $ACI_aF_0$ is a yclical quadrilateral.

Since $m(\angle AI_aD)=(\angle AI_aC)$ , then the chords $AC=AF_0$ are equally $\Longrightarrow$ $F \equiv F_0,$ as desired.


Proof 3. I"ll well-known equivalence that $\boxed{I\in DE\iff  [ADE]=[ADI]+[AIE]}$ . Indeed, $[ADE]=[ADI]+[AIE]\iff$

$b^2\sin C=b\cdot AI\cdot\left[\sin\frac A2+\sin\left(B+\frac A2\right)\right]\iff$ $b\cdot\sin C=$ $\sqrt{\frac {bc(s-a)}{s}}\cdot 2\cos \frac B2\cos \frac C2\iff$

$b\cdot\sin\frac C2=\sqrt{\frac {bc(s-a)}{s}}\cdot\cos \frac B2\iff$ $b\cdot\sqrt {\frac {(s-a)(s-b)}{ab}}=\sqrt {\frac {bc(s-a)}{s}}\cdot\sqrt {\frac {s(s-b)}{ac}}$ , what is truly.

$\boxed{I_a\in DF\iff  [AFI_a]=[AFD]+[ADI_a]}\iff$ $[AFD]=[AFI_a]-[ADI_a]\iff$

$b^2\sin C=b\cdot AI_a\cdot\left[\sin\left(\frac A2+C\right)-\sin \frac A2\right]\iff$ $b\cdot\sin C=\sqrt{\frac {bcs}{s-a}}\cdot 2\sin\frac B2\sin\frac C2\iff$

$b\cdot\cos\frac C2=\sqrt{\frac {bcs}{s-a}}\cdot\sin \frac B2\iff$ $b\cdot\sqrt {\frac {s(s-c)}{ab}}=\sqrt {\frac {bcs}{s-a}}\cdot\sqrt {\frac {(s-a)(s-c)}{ac}}$ , what is truly.



PP18. Let $ABCD$ be a trapezoid so that $AB\parallel CD$ and $AB\ne CD$ . Denote $\left\{\begin{array}{ccc}
AB=a & ; &  CD=b\\\
AC=e & ; & BD=f\\\
AD=m & ; & BC=n\end{array}\right\|$ . Prove that

$\frac {e^2-f^2}{m^2-n^2}=\frac {a+b}{a-b}$ and the intersection $I\in  AC\cap BD$ belongs to the radical axis of the circles with the diameters $[AD]$ , $[BC]$ .


Proof 1. Denote the points $\{X,Y,Z\}\subset AB$ so that $CX\parallel AD$ , $CZ\parallel DB$ and $CY\perp AB$ . Observe that $CX=m$ , $CZ=f$ , $AX=BZ=b$ ,

$XB=a-b$ and $YX-YB=\left[(YX+XA)-(YB+BZ)\right]\implies$ $\boxed{YX-YB=YA-YZ}\ (*)$ . Therefore, $e^2-f^2=CA^2-CZ^2=$

$YA^2-YZ^2=(YA-YZ)(YA+YZ)$ $\implies$ $\boxed{e^2-f^2=(YA-YZ)(a+b)}\ (1)$ and $m^2-n^2=CX^2-CB^2=$ $YX^2-YB^2=$

$(YX-YB)(YX+YB)$ $\implies$ $\boxed{m^2-n^2=(YX-YB)(a-b)}\ (2)$ . Thus, using the relation $(*)$ obtain that $\boxed{\frac {e^2-f^2}{m^2-n^2}=\frac {a+b}{a-b}}\ (3)$ . Denote the

power $p_w(X)$ of $X$ w.r.t. the circle $w$ , $m\left(\widehat{AID}\right)=\phi$ , the midpoints $M$ , $N$ of $[AD]$ , $[BC]$ respectively and the circles $w_1$ , $w_2$ with the diameters $[AD]$ , $[BC]$

respectively. Thus, $\left\{\begin{array}{ccc}
4\cdot p_{w_1}(I)=4\cdot\left[IM^2-\left(\frac {AD}{2}\right)^2\right]  & \implies & p_{w_1}(I)=\frac 12\cdot\left(IA^2+ID^2-AD^2\right)=IA\cdot ID\cdot\cos \phi\\\\
4\cdot p_{w_2}(I)=4\cdot\left[IN^2-\left(\frac {BC}{2}\right)^2\right]  & \implies & \cdot p_{w_2}(I)=\frac 12\cdot\left(IB^2+IC^2-BC^2\right)=IB\cdot IC\cdot \cos\phi\end{array}\right\|$ $\implies$ $p_{w_1}(I)=p_{w_2}(I)$ .

Proof 2. I"ll use same notations from the first proof. Denote $U\in AC\cap w_1$ and $V\in BD\cap w_2$ . Observe that $\frac {IA}{IC}=\frac {IB}{ID}\ (1)$ and $CUVD$ is inscribed in

the circle with the diameter $[CD]$ , i.e. $IU\cdot IC=IV\cdot ID\ (2)$ . The product of the relations $(1)$ and $(2)$ get $IU\cdot IA=IV\cdot IB$ , i.e. $p_{w_1}(I)=p_{w_2}(I)$ .

Observe that $AY-YZ=(\underline{AX}+XY)-(YB+\underline{BZ})=$ $XY-YB\implies \boxed{AY-YZ=XY-YB}\ (*)$ . Apply the generalized Pythagoras' theorem

to the triangles $\left\{\begin{array}{cccc}
\triangle ACZ\ : & e^2=f^2+(a+b)^2-2(a+b)\cdot YZ & \implies & e^2-f^2=(a+b)(AY-YZ)\\\\
\triangle BCX\ : & m^2=n^2+(a-b)^2-2(a-b)\cdot YB &\implies &  m^2-n^2=(a-b)(XY-YB)\end{array}\right\|$ $\stackrel{(*)}{\implies}\ \boxed{\ \frac {e^2-f^2}{m^2-n^2}=\frac {a+b}{a-b}\ }$ .

Otherwise. Apply the Stewart's theorem to the cevians $CX$ and $CZ$ in the triangles $ACB$ and $XCZ$ respectively :

$\left\{\begin{array}{ccc}
CA^2\cdot XB+CB^2\cdot AX=AX\cdot XB\cdot AB+CX^2\cdot AB & \implies & e^2(a-b)+n^2b=ab(a-b)+m^2a\\\\
CX^2\cdot BZ+CZ^2\cdot XB=XB\cdot BZ\cdot XZ+ CB^2\cdot XZ & \implies & f^2(a-b)+m^2b=ab(a-b)+n^2a\end{array}\right\|\ \implies$

$\left\{\begin{array}{cccc}
\ominus\ : & (e^2-f^2)(a-b)-b(m^2-n^2)=a(m^2-n^2) & \implies & \boxed{\frac {e^2-f^2}{m^2-n^2}=\frac {a+b}{a-b}}\\\\
\oplus\ :  & (e^2+f^2)(a-b)+b(m^2+n^2)=2ab(a-b)+a(m^2+n^2) & \implies & e^2+f^2=2ab+m^2+n^2\ (\mathrm{\underline{Euler}'s \ relation})\end{array}\right\|$ .

Remark.. $\left\{\begin{array}{c}
m^2+ab=\frac {a\cdot e^2+b\cdot f^2}{a+b}\\\\
n^2+ab=\frac {b\cdot e^2+a\cdot f^2}{b+a}\end{array}\right\|$ $\implies$ $\min\{e,f\}\le\min\left\{\sqrt {m^2+ab}\ ,\ \sqrt{n^2+ab}\right\}$ $\le\max\left\{\sqrt {m^2+ab}\ ,\ \sqrt{n^2+ab}\right\} \le \max\{e,f\}$ .

With other words, $\left[\sqrt {m^2+ab}\ ,\ \sqrt{n^2+ab}\right]\cup\left[\sqrt {n^2+ab}\ ,\ \sqrt{m^2+ab}\right]\subset [e,f]\cup [f,e]$ .
This post has been edited 379 times. Last edited by Virgil Nicula, Nov 19, 2015, 9:15 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404398
  • Total comments: 37
Search Blog
a